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Abstract. In [14], we have presented a fuzzy forward reasoning methodology

for rule-based systems using the functional representation of rules (fuzzy im-

plications). In this paper, we extend methodology for selecting relevant fuzzy

implications from [14] in backward reasoning. The proposed methodology takes

full advantage of the functional representation of fuzzy implications and the alge-

braic properties of the family of all fuzzy implications. It allows to compare two

fuzzy implications. If the truth value of the conclusion and the truth value of the

implication are given, we can easily optimize the truth value of the implication

premise. This methodology can be useful for the design of an inference engine

based on the rule knowledge for a given rule-based system.
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1 Introduction

Recently we can observe further growth of an interest in the design and exploitation

of rule-based systems built on the basis of uncertain knowledge. Various methods of

knowledge representation and reasoning have already been proposed. One of the most

popular approaches to knowledge representation are the fuzzy production rules. How-

ever, reasoning is mainly classified into two types: forward reasoning and backward

reasoning. The inference mechanism of forward reasoning is based on a data-derived

way, and has a powerful prediction ability. It is capable of warning against latent haz-

ards, forthcoming accidents, and faults. By contrast, backward reasoning is based on

a goal-derived manner, it has explicit objectives, which are generally used to search

for the most possible causes related to an existing fact. Backward reasoning plays an

essential role in fault diagnosis, accident analysis, and defect detection.

In this paper, we mainly focus on backward reasoning based on the fuzzy rules.

They can be presented in the form of IF-THEN and interpreted as fuzzy implications

[1]. There exist uncountably many implication functions in the field of fuzzy logic, and

the nature of the fuzzy inference changes variously depending on the implication func-

tion to be used. The variety of implication functions existing in the fuzzy set framework

has always been seen as a rich potential for modeling different shades of expert attitude
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in the inference process (e.g. [7]), although no precise, practical interpretation was pro-

vided for the different implication functions [10]. Moreover, it is very difficult to select

a suitable implication function for actual applications.

From over eight decades a number of different fuzzy implications have been pro-

posed [2],[4]-[6],[8]-[9],[11]-[12],[17]-[18]. In the family of basic fuzzy implications

the partial order induced from [0,1] interval exists. Pairs of incomparable fuzzy implica-

tions can generate new fuzzy implications by using min(inf) and max(sup) operations.

As a result the structure of lattice is created ([1], page 186). This leads to the follow-

ing question: how to choose the relevant functions among basic fuzzy implications and

other generated as described above.

In [14], we have presented a fuzzy forward reasoning methodology for rule-based

systems using the functional representation of rules (fuzzy implications). In this pa-

per, we extend a methodology for selecting relevant fuzzy implications from [14] in

backward reasoning. The proposed methodology takes full advantage of the functional

representation of fuzzy implications and the algebraic properties of the family of all

fuzzy implications. It allows to compare two fuzzy implications. If the truth value of

the conclusion and the truth value of the implication are given, we can easily optimize

the truth value of the implication premise. This general methodology is considered in

details in [13]. It can be useful for the design of an inference engine based on the rule

knowledge for a given rule-based system. Using the proposed approach, we can reduce

the efforts related to a selection of a suitable implication function.

The rest of this paper is organized as follows. In Sect. 2, we briefly recall some def-

initions related to partially ordered sets, the fuzzy production rules, fuzzy implications

and basic algebraic properties of fuzzy implications. The research problem considered

in the paper is formulated in Sect. 3. Sect. 4 presents the main theorem together with

its proof concerning a selection of suitable implication function. Sect. 5 presents two

algorithms solving the given research problem. The first algorithm allows to select the

suitable implication function based on information concerning a given set of fuzzy im-

plications, their truth-values, and the truth value of conclusion. The second algorithm

allows to select the "optimal" fuzzy implication using the same information as for the

first one. In Sect. 6, we present an example illustrating these algorithms in the use. Sect.

7 includes the summary of our research and some remarks.

2 Basic Notions and Definitions

2.1 Partially Ordered Sets

Let R be a binary relation on a set A. A relation R on A is said to be a partial ordering

on A if it is reflexive, transitive and antisymmetric. A partial ordering R on A is said

to be a linear ordering on A if at least one of the following conditions: (x, y) ∈ R,

(y, x) ∈ R or x = y holds for any x, y ∈ A. If R is a partial ordering on A, then the

pair U = (A, R) is said to be a partially ordered set (abbreviated poset). If R is a linear

ordering on A, then the pair U = (A, R) is said to be a linearly ordered set.

