
Rough Sets Inspired Extension of Forward Inference

Algorithm

Roman Siminski and Alicja Wakulicz-Deja

Institute of Computer Science, University of Silesia, Poland

{roman.siminski,alicja.wakulicz-deja}@us.edu.pl

Abstract. The main goal of this work is to introduce theoretical background of

the extended forward inference algorithm. Proposed algorithm allow to continue

inference after its failure. Inference failure means that the inference engine is un-

able to obtain the solutions — the new facts or goals confirmation. Two-phase

extension of classical inference algorithm is considered. In the first phase, clas-

sical forward inference is executed. If inference fails, second phase is activated

and targeted search for additional facts is executed in the interactive mode. Infer-

ence extension proposed in this work is inspired be the rough sets theory which

provides the conception of lower and upper approximations of particular sets.

Key words: knowledge base, forward inference, rules groups

1 Introduction

Rule-based systems are a well known solvers for specialized domains of competence,

in which effective problem solving normally requires human expertise. This approach

to solving ill-structured and non-algorithmic problems has been known for many years

and it seemed that in this field everything had been said. But the rules are still the most

popular, important and useful tool for constructing knowledge bases. During the last

decade we could observe the growth of interest on rule knowledge bases applications.

In the presented work, the extension of the forward inference algorithm will be con-

sidered. The modifications and extensions of the inference algorithms for rule-based

systems were described in the previous works [5, 3]. The main goal of this work is to

introduce another extension of forward inference algorithm which allow inference to

continue after its failure. Inference failure means that the inference engine is unable to

obtain the solutions: the new facts or goals confirmation. Two-phases extension of clas-

sical inference algorithm is considered. In the first phase, classical forward inference is

executed. If inference fails, second phase is activated and targeted search for additional

facts is executed in the interactive mode. Proposed approach is limited to systems that

have the ability to acquire new facts from the environment.

2 The Problem, Related Works, Proposed Approach

The real-word rules bases often contain only rules in the Horn clauses form. Inference

with such rules can be done through the forward and backward chaining algorithms.

162

Forward chaining inference represents a data-oriented approach that searches for the

solution space from an initial state to a final goal state. In a forward chaining system,

the initial facts are processed using the rules to draw new facts as the conclusions of the

applied rules. Contrary to the backward inference, forward chaining algorithm operates

in the batch mode and it does not require an interaction with the system’s environment.

The environment nature may vary depending on the system application. Typically the

user interacts with the system, but in the context of embedded systems, information

for inference can be provided by the technical equipment (for example: sensors, de-

tectors). In the literature we can find forward inference optimization algorithms [4].

Regardless of the applied particular methods of forward inference, unsuccessful infer-

ence is an important problem. This leads to a negative assessment of knowledge base

system, inference failure is interpreted as inability to obtain any solution by the system.

The literature studies allow us to identify three main approaches to the unsuccessful

inference.

First group of approaches finishes any consideration after inference failure. This is

typical for currently used main expert system shells and frameworks for expert systems.

Second group attempts to continue inference using question-asking strategies. If the ini-

tial information is insufficient, the system will ask the user for additional data. There are

few articles which discuss the question-asking problem analytically. Some of the early

applications of experts systems consider the issue of question asking strategies — the

system EXPERT [2], PROSPECT [1]. In [10] the authors define an unconfirmed observ-

able set of assertions Pi, as a set of unconfirmed assertions that, if all were confirmed

true, Pi would be proved true, but if even one was false, then Pi could not be concluded

from the others. A smallest unconfirmed observable set over all the unconfirmed ob-

servable sets of top level assertions is called a global minimum inquiry set of the Horn

clause system. The authors proved [10, 8] that the problem of finding a global minimum

inquiry set of a Horn clause system is NP-hard, therefore they introduced and discussed

the Minimum Usage Strategy — an efficient strategy approximating sub-effectiveness,

in which question selection is a natural extension of the deduction process. Labelling

Algorithm selects a next question for this strategy by using dynamic programming. In

the [8] different strategies of question-asking strategy are considered. Other work [9]

describes question-asking strategies for a Horn system in which the response costs of

the questions and tile probabilistic estimates of the answers are given, the authors in-

troduce a question sequencing rule and enhance an efficient question-asking strategy.

Methods mentioned above try to deal with inference failure using variations of logic

and probabilistic methods.

