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1 Introduction

In contrast to the standard physical theories which model systems by the continuum,

Petri proposed a combinatorial representation of a spacetime — concurrent structures

(with occurrence nets as a special case thereof) in which notions corresponding to the

relativistic concepts of world line and causal cone can be defined by means of the con-

currency and causal dependence relations, repectively. As a result, the density notion

of the continuum model is replaced by several properties — so called concurrency ax-

ioms (including K-density, N-density, etc.). K-density is based on the idea that at any

time instant, any sequential subprocess of a concurrent structure must be in some state

or changing its state. N-density can be viewed as a sort of local density. Furthermore,

it has turned out that concurrency axioms allow avoiding inconsistency between syn-

tactic and semantic representations of processes and, thereby, to exclude unreasonable

processes represented by the concurrent structures.

Petri’s occurrence nets model system behaviors by occurrences of local states (also

called conditions) and of events which are partially ordered. The partial order is in-

terpreted as a kind of causal dependency relation. Also, occurrence nets are endowed

with a symmetric, but in general non-transitive, concurrency relation — absence of the

causality. Poset models do not discriminate between conditions and events. The power

and limitations of concurrency axioms in the context of occurrence nets [4, 5] and posets

[6, 9, 20] have been widely studied to allow better understanding the connections of

causality and concurrency relations between systems events. In contrast to these treat-

ments, the authors of the paper [16] have dealt with causality and concurrency on cyclic

processes represented by net models which do not require an underlying partial order

of causality. The paper [21] has studied the interrelations between concurrency axioms

in the setting of prime event structures (occurrence nets with forward hereditary (w.r.t.

causality) conflicts), where the nondeterministic aspects of concurrent processes are ex-

plicitly described. In the more recent papers [1, 2], algebraic and orthomodular lattices

(the elements of the lattices are the closed subsets w.r.t. a closure operator, defined start-

ing from the concurrency relation) have been generated from occurrence nets with and
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without forward conflicts. Also, an alternative characterization of K-density is given on

the basis of a relation between maximal sets of pairwise causally related elements and

closed sets.

It is known that some aspects of concurrent behavior (e.g., the specification of pri-

orities, error recovery, inhibitor nets, treatment of simultaneity, etc.) are to some extent

problematic to be dealt with using only partially ordered causality based models. One

way to cope with the problems is to utilize the model of a so called relational struc-

ture — a set of elements (systems events) with a number of different kind relations

on it. The authors of the papers [11–14] have proposed and carefully studied a sub-

class of the model where general causal concurrent behavior is represented by a pair

of relations instead just one, as in the standard partial order approach. Depending on

the assumptions and goals for the chosen model of concurrency, the pair of the rela-

tions are interpreted in two versions: either as partially ordered causality and irreflexive

weak causality (not in general a partial order) or as a symmetric and irreflexive mutex

relation (non-simultaneity) and irreflexive weak causality (herewith, the relations may

not be completely distinct). The approaches allow modeling and studying concurrency

at different levels of consideration: from abstract behavioral observations — concur-

rent histories (consisting of step sequence executions) to system level models such as

elementary Petri nets and their generalizations with inhibitor arcs and mutex arcs.

In this paper, we intend to get a better understanding of the space-time nature of

concurrency axioms, by establishing their interrelations and revealing their algebraic

lattice views, in the context of a subclass of relational structures with completely dis-

tinct, irreflexive relations on countable sets of elements.

2 Preliminaries

Introduce some notions and notations which will be useful throughout the text.