Let U = (A, R) be a poset, and X ⊆ A. The element a0 ∈ A is said to be the upper

(lower) bound in U of a subset X ⊆ A if (x, a0) ∈ R ((a0, x) ∈ R) for all x ∈ X .
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The upper (lower) bound in U of A is the greatest (least) element in U . An element

a ∈ A is said to be maximal (minimal) in U if (a, x) ∈ U (respectively (x, a) ∈ R)

implies x = a. It is clear that the greatest (least) element is maximal (minimal), and

if R is a linear ordering, then the element maximal (minimal) in U is also the greatest

(least) in U . It is obvious that if the greatest (least) element in U exists, then all the

maximal (minimal) elements are equal. If B is a set of upper bounds in U = (A, R) of

a set A1 ⊆ A, then the least element in (B, R∩B2) is said to be the least upper bound

in U of the set A1 and is denoting sup(A1, U). Replacing in the preceding definition

"upper" and "least" respectively by "lower" and "greatest" we obtain the definition of

the greatest lower bound of A1 in U which will be denoted by inf(A1, U). It is clear

that sup(A1, U) and inf(A1, U) are uniquely determined by A1 and U if they exist. A

poset U is said to be a lattice if for any a, b ∈ A in U there are sup({a, b}, U) and

inf({a, b}, U). If R ∩ X2 is a linear ordering on X , then X is said to be a chain in U.

For more detailed information about partially ordered sets the reader is referred to

[3].

2.2 Fuzzy Production Rules and Fuzzy Implications

Let R be a set of fuzzy production rules, R = {r1, r2, ..., rn}. The general formulation

of the i−th fuzzy production rule is as follows:

ri : IF dj THEN dk (CF=zi)

where: (1) dj and dk are statements; the truth degree of each statement is a real value

between zero and one. (2) zi is the value of the certainty factor (CF), zi ∈ [0, 1]. The

larger the value of zi, the more the rule is believed in.

We can use a fuzzy implication model [1] to represent the fuzzy production rules of

a rule-based system.

Fuzzy implications are one of the main operations in fuzzy logic [1]. Now we recall

a definition of a fuzzy implication and some of its properties that will be used in the

paper.

A function I : [0, 1]2 → [0, 1] is said to be a fuzzy implication if it satisfies, for all

x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

1. I(., y) is decreasing (i.e., if x1 ≤ x2, then I(x1, y) ≥ I(x2, y)).
2. I(x, .) is increasing (i.e., if y1 ≤ y2, then I(x, y1) ≤ I(x, y2)).
3. I(0, 0) = 1, I(1, 1) = 1, and I(1, 0) = 0.

The family of all fuzzy implications will be denoted by FI.

Remark 1. Let us observe that each fuzzy implication I is constant for x = 0 and for

y = 1 (i.e., I fulfils the following conditions, respectively: (1) I(0, y) = 1 for y ∈ [0, 1],
(2) I(x, 1) = 1 for x ∈ [0, 1]).

If, for two fuzzy implications I1 and I2, the inequality I1(x, y) ≤ I2(x, y) holds for

all (x, y) ∈ [0, 1]2, then we say that I1 is less than or equal to I2 and we write I1 ≤ I2.

We shall write I1 < I2 whenever I1 ≤ I2 and I1 6= I2, i.e., if I1 ≤ I2 and for some

(x0, y0) ∈ [0, 1]2 we have I1(x0, y0) < I2(x0, y0). In this case we also say that I1 is
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comparable with I2. Moreover, if, for two fuzzy implications I1 and I2, the inequality

I1(x, y) < I2(x, y) holds for all (x, y) ∈ D ⊂ [0, 1]2, then we say that I1 is less than

I2 and we write I1 ≺ I2.

Example 1. Since there exist uncountably many fuzzy implications, we list below only

a few of basic fuzzy implications known from the subject literature. Figures 1 and 2

illustrate the plots of ILK , IRC , IKD and IY G implications, respectively.