Third group of approaches treats inference failure as a symptom of incomplete-

ness. The most popular approach to process incomplete data is based on the uncertain

reasoning. Reasoning under uncertainty has been studied in the fields of statistic, proba-

bility theory and decision theory. The oldies methods applied in uncertain reasoning are

probability theory, including Bayesian networks, certainty factors, relatively newer are

Dempster-Shafer theory, fuzzy logic and fuzzy set, rough sets, several non-monotonic

logic have been also proposed. Methods mentioned above differ significantly, they try

to quantitative estimate the degree of truth information, which can not be true from the

logical point of view.

163

In this work we want to introduce different proposals of deal with inference failure.

We propose an extension of classical inference algorithm, which includes two steps.

In the first stage, classical forward inference is executed. If inference is successful, its

result are presented in the typical way and the second stage is unnecessary and not ac-

tivated. If inference fails, we propose simple idea: resumption of the inference and the

acquisition of the missing facts. It could be done if a system is able to work in the in-

teractive mode and the source of information about missing facts exist. Typically, the

end-user may provide such information, in general, such information can be provided

by any system environment, which is able to operate interactively (for example tech-

nical equipment with sensors, detectors). The acquisition of the missing facts seems

to be a naive idea, however, we propose targeted search for additional facts, based on

the results of failed inference from first stage. Detailed description of proposed ap-

proach is the topic of the next section. Introduced approach is similar to the described

above question-asking method, the main difference is the utilisation of rough set in-

spired method of evaluating the acceptable fact extension set. In contrast to described

question-asking method, proposed approach appends to resume classical forward infer-

ence and acceptable fact extensions a trigger for new inference.

3 Methods

3.1 Preliminary Issues

In presented work the knowledge base is defined as a pair KB = (R,F) where R is a

non-empty finite set of rules and F is a finite set of facts. R = {r1, r2, . . . , rn}, each

rule r ∈ R will have a form of Horn’s clause r : p1 ∧ p2 ∧ · · · ∧ pm → c, where m —

the number of literals in the conditional part of rule r, and m ≥ 0, pi — i-th literal in

the conditional part of rule r, i = 1 . . . m, c — literal of the decisional part of rule r.

For each rule r ∈ R the following functions are defined:

– concl(r) — the value of this function is the conclusion literal of rule r: concl(r) =
c;

– cond(r) — the value of this function is the set of conditional literals of rule r:

cond(r) = {p1, p2, . . . pm},
– literals(r) — the value of this function is the set of all literals of rule r:

literals(r) = cond(r) ∪ {concl(r)},
– csizeof(r) — conditional size of rule r, equal to the number of conditional literals

of rule r: csizeof(r) = |cond(r)| = m,

– sizeof(r) — whole size of rule r, equal to the number of conditional literals of

rule r increased by the 1 for single conclusion literal, for rules in the form of Horn’s

clause: sizeof(r) = csizeof(r) + 1.

We will also consider the facts as clauses without any conditional literals. The set

of all such clauses f will be called set of facts and will be denoted by F : F = {f :
∀f∈F cond(f) = {} ∧ f = concl(f)}.

In this work, rule’s literals will be denoted as the pairs of attributes and their values.

Attributes are defined in a manner that is quite similar to that of a rough set theory. Let

164

A be a nonempty finite set of conditional and decision attributes1. For every attribute

a ∈ A the set Va will be denoted as the set of values of attribute a. Attribute a ∈ A may

be simultaneously conditional and decision attribute. Also a conclusion of a particular

rule ri can be a condition in other rule rj . It means that rule ri and rj are connected

and it is possible that inference chains to occur. The literals of the rules from R are

considered as attribute-value pair (a, v), where a ∈ A and v ∈ Va. Furthermore the

notation (a, v) and a = v is equivalent.

3.2 Unsuccessful Inference

Typically, inference failure is the result of incompleteness — it is possible to consider

incompleteness of facts actually describing problem to solve, and/or the incompleteness

or rules base. The condition p ∈ cond(r) of rule r will be true, if it is a fact: p ∈ F . For

each rule r and non-empty set of facts F 6= ∅ it is possible to show following cases of

matching the conditional part of each rule r ∈ R: cond(r) and set of facts F :

1. cond(r) ⊆ F — full matching, all rule’s conditions are facts: ∀pi∈cond(r)pi ∈ F ,

rule r is fireable, and r is able to draw new fact concl(r).