Sets and relations. Given a set X and a relation R ⊆ X × X ,

• R is cyclic iff there exists a sequence of distinct elements x1, . . . , xk ∈ X (k > 1)

such that xj R xj+1 (1 ≤ j ≤ k − 1) and xk R x1,

• R is acyclic iff it is not cyclic,

• R is antisymmetric iff (x R x′) ∧ (x 6= x′) ⇒ ¬(x′ R x), for all x, x′ ∈ X ,

• R is transitive iff (x R x′) ∧ (x′ R x′′) ⇒ (x R x′′), for all x, x′, x′′ ∈ X ,

• R is irreflexive iff ¬(x R x), for all x ∈ R,

• Rα = R ∪ id (the reflexive closure of R),

• Rβ = R ∪ R−1 (the symmetric closure of R),

• Rγ = Rβ ∪ id (the reflexive and symmetric closure of R),

• Rδ = (R \ id) \ (R \ id)2 (the irreflexive, intransitive relation), if R is a transitive

relation, and Rδ = R, otherwise,

Notice that if a relation R is irreflexive and transitive, then it is acyclic and anti-

symmetric, i.e. a (strict) partial order, and, moreover, Rδ is the immediate predecessor

relation.

Given elements x, x1, x2 ∈ X , subsets A ⊆ X ′ ⊆ X , and a relation R ⊆ X × X ,

• [x1 R x2] = {x ∈ X | x1 Rα x Rα x2},

• Rx = {x′ ∈ X | x′ Rδ x}, xR = {x′ ∈ X | x Rδ x′},
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• RA = {x′ ∈ X | ∃x ∈ A : (x′ Rα x)}, AR = {x′ ∈ X | ∃x ∈ A : (x Rα x′)},

• RA = {x′ ∈ X | ∀x ∈ A : (x′ R x)}, AR = {x′ ∈ X | ∀x ∈ A : (x R x′)},

• A is a (maximal) R-clique of X ′ iff A is a (maximal) set containing only pairwise

(R ∪ id|X′)-related elements of X ′,

• A is an R-closed set of X ′ iff ARR = (AR)R = A. The family of all the R-closed

sets of X ′ is denoted by RCl(X ′).
Partially ordered sets and lattices. A partially ordered set (poset) is a set together

with a partial order ≤, i.e. a binary relation which is reflexive, transitive and antisym-

metric. The powerset P(X) of a set X together with inclusion ⊆ is a poset.

A mapping C : P(X) → P(X) is a closure operator on a set X , if for all A, B ⊆
X it holds:

1. A ⊆ C(A) (C is extensive),

2. A ⊆ B ⇒ C(A) ⊆ C(B) (C is monotonic),

3. C(C(A)) = C(A) (C is idempotent).

Let A ⊆ X ⊆ P(X), and P = (X ,⊆) be a poset. Then,

• R ∈ X is an upper bound (lower bound) of A if A ⊆ R (R ⊆ A) for all A ∈ A.

T ∈ X is called the least upper bound (l.u.b.) of A if it is an upper bound, and

T ⊆ R, for all upper bounds R of A; T is the greatest lower bound (g.l.b.) of A if

it is a lower bound, and R ⊆ T , for all lower bounds R of A,

• P is a lattice iff every two elements in X have both a g.l.b. (denoted ∧) and a l.u.b.

(denoted ∨),

• a lattice P is complete iff every subset of X has both a l.u.b. and a g.l.b.,

• a complete lattice P is algebraic iff for all x ∈ X it holds x =
∨
{k ∈ K(P) |

k ⊆ x}, where K(P) ⊆ X denotes the set of compact elements of P . An element

k ∈ X is said to be compact in the lattice P iff, for every S ⊆ X such that k ⊆
∨

S,

it holds that k ⊆
∨
T , for some finite T ⊆ S.

3 Relational Structures

Fig. 1.

In this section, we define a slight modification of the model of relational structures

whose subclasses are put forward and studied in the papers [11–14], as a suitable model

of structurally complex concurrent behaviors.

Definition 1. A relational structure is a tuple S = (E, V1, . . . , Vn) (n ≥ 1), where
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• E is a countable set of elements,

• V1, . . . , Vn ⊆ E × E are irreflexive relations such that

•
⋃

1≤i≤n V
β
i = (E × E) \ id,

• V
β
i ∩ V

β
j = ∅, for all 1 ≤ i 6= j ≤ n.