Fig. 1. Plots of ILK and IRC fuzzy implications

Fig. 2. Plots of IKD and IY G fuzzy implications

1. ILK(x, y) = min(1, 1 − x + y) (the Łukasiewicz implication) [9];

2. IGD(x, y) = 1, if x ≤ y, and IGD(x, y) = y otherwise (the Gődel implication)

[5];

3. IRC(x, y) = 1 − x + xy (the Reichenbach implication) [11];

4. IKD(x, y) = max(1 − x, y) (the Kleene-Dienes implication) [2],[8];

5. IGG(x, y) = 1, if x ≤ y, and IGG(x, y) = y
x

otherwise (the Goguen implication)

[6];
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6. IRS(x, y) = 1, if x ≤ y, and IRS(x, y) = 0 otherwise (the Rescher implication)

[12];

7. IWB(x, y) = 1, if x < 1, and IWB(x, y) = y, if x = 1 (the Weber implication)

[17];

8. IFD(x, y) = 1, if x ≤ y, and IFD(x, y) = max(1 − x, y) otherwise (the Fodor

implication) [4];

9. IY G(x, y) = 1, if x = 0 and y = 0, and IY G(x, y) = yx, if x > 0 or y > 0 (the

Yager implication) [18].

Example 2. Let A be the basic fuzzy implications from Example 1, and R be

the relation <. It is easy to check that the pair U = (A, R) is a poset. A

graphical representation of five chains: C1 = {IKD, IRC , ILK , IWB}, C2 =
{IRS , IGD, IGG, ILK , IWB}, C3 = {IY G, IRC , ILK , IWB}, C4 = {IKD, IFD, ILK ,

IWB}, C5 = {IRS , IGD, IFD, ILK , IWB} in U is shown in Figure 3.

Fig. 3. A graphical representation of the chains from Example 2

Remark 3. It is also worth to point out that incomparable pairs of fuzzy implications

generate new fuzzy implications by using the standard min and max operations. In

particular, incomparable pairs of basic implications from Example 1 generate new im-

plications in the lattice of fuzzy implications. Elements obtained in such way can be

combined with other implications, which leads to the new fuzzy implications forming

the lattice of fuzzy implications. This issue will not be dealt with here, and we will refer

the reader to ([1], page 186).

We can use fuzzy implications to represent the fuzzy production rules of a rule-

based system. For example, the following fuzzy production rule ri : IF dj THEN dk

(CF=zi) can be interpreted as a fuzzy implication z = I(x, y), where values for z, x, y

correspond to CF, the truth degree of a statement dj (premise), and the truth degree of

a statement dk (conclusion), respectively. The value of zi is given by a domain expert.
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However, the value for x (or y) is given by the user of a rule-based system dependently

on a selected reasoning method (forward or backward, respectively).

3 Problem Statement

Let us consider a lattice (FI, <) ([1], page 183), where FI is the family of all fuzzy

implications and < is the inequality relation between fuzzy implications from FI in-

duced in the standard way from the unit interval [0,1] (see Sect. 2). Let U be a finite

subset of FI .

Our goal is to elaborate on two algorithms which using information on a value of an

argument y of a given fuzzy implication J from U and a truth-value of the implication

J find in the set U form:

1. a "worse" fuzzy implication I than J (if there exists) such that: I(x1, y) = J(x2, y)
for the given argument y and some arguments x1, x2 ∈ [0, 1], and x1 < x2, i.e., a

fuzzy implication I with the strictly less value of the argument x1 than it is possible

to compute using the implication J ;

2. an "optimal" (minimal) fuzzy implication Iopt (if there exists), i.e., a fuzzy impli-

cation that fulfils the following two requirements:

– Iopt(x1, y) = J(x, y),
– x1 is the least value among all values x′ possible to obtain using any fuzzy

implication K comparable with J belonging to the set U and satisfying the

condition: K(x′, y) = J(x, y).

4 Theorem

Now we are ready to formulate and prove a theorem which suggests how to select from

a given finite set of fuzzy implications U the suitable implication function for a given

fuzzy implication J in order to obtain a less truth-value of its premise x in reasoning

taking into account information on the truth-value J(x, y) of this implication and the

truth-value of its conclusion y.

Theorem. Let I and J be fuzzy implications such that I ≺ J on a set D ⊂ [0, 1]2, and

x1, x2, y ∈ [0, 1] such that I(x1, y) = J(x2, y). Then x1 < x2.