2. (cond(r) 6⊆ F)∧ (cond(r)∩F = ∅) — the lack of matching, all rule’s conditions

are not facts: ∀pi∈cond(r)pi /∈ F , rule r is definitively not fireable, and is not able

to draw new fact.

3. (cond(r) 6⊆ F) ∧ (cond(r) ∩F 6= ∅) — partial matching, not all rule’s conditions

are facts: ∃pi∈cond(r)pi /∈ F , rule r is not fireable, and is not able to draw new fact.

The degree of matching rule r to the facts F we will describe using rule to facts

matching factor MF (r) defined in the following way:

MF (r) =
|cond(r) ∩ F|

|cond(r)|

For cases described above: MF (r) = 1 for case 1, MF (r) = 0 for case 2,

0 < MF (r) < 1 for case 3. From the inferential point of view, both cases 2 and 3

cause the impossibility of obtaining new facts. However, in the third case the rule r is

promising — it will be fireable when we will succeed to asset as true conditions, that

were considered to be false until now. The higher the MF (r) is, the greater is rule r
usefulness. For the clarity of the further presentation, let RF be the set of rules fully

matched to the facts, RP be the set of rules partially matched to the facts and RN

denotes the set of rules that do not match to the facts at all:

RF = {r ∈ R : cond(r) ⊆ F}

RP = {r ∈ R : (cond(r) 6⊆ F) ∧ (cond(r) ∩ F 6= ∅)}

RN = {r ∈ R : cond(r) ∩ F = ∅}

1 Decision attributes are attributes that are at least once included in conclusion of any rule from

R.

165

3.3 Rough Set Inspiration

Inference extension proposed in this work is inspired be the rough sets theory [7].

Rough sets theory provides the conception of lower and upper approximations of par-

ticular sets [6]. In general, the proposed approach is inspired by the set approximation,

but relation with the rough set theory is not strict. The description presented bellow

informally refers to the lower and upper approximations.

Based on the knowledge provided by the rule r ∈ R and nonempty set of facts F , it

is possible to identify the set of rule r conditions, which can be with certainty classified

as the facts: F(r) = {c ∈ cond(r) : cond(r) ⊆ F}. Informally, the set F(r) is

conceptually similar to the lower approximation of the fact set F under the knowledge

described by the rule r.

It is also possible to identify set of rule r conditions, which can be only classified

as possible facts: F(r) = {c ∈ cond(r) : cond(r) ∩ F 6= ∅}. The items of F(r) are

facts or they appears in the rule r premises partially matched to the facts set. Informally,

the set F(r) is conceptually similar to the upper approximation of the fact set F under

the knowledge described by the rule r. The set FBN (r) = F(r) − F(r) contains

conditions representing missing facts. If these conditions will be the facts, the rule r
will be fireable. It is informally similar to the boundary region of F , and thus consists

of those conditions that cannot be classified as the facts on the basis of knowledge

described in the rule r, but are interesting in the context of inference after failure. The

set FBN (r) will be called basic fact extension set for rule r.

It is possible to consider approximation-like total sets described above, for any non-

empty set of rules R ⊆ R:

FT (R) = {F(r) : r ∈ R}

FT (R) = {F(r) : r ∈ R}

FTBN (R) = F(R)−F(R)

The first naive extension of forward inference proposed in this work, will use the

set FBN (R) it will be called fact extension set for rules R. The pseudo-code 3 presents

the implementation of classical forward inference algorithm (CFI). The input data are

— rule base: R = {r1, r2, ..., rm}, facts set: F = {f1, f2, ..., fk}. The output data are

— new facts in F = {f1, f2, ..., fk, fk+1, ..., fnk}, function result: true if new facts

inferred, false otherwise.

The first proposed extended forward inference algorithm (EFI) is presented by the

pseudo-code 4. At the beginning the EFI algorithm calls classical forward inference

CFI. If inference is successful, function CFI returns true and the first stage of the EFI

algorithm is the last one — the EFI works like CFI. If inference is unsuccessful, func-

tion CFI returns false and the second stage of algorithm is activated. On this stage, the

promising rules subset R is selected and the FBN (R) is determined. The FBN (R) set

contains sets of conditions representing possible facts. This set can be ordered by the

selected strategy — for simplicity the minimal subset will be considered first.