Clearly, Winskel’s event structures with forward hereditary conflict [17] and Boudol

and Castellani’s event structures with forward and backward non-hereditary conflict

[8] can be seen as relational structures with three relations, one of them is transitive

(causality), and the two other are symmetric (concurrency and conflict).

Example 1. A simple example of a relational structure with four relations is shown in

Fig. 1. Assume that V1 is an irreflexive and transitive relation (partial order), V2 is an

asymmetric relation, and V3 and V4 are irreflexive and symmetric relations. We can

interpret the relation V1 as causality dependence, V2 as asymmetric conflict [19, 7],

V3 as synchronous concurrency (simultaneity), and V4 as asynchronous concurrency

(independence).

From now on, we shall use P , Q and R to denote the relations on E of the form⋃
V ∈V V , where V ⊆ {Vi, Vj | 1 ≤ i, j ≤ n, Vi and Vj possess the same relation

properties}.

Consider the definitions of auxiliary properties of relational structures which will

be useful in further considerations. We shall call a relational structure S

• P -finite iff any P -clique of E is finite,

• P -degree-finite iff | Pe ∪ eP | < ∞, for all e ∈ E,

• P -degree-restricted iff Pe1 ∩ Pe2 6= ∅ ⇒ |Pe1| = |Pe2| = 1, for all e1, e2 ∈ E,

• P -discrete iff | [e1 P e2] ∩ E′ | < ∞, for all e1, e2 ∈ E and P -cliques E′ of E,

• P -interval-finite iff |[e1 P e2]| < ∞, for all e1, e2 ∈ E,

• ▽PQR-free iff in any maximal (P ∪ Q ∪ R)-clique of E, there are no distinct

elements e1, e2, and e3 such that e1 P e2 Q e3 R e1.

From now on we shall consider only P -discrete relational structures, whenever P

is a transitive relation, and call them simply relational structures.

4 Concurrency Axioms

The notion of K-density and other concurrency axioms introduced by Petri [18] first

for non-branching occurrence nets allow one to get better understanding the interaction

of causality and concurrency. In [15], an analog of K-density under the name L-density

has been put forward on the so called "sequential" nets with causality and symmetric

hereditary conflict relations. Another analog under the name of R-density in the context

of concurrent and conflct substructures of event structures has been dealt with in the

paper [21]. More recently, the authors of [2] have adapted K-density to occurrence nets

with symmetric hereditary conflicts, and rename it B-density. Our aim in this section

is to give generalized definitions of a hierarchy of density properties and to study their

interrelations, in the setting of relational structures.

Define concurrency axioms as properties of relational structures.
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Fig. 2.

Definition 2. Given a relational structure S and a maximal (P ∪ Q)-clique Ẽ of E,

• Ẽ is KPQ-dense iff for any maximal P -clique E′ of Ẽ and for any maximal Q-

clique E′′ of Ẽ, E′ ∩ E′′ is a (unique) maximal (P ∩ Q)-clique of Ẽ,

• Ẽ is KPQ-crossing iff for any maximal P -clique E′ of Ẽ and for any maximal

Q-clique E′′ of Ẽ, E′ ∩ PE′′ 6= ∅ and E′ ∩ E′′P 6= ∅,

• Ẽ is ⊲⊳PQ-dense iff whenever (e0 P e1 Q e2) and (e0 Q e3 P e2), then

(e0 P δ e2) =⇒ (e3 P e1), for all distinct elements e0, e1, e2, e3 ∈ Ẽ,

• Ẽ is ⊲⊳
β
PQ-dense iff whenever (e0 P β e1 Qβ e2) and (e0 Qβ e3 P β e2), then

(e0 P δβ e2) =⇒ (e3 P β e1), for all distinct elements e0, e1, e2, e3 ∈ Ẽ,

• S is KPQ-dense (KPQ-crossing, ⊲⊳PQ-dense, ⊲⊳
β
PQ-dense, respectively) iff any

maximal w.r.t. E clique Ẽ of (P ∪Q) is KPQ-dense (KPQ-crossing, ⊲⊳PQ-dense,

⊲⊳
β
PQ-dense, respectively).
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Fig. 3.

