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Abstract. One of the most popular methods of knowledge representation are the

fuzzy rules. One of the ways of representation of fuzzy rules is the functional

representation. From over eight decades a number of different fuzzy implica-

tions have been described, e.g. [5]-[9]. This leads to the following question: how

to choose the proper function among basic fuzzy implications. This paper is a

continuation of study [15], where we proposed a new method for choosing impli-

cations in backward reasoning. Here we presented a way of simplify the analysis

by skipping Yager fuzzy implication.
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1 Introduction

One of the most popular methods of knowledge representation are the fuzzy rules.

From imprecise inputs and fuzzy rules imprecise conclusions are obtained. Reason-

ing is mainly classified into two types: forward reasoning and backward reasoning. The

inference mechanism of forward reasoning has a strong forecasting capability, whereas

the aim of backward reasoning generally is to find the most possible causes associated

with the existing reality. Backward reasoning plays an essential role in fault diagnosis,

accident analysis, and defect detection. This kind of reasoning uses fuzzy logic [3] to

reason about data in the inference mechanism instead of many other logics, including

Boolean logic, (non-fuzzy) many-valued logics, non-monotonic logics, etc.

Paper [4] discusses different representations of rules in a non-fuzzy setting and ex-

tends these representations to rules with a fuzzy conclusion part. It introduces the dif-

ferent types of fuzzy rules and put them in the framework of fuzzy sets and possibility

theory.

Fuzzy rules are often presented in the form of implications. In [3] a typology of

fuzzy rules and the problem of multiple-valued implications are discussed. The paper
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reviews the problem of representing fuzzy knowledge, and ranges from linguistic vari-

ables to conditional if-then rules and qualified statements.

One of the ways of representation of fuzzy rules is the functional representation

(e.g.[11],[12],[17]). The definition of fuzzy implications and their mathematical prop-

erties can be found e.g. in [1] and [16]. One of basic problems in building an inference

system is choosing the relevant fuzzy implication. In [10] authors proposed a method

allowing to choose the most suitable fuzzy implication in an inference system appli-

cation. They introduced an algorithm that calculates the distance between two fuzzy

implications and which is based on generalized modus ponens.

In paper [13] we have presented a fuzzy forward reasoning methodology for rule-

based systems using the functional representation of fuzzy rules. In [15] we extended

this methodology for selecting relevant fuzzy implications for backward reasoning. The

proposed methodology takes full advantage of the functional representation of fuzzy

implications and the algebraic properties of the family of all fuzzy implications. It al-

lows to compare two fuzzy implications. If the truth value of the conclusion and the

truth value of the implication are given, we can easily optimize the truth value of the

implication premise. In particular, in [15] we introduced an algorithm of finding the

fuzzy implication which has the highest truth value of the antecedent when the truth

value of the consequent and the truth value of the implication are given. This method-

ology can be useful for the design of inference engine based on the rule knowledge for

a given rule-based system.

In the solution in [15] we divided the domain of fuzzy implications into areas, in

which it was possible to select appropriate fuzzy implication, and to do that we had

to use the Lambert W function. Lambert W function is a special function used when

solving equations containing unknown to both the base and the exponent power. It is

marked W (z) and defined as the inverse of f(z) = zez , where z belongs to the set

of complex numbers. Thus, for each complex number z holds: z = W (z)eW (z). The

Lambert W function cannot be expressed in terms of elementary functions.

In this paper we present the way of avoiding this complexity of solution presented

in [15].

The rest of this paper is organized as follows. Sect. 2 contains basic information

on fuzzy implications. In Sect. 3 the research problem is formulated. Sect. 4 presents

the solution of the given research problem. Sect. 5 is devoted to the pseudo-code of an

algorithm for determining a basic fuzzy implication which has the highest truth value

of the antecedent when the truth value of the consequent and the truth value of the

implication are given. Sect. 6 includes summarizing of our research and some remarks.

2 Preliminaries

In this section we recall a definition of a fuzzy implication and we list a few of basic

fuzzy implications known from the subject literature [1].