Next, the algorithm looks for first acceptable extension of the facts set e ∈ FBN (R).
Decision about the truth of the fact is taken by the function accepted, which return true if

proposed extension e is acceptable, false otherwise. In object-oriented implementation

of EFI algorithm, function accepted is defined as the abstract function or method. It

166

Algorithm 3: CFI — Classical Forward Inference algorithm

function CFI(R, F) : boolean

var A← ∅
var NF ← ∅
begin

select rules subsetRF fromR according to F
whileRF 6= ∅ do

r← select rule fromRF according to current selection strategy

NF ← NF ∪ {concl(r)}
F ← F ∪NF
A← A ∪ {r}
select rules subsetRF fromR−A according to F

end while

return NF 6= ∅
end function

may be implemented in any way, e.g. through interaction with the system user or, in

general, with system environment. First acceptable extension e is added to the fact set

and EFI function calls itself recursively. Next call of CFI function should be successful

— accepted facts extension should fire proper new rule. Thus, it is possible to skip

recursive call and to call CFI directly. Recursive version is more general and allows the

consideration of different methods of evaluating possible facts extensions.

Algorithm 4: EFI — Extended Forward Inference algorithm

function EFI(R, F) : boolean

begin

if CFI(R, F) then

return true

else

select rules subset R ⊆ R where ∀r∈R cond(r) ∩ F 6= ∅ // (1)

determine FTBN (R) ordered by facts extension strategy

for all e ∈ FTBN (R) do

if accepted(e) then

F ← F ∪ e
if EFI(R, F) then

return true

end if

end if

end for

end if

end function

167

3.4 Criticism of the Proposed Solution

Proposed method of inference after failure looks for first acceptable facts sets extension

FTBN (r). Method of calculation the possible facts extension set described above, en-

sures successful classical inference after acceptance of any set’s element. It can trigger

only one step of classical inference, or it may cause many iteration of the algorithm. Un-

fortunately, the results of inference may be unpredictable and distant from expectation.

Additionally, iterative acquisition of acceptable fact extension may be uncomfortable

for the user — the number of possible query for large rule bases can be high, thus

unacceptable in the real-world applications.

Proposed algorithm is also sensitive to the order of selection of the FTBN (R) set’s

elements. Different order of the elements selected from FTBN (R) can lead to different

inference results. It is not clear whether the obtained inference results are useful and

satisfactory from the point of view of the problem being solved. Although the proposed

solution may be capable of providing potentially useful results, it is possible to for-

mulate more appropriate methods of determination of FTBN (R) set and selection of

promising facts extension. As presented below, extraction of the internal rules depen-

dencies will be a source of information for improving selection of possible facts.

3.5 Rules Groups as Simple Decision Model

For each rule base R with n rules, it is possible to consider a partition PR of a set

R. PR is grouping of set’s R rules into non-empty subsets, in such way that every

rule is included in one and only one of the subsets: ∅ /∈ PR,
⋃

R∈PR = R and if

Ri, Rj ∈ PR and Ri 6= Rj then Ri

⋂

Rj = ∅. The sets in PR will be called the

rules groups of the partition. In this work only simple partitioning strategies will be

considered. The membership criterion function decides about the membership of rule

r in a particular group R ⊆ PR according to the membership function mc. Simple

strategy divides the rules by using the algorithm with time complexity not higher than

O(n · k), where n = |R| and k = |PR|. Simple strategy creates final partition PR
by a single search of the rules set R and allocation of each rule r to the proper cell R,

according to the value of the function mc(r, R) described bellow.

Proposed approach assumes that the membership criteria is defined by the mc func-

tion, which is defined individually for every simple partition strategy. The function:

mc : R× PR → [0..1], return the value 1 if the rule r ∈ R with no doubt belongs to

the group R ⊆ PR, 0 in the opposite case. The value of the function from the range

0 < mc < 1 means the partial membership of the rule r to the group R. The method

of determining its value and its interpretation depends on the specification of a given

partition method. It is possible to achieve many different partitions of rule base using

single mc function.