The following results state the relationships between the properties defined so far.

Proposition 1. Let S be a relational structure with distinct relations P and Q, and let

P be a transitive or symmetric relation and Q a symmetric relation. Then,

S is ⊲⊳
β
PQ-dense ⇐⇒ S is ⊲⊳PQ-dense.

Example 2. Consider the relational structures S2–S6 shown in Fig. 2. It is easy to see

that S2 = (E2, V
′, V ′′), with the transitive or symmetric relation V ′ and the sym-

metric relation V ′′, is ⊲⊳
β
V ′V ′′ - and ⊲⊳V ′V ′′ -dense. On the other hand, the relational

structure S3 = (E3, V
′, V ′′, V ′′′), with the transitive or symmetric relation V ′ and

the symmetric relation V ′′′, is neither ⊲⊳V ′V ′′′ - nor ⊲⊳
β
V ′V ′′′ -dense because in the

maximal (V ′ ∪ V ′′′)-clique {e2, e3, e4, e5, e7, e8, e9, e10} of E3 there are distinct el-

ements e2, e3, e4, e5 such that (e2 V ′ e3 V ′′′ e4), (e2 V ′′′ e5 V ′ e4), and (e2 (V ′)δ e4)

but ¬(e5 V ′ e3). The relational structure S4 = (E4, V
′, V ′′) with the non-transitive

and non-symmetric relation V ′ and the symmetric relation V ′′, is ⊲⊳V ′V ′′ -dense but

not ⊲⊳
β
V ′V ′′ -dense. Indeed, in the maximal (V ′ ∪ V ′′)-clique {e1, . . . , e6} of E4 there

are elements e1, e2, e3, e4 such that (e2 (V ′)β e1 (V ′′)β e3), (e2 (V ′′)β e4 (V ′)β e3),

and (e2 ((V ′)δ)β e3) but ¬(e4 (V ′)β e1). The same holds for the relational structure

S5 = (E5, V
′, V ′′) with the transitive or symmetric relation V ′ and the asymmetric re-

lation V ′′. Truly, in the maximal (V ′ ∪V ′′)-clique {e1, . . . , e4} of E5 there are distinct

elements e1, e2, e3, e4 such that (e1 (V ′)β e2 (V ′′)β e4), (e1 (V ′′)β e3 (V ′)β e4), and
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(e1 ((V ′)δ)β e4) but ¬(e3 (V ′)β e2). The relational structure S6 = (E6, V
′, V ′′) with

the non-transitive and non-symmetric relation V ′ is ⊲⊳
β
V ′V ′′ -dense but not ⊲⊳V ′V ′′ -

dense. In fact, in the maximal (V ′ ∪ V ′′)-clique {e1, . . . , e4} of E there are distinct

elements e1, e2, e3, e4 such that (e1 V ′ e2 V ′′ e4), (e1 V ′′ e3 V ′ e4), and (e1 V ′δ e4)

but ¬(e3 V ′ e2).

Proposition 2. Let S be a ⊲⊳
β
PQ-dense relational structure with distinct relations P

and Q, and let P be a transitive relation. Then,

S is KPQ-dense ⇐⇒ S is KPQ-crossing.