Proof: Proof by contradiction. Suppose x1 ≥ x2. Then from the definition of fuzzy

implication (see item 1) it follows that I(x1, y) ≤ I(x2, y). From that and from the

equality I(x1, y) = J(x2, y) it follows that I(x2, y) ≥ J(x2, y). Since I ≺ J ,

I(x2, y) < J(x2, y). Thus, we have reached a contradiction. Therefore, we conclude

that the theorem is correct.

Remark 4. The analogous theorem, but for forward fuzzy reasoning has been presented

in [14]. Moreover, the detailed considerations related to a set D (the domain) for partic-

ular basic fuzzy implications used in forward/backward fuzzy reasoning are presented

in [15] and [13], respectively.

As a simple consequence of the above theorem is the following fact.
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Conclusion. The above theorem is false for y = 1.

Proof: From the property of a fuzzy implication presented in Remark 1 (item 1) we have

I(x, 1) = 1 for any x ∈ [0, 1]. It means that for any two fuzzy implications I and J the

following double dependency I(x1, 1) = J(x2, 1) = 1 is true for any x1, x2 ∈ [0, 1].
Hence, we get that this equality is true not only for x1 < x2.

5 Algorithms

In this section, we present two algorithms formulated on the basis of the theorem from

Sect. 4. The first algorithm allows to select the suitable (worse) implication function

(see the condition 1, Sect. 3) based on information concerning a given set of fuzzy im-

plications, their truth-values, and the truth value of conclusion. The second one allows

to select the optimal fuzzy implication (see the condition 2, Sect. 3) using the same

information as for the first algorithm.

Let (FI, <) be a lattice of all fuzzy implications, a finite set U ⊂ FI , and J ∈ U .

Algorithm 1 finding a worse implication I ∈ U (in the sense of the condition 1, Sect.

3).

Input: U - a given finite set of fuzzy implications, J ∈ U , y ∈ [0, 1), and k ∈ [0, 1] - a

truth-value of J .

Output: A worse implication I ∈ U than J .

1. Order the set U with respect to the relation <.

2. Identify the implication J ∈ U .

3. if there exists an implication I ∈ U such that I ≺ J

then

Compute a value x1 from the dependency I(x1, y) = k.

Return x1.

else Stop.

Remark 5. The correctness of the Algorithm 1 follows immediately from the theorem

presented in Sect. 4.

Example 3. Consider a set of fuzzy implications U = {ILK , IRC , IKD, IWB}, the

Łukasiewicz implication ILK , a given argument y = a (a < 1), and the truth-value

of ILK = b (b > a). After executing the first step of the Algorithm 1 we obtain only

one maximal chain c: IKD < IRC < ILK < IWB (see Example 2, item 1). Let

us observe that the Łukasiewicz implication ILK belongs to the chain c. Moreover, it

is easy to verify that there are two other implications less than ILK with respect to

the relation < in this chain, i.e., the Reichenbach implication IRC and the Kleene-

Dienes implication IKD. If, for example, we select the implication IRC , then from the

dependency IRC(x1, a) = b we can compute a value x1 = b−1

a−1
. Whereas a value x

computed for the dependency ILK(x, a) = b equals a − b + 1. It is easy to see that

x1 < x.

Algorithm 2 finding an optimal implication in U (in the sense of the condition 2, Sect.

3).
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Input: U - a given finite set of fuzzy implications, J ∈ U , y ∈ [0, 1), and k ∈ [0, 1] - a

truth-value of J .

Output: An optimal implication Iopt ∈ U and a value xopt.

1. Order the set U with respect to the relation <.

2. Compute a set C of all maximal chains in U such that J belongs to each of them.

3. for each chain c ∈ C do find (if there exists) the least implication Ic ≺ J .

for each implication Ic do compute a value xc (if there exists) from the dependency

Ic(xc, y) = k.

4. Compute a value xopt = min{xc : c ∈ C}.

5. Return (Iopt, xopt).

Remark 6. The correctness of the Algorithm 2 follows from the theorem (see Sect. 4)

and the finiteness of set U .

Example 4. Now consider a set of fuzzy implications U ′ = {ILK , IRC , IKD, IWB ,

IY G}, the Łukasiewicz implication ILK , a given argument y = a (a < 1), and the

truth-value of ILK = b (b > a). After executing the steps 1 and 2 of the Algorithm

2 we obtain two maximal chains as follows: c1 = IKD < IRC < ILK < IWB and

c2 = IY G < IRC < ILK < IWB (see Example 2, items 1 and 3). We can identify

the Łukasiewicz implication in these two chains. Moreover, it is easy to check that IKD

is the least implication in the chain c1 with respect to the relation ≺, while IY G is

the least implication in the chain c2. Next, solving the equations IKD(xc1
, a) = b and

IY G(xc2
, a) = b, we obtain xc1

= 1− b for b > a, and xc2
= logab for 0 < a < b < 1.