The simple strategy partitioning algorithm is presented [3], it is simple and for this

reason will be omitted. The input parameters are: the knowledge base R, the function

mc that defines the membership criteria, and the value of the threshold T . Output data is

the partition PR. In connection with the main problem, two partitioning strategies will

be discussed. The first is basic decision oriented partition PSB which creates groups of

168

the rules fromR by grouping rules with the same conclusions. The membership criteria

for rule r and group R is given by the function mc defined as follows:

mc(r, R) =

{

1 if ∀ri∈R concl(ri) = concl(r)
0 otherwise

(1)

By using the simple partition algorithm [3] with the mc function defined in this

way, we obtain the following groups: R = {r ∈ R : ∀ri∈R concl(ri) = concl(r)}.
The number of groups in the partition depends on the number of different decisions

included in conclusions of such rules. When we distinguish different decisions by the

different conclusions appearing in the rules, we get one group for each conclusion. All

rules grouped within a rule set take part in an inference process confirming the goal

described by the particular attribute-value — for each R ∈ PRB the conclusion set

|Concl(R)| = 1. Similarly, in decision tables DT = (U, A ∪ {d}) — considered in

the rough set theory [7, 6] — values of decision attributes d defines partition of objects

from U into the decision class CLASSA(d) = {X1
A, X2

A, . . . X
r(d)
A }, where r(d) is

the cardinality of value set for attribute a and Xi
A is the i-th decision class of A. Each

group of rules from an elementary partition is similar to i-th decision class Xi
A.

The second partitioning strategy considered in this work is decision oriented par-

tition denoted PRD. It also uses the simple partition algorithm with the mc function

defined in the following way:

mc(r, R) =

{

1 if ∀ri∈R attrib(concl(ri)) = attrib(concl(r)),
0 otherwise.

(2)

Each generated group of the rules have the following form: R = {r ∈ R :
∀ri∈R attrib(concl(ri)) = attrib(concl(r))}. When we distinguish different deci-

sions by the different attribute from conclusions appearing in the rules — we obtain

one group for each decision attribute. Thus any rule set R ∈ PRD can be described as

R = {
⋃

R′ ∈ PRB : ∀ri, rj ∈ R′ attrib(concl(ri)) = attrib(concl(rj))}. It means

that the decision produced by the ordinal decision partition can be constructed as the

composition of the basic decision partitions. By analogy, decision oriented partition is

similar to the decision tables DT = (U, A ∪ {d}), where d is single decision attribute.

The partitioning strategy PRB and PRD describes global dependencies appearing

in the rule base. To express and utilize dependencies between rules in any partition

PR, it is possible to define partitions connection graph GPR = (PR,C). PR rep-

resents nodes of GPR, C ⊆ PR × PR represents relation which defines edges of

GPR. In the context of connection graph, we assume that for any rules group R we

consider two sets — In(R) and Out(R). In(R) and Out(R) denote respectively the

set of input and output data of the rules set. Items of those sets are literals appearing

in the rules from R. The structure of In(R) and Out(R) depends on the currently

considered partition strategy. The C relation can be defined in the following way:

C = {(x, y) ∈ PR × PR : Out(x) ∩ In(y) 6= ∅}. In the introduced modification

of inference, the decision partition strategy is considered and following mappings are

proposed: Out(R) = Concl(R), In(R) = Cond(R). Thus, the C relation connects

the group of rules with the common attributes in conclusion and conditions. The sub-

sets can be defined: connected inputs sub-set InC(R) ⊆ In(R) can be considered:

169

InC(R) = {(a, v) ∈ In(R) : ∃r∈R (a, v) = concl(r)}, and connected output sub-set

OutC(R) ⊆ Out(R) : OutC(R) = {(a, v) ∈ Out(R) : ∃r∈R (a, v) ∈ cond(r)}.

3.6 Rules Groups in After Failure Inference Algorithm

Simple decision models provided by the two previously described partitioning strategies

allow to direct the searching of the fact extension set. For relatively small rule sets, or

„flat” rules sets (∀R⊆PRInC(R) = ∅ ∧ OutC(R) = ∅), basic decision partition can

be used. The partitions connection graph GPR provides enough information to identify

such situations. For rules bases containing big number of rules, basic decision partition

may produce large number of rules group and ordinal decision partition strategy may

be used. Apart of used partitioning method, decision model allows to consider different

strategies of selection the promising rules set for facts extension searching.