Example 3. First, consider the relational structures S2 = (E2, V
′, V ′′) and S3 =

(E3, V
′, V ′′, V ′′′) shown in Fig. 2. We know that S2, with the transitive relation V ′ and

the symmetric relation V ′′, is ⊲⊳
β
V ′V ′′ -dense (see Example 2). It is easy to check that

S2 is KV ′V ′′ -dense and KV ′V ′′ -crossing. On the other hand, the relational structure S3,

with the transitive relation V ′ and the symmetric relation V ′′, is not ⊲⊳
β
V ′V ′′′ -dense (see

Example 2) It is easy to verify that S3 is KV ′V ′′′ -crossing. However, S3 is not KV ′V ′′′ -

dense because in the maximal (V ′ ∪ V ′′′)-clique Ẽ = {e2, e3, e4, e5, e7, e8, e9, e10}

of E3 the intersection of the maximal V ′-clique {e2, e4, e7, e10} of Ẽ with the max-

imal V ′′′-clique {e3, e5} of Ẽ is empty. Next, contemplate the relational structures

S7 = (E7, V
′, V ′′) and S8 = (E8, V

′, V ′′) depicted in Fig. 3. The relational struc-

ture S7 with the transitive relation V ′ and the symmetric relation V ′′, is ⊲⊳
β
PQ-dense

but neither KV ′V ′′ -dense nor KV ′V ′′ -crossing since in the maximal (V ′ ∪ V ′′)-clique

Ẽ = {e1, e2, . . .} of E7 the intersection of the maximal V ′-clique E′ = {e2·k+1 |

k ≥ 0} of Ẽ with the maximal V ′′-clique E′′ = {e2·k | k ≥ 1} of Ẽ is empty, and,

moreover, the intersection of E′ with E′′V ′

is also empty, because E′′V ′

= E′′. Fur-

ther, the relational structure S8, with the non-transitive relation V ′ and the symmetric

relation V ′′, is ⊲⊳
β
V ′V ′′ -dense and KV ′V ′′ -crossing but not KV ′V ′′-dense because in

the maximal (V ′ ∪ V ′′)-clique Ẽ = {e1, e2, . . .} of E8 the intersection of the maximal

V ′-clique {e2·k+1 | k ≥ 0} of Ẽ with the maximal V ′′-clique {e2·k | k ≥ 1} of Ẽ is

empty.

Theorem 1. Let S be a P - or Q-finite relational structure with distinct relations P and

Q, and let P be a transitive relation. Then,

S is KPQ-dense ⇐⇒ S is ⊲⊳
β
PQ-dense.

Example 4. First, again consider the relational structures S2 = (E2, V
′, V ′′) and S3 =

(E3, V
′, V ′′, V ′′′) shown in Fig. 2. We know that S2, with the transitive relation V ′

and the symmetric relation V ′′, is ⊲⊳
β
V ′V ′′ -dense (see Example 2) and KV ′V ′′ -dense

(see Example 3). Notice that S2 is V ′- and V ′′-finite. On the other hand, the relational

structure S3, with the transitive relation V ′ and the symmetric relation V ′′, is neither

⊲⊳
β
V ′V ′′′ -dense (see Example 2) nor KV ′V ′′ -dense (see Example 3). Moreover, S3 is

V ′- and V ′′-finite. Next, contemplate the relational structures S8 = (E8, V
′V ′′) and

S9 = (E9, V
′, V ′′) depicted in Fig. 3. We know from Example 3 that S8, with the

transitive relation V ′ and the symmetric relation V ′′, is ⊲⊳
β
V ′V ′′ -dense but not KV ′V ′′ -

dense. At the same time, S8 is neither V ′- nor V ′′-finite. The relational structure S9,
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with the non-transitive relation V ′ and the symmetric relation V ′′, is KV ′V ′′ -dense but

not ⊲⊳
β
V ′V ′′ -dense because in the maximal (V ′ ∪ V ′′)-clique {e1, . . . , e5} of E9, there

are distinct elements e1, e2, e3, e4 such that e1 V ′ e2 V ′′ e4, e1 V ′′ e3 V ′ e4, and e1 V ′

e4 but ¬(e3 V ′ e2).

Theorem 2. Given a ▽PQR-free and P - or Q- or R-finite relational structure S with

distinct relations P , Q, and R,

S is KPQ-dense ⇐⇒ S is K
P̃ Q̃

-dense,

where P̃ = (P ∪ R) and Q̃ = (Q ∪ R).