A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies, for all

x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

– if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), i.e., I(., y) is decreasing;
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Name Year Formula of basic fuzzy implication

Łukasiewicz 1923, [9] ILK(x, y) = min(1, 1− x + y)

Gödel 1932, [4] IGD(x, y) =

{

1 if x ≤ y

y if x > y

Reichenbach 1935, [11] IRC(x, y) = 1− x + xy

Kleene-Dienes 1938, [8]; 1949, [2] IKD(x, y) = max(1− x, y)

Goguen 1969, [7] IGG(x, y) =

{

1 if x ≤ y
y
x

if x > y

Rescher 1969, [12] IRS(x, y) =

{

1 if x ≤ y

0 if x > y

Yager 1980, [18] IY G(x, y) =

{

1 if x = 0 and y = 0
yx if x > 0 or y > 0

Weber 1983, [17] IWB(x, y) =

{

1 if x < 1
y if x = 1

Fodor 1993, [3] IFD(x, y) =

{

1 if x ≤ y

max(1− x, y) if x > y

Table 1. Examples of basic fuzzy implications

– if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), i.e., I(x, .) is increasing;

– I(0, 0) = 1; I(1, 1) = 1; I(1, 0) = 0.

There exist uncountably many fuzzy implications. The following Table 1 contains

a few examples of basic fuzzy implications. One of the fuzzy implication in the table

is Yager implication. As we noted in Sect. 1 we skip this implication in our analysis in

this paper to avoid complexity of solution presented in [15].

Figure 1 gives us some plots of these functions.

3 Problem Statement

Our goal is to design an algorithm to find a method of selecting fuzzy implication in

view of the value of the implication antecedent.

Assume that there is given a basic fuzzy implication z = I(x, y), where x, y belong

to [0,1]. y is the truth value of the consequent and is known. z is the truth value of

the implication and is also known. In order to determine the value of the truth of the

implication antecedent x it is needed to compute the inverse function InvI(y, z). In

other words, the inverse function InvI(y, z) has to be determined. Not every of basic

implications can be inverted. The function can be inverted only when it is injective.

4 Results

Table 2 lists inverse fuzzy implications and their domains and in Figure 2 there are some

plots of them.
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Fig. 1. Plots of ILK and IKD fuzzy implications

Formula of inverted fuzzy implication Domain of inverted fuzzy implication

InvILK(y, z) = 1− z + y y ≤ z < 1, y ∈ [0, 1)

InvIRC(y, z) = 1−z
1−y

y ≤ z ≤ 1, y ∈ [0, 1)

InvIKD(y, z) = 1− z y < z ≤ 1, y ∈ [0, 1)

InvIGG(y, z) = y
z

y ≤ z < 1, y ∈ (0, 1)

InvIFD(y, z) = 1− z y < z < 1− y, y ∈ [0, 1)

Table 2. Inverted fuzzy implications
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Fig. 2. Plots of InvILK and InvIKD fuzzy implications
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The domains of every considered inverted fuzzy implications are included in a half

of the unit square, where y ≤ z < 1 and y ∈ (0, 1). Only one inverted fuzzy implication

has a domain which is smaller than this area. This is inverted Fodor implication and in

the whole its domain ( y ≤ z < 1 − y, y ∈ [0, 1] ) this function is equal to inverted

Kleene-Dienes implication.

For y ≤ z < 1 − y there are the following inequalities: InvIFD = InvIKD <

InvIRC < InvILK , InvIRC < InvILK , InvIGG < InvILK . A graphical represen-

tation of the ordering of inverted basic fuzzy implications is given in Figure 3.

InvILK

InvIGG

InvIKD InvIFD

InvIRC

=

Fig. 3. A graphical representation of the ordering of inverted basic fuzzy implications

for y ≤ z < 1− y

For 1 − y ≤ z < 1 and y ≤ z there are the same inequalities, but without inverted

Fodor implication, because this function does not exist in this area.