First, it is possible to reject rules sets from PR with empty intersection with facts

set. Let’s assume that PRF ⊆ PR is subset of partition PR with non empty intersec-

tion with the facts set: PRF = {R : ∃r∈R cond(r)
⋂

F 6= ∅}. For each group R ∈ PR
it is possible to determine fact extension set FTBN (R). Thus, the set of fact extension

sets can be considered: FES = {FTBN (R) : R ∈ PRF }.

Selection of the first acceptable fact set extension will consist of two steps. In first

step, the most promising rules group from PRF will be selected. In the second step, the

most adequate facts extension set for selected rules set will be promoted for acceptance.

The combination of two above steps provides the different strategies of selecting facts

extension set. On the level of the most promising rules group R selection, it is possible

to indicate the following possibilities:

– The connected output sub-set: OutC(R) = ∅ — inference will produce the one

or multiple new facts from Out(R) and the inference will stop. The new facts are

unable to trigger any other rule. This rule selection strategy offers shortest inference

path and predictable effects — only facts from Out(R) are expected.

– The connected output sub-set: OutC(R) 6= ∅ — inference will produce the one

or multiple new facts from Out(R) and inference will likely continue. The new

facts are able to trigger other rules from rules group connected with R. This rule

selection strategy offers the ability to obtain new facts not only from the Out(R).

– It is possible to select the rule group R as a start point of longest path in the GPR.

This strategy offers the possibility of obtaining a variety new facts.

– The rules group with maximal facts coverage can be selected — MF (R) =
|Cond(R)∩F|
|Cond(R)| .

The modified after failure inference algorithm differs in two lines and therefore will

not be presented as separate pseudo-code. The line number (1) in the algorithm 4 should

be replaced by the following two lines:

1. PR = createDecisionPartition(R)

2. select most promising rules subset R ⊆ PR

170

4 Implementation Issues and First Experiments

The first version of EFI algorithm (4) has been implemented as a part of kbExplorator

desktop system. kbExplorator is the system which integrates two components — desk-

top and web application. Web application allows to create, edit and manage rules bases

which are stored on the kbExplorator server. The knowledge bases are assigned to the

users registered in the web application. Desktop application allows to perform different

operations on the knowledge base stored on the server, operations jointly referred to as

exploration. Web application is mainly dedicated to the knowledge engineers as a tool

for knowledge base building and improving. Desktop application is the tool for more

sophisticated knowledge exploration. The kernel of the desktop application consist of

object-oriented packages implemented in Java. Packages offer, among other things, dif-

ferent types of reasoning, both classic and modified versions and also new algorithms,

including EFI proposed in this work. Applications now have the status of a prototype,

they will be available as the free software online in the coming months. Till now, kb-

Explorator is one of the few expert system building tools which allows to continue

inference after its failure.

The first version of EFI algorithm selects a minimal acceptable facts extensions.

The main advantage of this algorithm is its simplicity. Unfortunately, experiments con-

firmed earlier expectations, the results of inference may be unpredictable and iterative

acquisition of acceptable fact extension have proven to be uncomfortable for the user.

For large rule bases, iterative acquisition of missing fact was not acceptable for the

real-world applications.

Proposed algorithm is also sensitive to the order of selection of the fact extension

set elements. Different order of the elements selections can lead to different inference

results. It is not clear whether the obtained inference results are useful and satisfactory

from the point of view of the problem being solved. Although the proposed solution

may be capable of providing potentially useful results, modification proposed in the

previous section will be considered in the future work. Modified EFI algorithm uti-

lizes the internal dependencies between rules divided into the decision oriented group

of rules. Detailed experiments will be made in the next stage of research and the exper-

imental results will be presented in the next publications. One of the reasons is the need

of implementation of similar methods for a comparative study. Unfortunately, there is a

lack of detailed source information which presents enough information about the imple-

mentation details on the proper level of detail. Additional literature studies are needed

and future research could be focused on a comparative study of algorithms proposed in

this work with the question-asking oriented methods.

Main tool of proposed optimisation are decision oriented partitions of rule base.

The complexity of decision partition is O(n · k), where n = |R|, k = |PR|, where the

number of groups in the partition k : 1 ≤ k ≤ n typically is significantly smaller than

the number of rules n. We have to store additional information for created rules parti-

tions, however additional memory or disk space occupation for data structures seems

acceptable. For n rules and k rules group we need approximately is ·n+ps ·m bytes of

additional memory for data structures (is âĂŤ size of integer, ps âĂŤ size of a pointer

or reference).