Hence, we have Iopt = IY D and xopt = xc2
.

6 Illustrating Example

In order to illustrate our methodology, let us describe a simple example coming from

the domain of train traffic control. We consider the following situation: a train B waits

at a certain station for a train A to arrive in order to allow some passengers to change

train A to train B. Now, a conflict arises when the train A is late. In this situation, the

following alternatives can be taken into account:

– train B departs in time, and an additional train is employed for the train A passen-

gers;

– train B departs in time. In this case, passengers disembarking train A have to wait

for a later train;

– train B waits for train A to arrive. In this case, train B will depart with delay.

In order to describe the traffic conflict, we propose to consider the following four

IF-THEN fuzzy rules:

– r1: IF s2 THEN s6 (CF = 0.6)

– r2: IF s3 THEN s6 (CF = 0.6)

– r3: IF s1 AND s4 AND s6 THEN s7 (CF = 0.5)

– r4: IF s4 AND s5 THEN s8 (CF = 0.8)
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where:

– s1: ’Train B is the last train in this direction today’,

– s2: ’The delay of train A is huge’,

– s3: ’There is an urgent need for the track of train B’,

– s4: ’Many passengers would like to change for train B’,

– s5: ’The delay of train A is short’,

– s6: ’(Let) train B depart according to schedule’,

– s7: ’Employ an additional train C (in the same direction as train B)’,

– s8: ’Let train B wait for train A’.

In the further considerations we accept the following assumptions:

– the logical operator AND we interpret as min fuzzy operator;

– to the statements s7 and s8 we assign the fuzzy values 0.6 and 0.4, respectively;

– each of rules r1, r2, r3, and r4 we interpret firstly as the Łukasiewicz implication;

– the truth degrees of rules r1, r2, r3, and r4 are equal to 0.6, 0.6, 0.5, 0.8, respec-

tively.

Assume that the user wants, for example, to know for which the truth degree of

statements s4 and s5 the truth degree of the statement s8 (i.e., the conclusion of the rule

r4) is equal to 0.6. Observe that in this situation the rule r4 can be considered. Taking

into account the dependency ILK(x, a) = b from Example 3 with a = 0.4 (the truth

degree of the statement s8) and b = 0.8 (the truth degree of the rule r4) we get the

truth degree of statements s4 and s5 equal to x = a − b + 1 = 0.6. However, if we

interpret these four rules as the Reichenbach implications (IRC(x1, a) = b), and if we

choose the same rule as above we obtain the truth degree of the statements s4 and s5

equal to x1 = b−1

a−1
≃ 0.33. At last, if we execute the similar simulation of backward

fuzzy reasoning for the rule r4 considered above and, if we interpret these rules as the

Kleene-Dienes implications we obtain the truth degree of the statements s4 and s5 equal

to 0.2. Hence, we have Iopt = IKD for considered three interpretations of the rule r4,

and xopt = 0.2. In analogous way one can analyze the situation in which the user wants

to know the truth degree of the statements s1, s2, s3, s6 knowing the truth degree of the

statement s7.

This example shows clearly that different interpretations for the rules may lead to

quite different truth degree of starting statements (corresponding to premises of given

production rules). Choosing a suitable interpretation for fuzzy implications we may

apply the theorem and the two algorithms presented in Sects. 4 and 5, respectively. The

rest in this case certainly depends on the experience of the decision support system

designer to a significant degree.

7 Concluding Remarks

In the paper, we have presented a methodology for selecting relevant fuzzy implication

in backward reasoning, which has for example the least truth value of the premise when

the truth value of the conclusion and the truth value of the implication are given. This
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methodology takes full advantage of the functional representation of fuzzy implications

and the algebraic properties of the family of all fuzzy implications.

We know that there are a lot of implication functions in the field of fuzzy logic, and

the nature of the inference changes variously depending on the implication function to

be used. However, it is very difficult to select a suitable implication function for actual

applications. But taking into account the methodology proposed in this paper we can

reduce the efforts related to a selection of a suitable implication function.
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