The resulting inverse functions can be compared with each other so that it is possible

to order them. However, some of those functions are incomparable in the whole domain.

By taking into account six inverted fuzzy implications (including inverted Yager impli-

cation) and by dividing their domain into separable areas, we obtained 19 inequalities

between inverted fuzzy implications for any y ≤ z < 1 and y ∈ (0, 1) described in

[15].

To simplify that solution and avoid Lambert W function in this paper we skip Yager

fuzzy implication in our analysis. With this assumption there is only five different area

and inequalities instead of nineteen. The areas are shown in the Figure 4 and the in-

equalities are given in Table 3.
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Fig. 4. The unit square [0, 1]2 divided into five separable areas

Table 3: Table of inequalities

No Area and inequality Chart of area Graph of inequalities

A.

For z > 1− y

InvIKD < InvIRC <

InvIGG < InvILK
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y
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z

A

InvILK
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B.

For z = 1− y

InvIKD < InvIRC =
InvIGG < InvILK

0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0
z

B

InvILK

InvIRC InvIGG

InvIKD

=

Continued on next page
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Table 3 – Continued from previous page

No Area and inequality Chart of area Graph of inequalities

C.

For (z >
1+

√

1−4y

2 or

z <
1−

√

1−4y

2 or

z ∈ (0.25, 0.5)) and z < 1− y

InvIKD < InvIGG <

InvIRC < InvILK

0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0
z

C

InvILK

InvIRC

InvIGG

InvIKD

D.

For z = 1+
√

1−4y

2 or

z = 1−
√

1−4y

2
InvIGG = InvIKD <

InvIRC < InvILK

0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0
z

D

=

InvILK

InvIRC

InvIGG InvIKD

E.

For z >
1−

√

1−4y

2 and

z <
1+

√

1−4y

2
InvIGG < InvIKD <

InvIRC < InvILK

0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0
z

E

InvILK

InvIRC

InvIKD

InvIGG

All inequalities given in Table 3 can be proven in a similar way. As examples, we

will consider one of inequalities. Let y ∈ (0, 1) and z ∈ (y, 1). y < z, so obviously

y2 < yz. By adding and subtracting 1 − z + y to the equation we obtained 1 − z <

1− z + y− y + yz− y2. And therefore, 1−z
1−y

< 1− z + y. This completes the proof of

the inequality: InvIRC < InvILK in domains of these functions.
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5 Algorithm

Below we present the pseudo-code of the algorithm (DetermineImplicationGTVA) for

determining a basic fuzzy implication which has the highest truth value of the an-

tecedent whereas the truth value of the consequent and the truth value of the implication

are given.

The algorithm uses the results of our research presented in Table 3. The first step in

the algorithm determines to which area (A)− (E) from Table 3 point (y, z) belongs to.

Algorithm DetermineImplicationGTVA

Input: W - a given subset of the basic fuzzy implications;

y - the truth value of the consequent;

z - the truth value of the implication

Output: I ∈ W - fuzzy implication(s) which has (have) the highest truth value of the

antecedent

1. a ← area(y, z) //determines the area from (A) − (E) to which a point (y, z)
belongs to;

2. order the set W with respect to the graph Ga of inequalities from the area a;

3. I ← the maximal element(s) from the ordered set W ;

4. return I;

6 Concluding Remarks

In the paper, we introduced an algorithm for finding the fuzzy implication which has the

highest truth value of the antecedent from a given subset of the basic fuzzy implications,

when the truth value of the consequent and the truth value of the implication are given.

In order to simplify the solution we skipped Yager fuzzy implication in the presented

analysis.

We considered a set of basic implications mentioned in Table 1, because they are

well known and widely used. But considering only these basic implications implied the

solution which does not cover the whole unit square as in the case with the forward

reasoning [13], only one of its halves. It raises the question how to find such a set of im-

plications that could give a solution for a backward reasoning in the whole unit square.

Our future works will focus on answering the question whether such implications could

exist and how they could be defined.
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