171

5 Conclusions

In the presented work, the conception of the extended forward inference algorithm

was presented. This algorithm allows to continue the inference after its failure. Infer-

ence failure means that the inference engine is unable to obtain the solutions: the new

facts or goals confirmation. It often happens that the initial facts are not sufficient for

a knowledge-based system to reach any conclusion, and more information is needed.

In this work two-phase extension of classical inference algorithm was considered. In

the first phase classical forward inference is executed. If inference fails, second phase

is activated and targeted search for additional facts is executed in the interactive mode.

Proposed solution is similar to a question-asking method described in [10, 8]. Question-

asking is to figure out what additional information should be known if no useful results

can be proved with the available data. The QA problem is computationally hard in a

propositional knowledge-based system, even if the system is composed only of Horn

clauses. The existing approaches are based on logic. Described solutions try to examine

an unconfirmed observable assertion set of a top level conclusion. Inference extension

proposed in this work is inspired be the rough sets theory, which provides the concep-

tion of lower and upper approximations of particular sets.

In general, the proposed approach is inspired by the set approximation, but relation

with the rough set theory is not strict. The description presented in this article infor-

mally refers to the lower and upper approximations. Based on the knowledge provided

by the rules and set of facts, it is possible to identify the set of rules conditions which

can be with certainty classified as the facts. It is conceptually similar to the lower ap-

proximation of the fact set. It is also possible to identify set of rules conditions which

can be only classified as possible facts, because they appear in the rules premises par-

tially matched to the facts set. It is conceptually similar to the upper approximation

of the fact set. The boundary set contains conditions which represent missing facts. If

these conditions are facts, some rules will be fireable. It is informally similar to the

boundary region of facts, and thus consists of those conditions that cannot be classify

as the facts on the basis of knowledge described in the rules base, but are interesting in

the context of inference after failure. This work introduced theoretical background of

the algorithm, detailed experiments will be made in the next stage of research and the

experimental results will be presented in the next publications.

Acknowledgements

This work is a part of the project „Exploration of rule knowledge bases” founded by the Polish

National Science Centre (NCN: 2011/03/D/ST6/03027).

References

1. Duda, R., Gaschnig, J., Hart, P.: Model design in the prospector consultant system for mineral

exploration. Expert systems in the microelectronic age 1234, 153–167 (1979)

2. Hayes-Roth, F., Waterman, D., Lenat, D.: Building expert systems (1984)

172

3. Nowak-Brzezinska, A., Siminski, R.: New inference algorithms based on rules partition. In:

Proceedings of the 23th International Workshop on Concurrency, Specification and Program-

ming, Chemnitz, Germany, September 29 - October 1, 2014. pp. 164–175 (2014)

4. On-line information: Reasoning About Rete. www.haley.com (2001)

5. Simiński, R.: Extraction of rules dependencies for optimization of backward inference algo-

rithm. In: Kozielski, S., Mrozek, D., Kasprowski, P., Maşysiak-Mrozek, B., Kostrzewa, D.

(eds.) Beyond Databases, Architectures, and Structures, Communications in Computer and

Information Science, vol. 424, pp. 191–200. Springer International Publishing (2014)

6. Skowron, A., Peters, J., Suraj, Z.: An application of rough set methods to control design. In:

Proc. of the Workshop on Concurrency, Warsaw. pp. 214–235 (1999)

7. Skowron, A., Komorowski, J., Pawlak, Z., Polkowski, L.: Handbook of data mining and

knowledge discovery. chap. Rough Sets Perspective on Data and Knowledge, pp. 134–149.

Oxford University Press, Inc., New York, NY, USA (2002)

8. Triantaphyllou, E., Wang, J.C.: The problem of asking the minimum number of questions in

horn clause systems. Mathematical and computer modelling 20(9), 75–87 (1994)

9. Wang, J., Triantaphyllou, E.: A cost effective question-asking strategy for horn clause sys-

tems. Annals of Mathematics and Artificial Intelligence 17(2), 359–379 (1996)

10. Wang, J., Vate, J.V.: Question-asking strategies for horn clause systems. Annals of Mathe-

matics and Artificial Intelligence 1(1-4), 359–370 (1990)