Example 5. Consider the relational structures S10–S13, with the transitive relation V ′

and the symmetric relations V ′′ and V ′′′, shown in Fig. 4. It is easy to check that

S10 = (E10, V
′, V ′′, V ′′′) is KV ′′V ′′′ -dense, ▽V ′V ′′V ′′′ -free, and K

Ṽ ′′Ṽ ′′′ -dense,

where Ṽ ′′ = V ′ ∪ V ′′ and Ṽ ′′′ = V ′ ∪ V ′′′. Clearly, S9 is V ′-, V ′′- and V ′′′-

finite. It is not difficult to see that the relational structure S11 = (E11, V
′, V ′′, V ′′′)

is KV ′′V ′′′ -dense, and V ′′- and V ′′′-finite. However, S11 is neither ▽V ′V ′′V ′′′ -free,

because e1 V ′ e4 V ′′ e5 V ′′′ e1, nor K
Ṽ ′′Ṽ ′′′ -dense, because the intersection of the

maximal Ṽ ′′-clique {e3, e4, e7} of Ẽ and the maximal Ṽ ′′′-clique {e1, e3, e6} of Ẽ

is not a maximal V ′-clique of Ẽ where Ṽ ′′ = V ′ ∪ V ′′, Ṽ ′′′ = V ′ ∪ V ′′′, and

Ẽ = {e1, . . . , e7} is the only maximal Ṽ ′′ ∪ Ṽ ′′′-clique of E11. The relational struc-

ture S12 = (E12, V
′, V ′′, V ′′′) is ▽V ′V ′′V ′′′ -free but neither KV ′V ′′′ -dense, because

the intersection of the maximal V ′-clique {e1, e4} of Ẽ′ with the maximal V ′′′-clique

{e2, e3} of Ẽ′ is empty, nor K
Ṽ ′Ṽ ′′′ -dense, because the intersection of maximal Ṽ ′-

clique {e1, e4, e5} of Ẽ′′ and maximal Ṽ ′′′-clique {e2, e3, e5} of Ẽ′′ is not a maximal

V ′′-clique of Ẽ′′, where Ẽ′ = {e1, e2, e3, e4} is the maximal (V ′∪V ′′′)-clique of E12,

Ẽ′ = {e1, e2, e3, e4, e5} is the maximal (Ṽ ′ ∪ Ṽ ′′′)-clique of E12, Ṽ ′ = V ′ ∪ V ′′,

and Ṽ ′′′ = V ′′ ∪ V ′′′. We can see that S13 = (E13, V
′, V ′′, V ′′′) is K

Ṽ ′Ṽ ′′ -dense but

neither V ′- nor V ′′- nor V ′′′-finite, where Ṽ ′ = V ′∪V ′′′ and Ṽ ′′ = V ′′∪V ′′′. Clearly,

the maximal V ′V ′′-clique {b1, b2, b3, . . . , c1, c2, c3, . . .} of E13 is not KV ′V ′′ -dense.

Hence, S13 is not KV ′V ′′ -dense.

5 Concurrency Axioms and Algebraic Lattices of Closed Sets

In the papers [1, 2], it has been demonstrated that K-density of occurrence nets with

and without forward conflicts guarantees that the lattices whose elements are the closed

subsets of a closure operator, defined starting from the concurrency relation of the mod-

els, are algebraic. In this section, we first show that the above results can be exended

to the model of relational structures, where a closure operator can be defined from any

symmetric relation, and then formulate a necessary condition of the algebraicity of the

lattices of the closed sets. Before doing so, we need to introduce the following concepts.

Definition 3. Given a relational structure S and a maximal (P ∪ Q)-clique Ẽ of E,
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Fig. 4.

• Ẽ is PQ-encountering iff for any maximal P -clique E′ of Ẽ and for any maximal

Q-clique E′′ of Ẽ, E′ ∩ E′′′
QQ 6= ∅, for some finite E′′′ ⊆ E′′,
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• Ẽ is weak KPQ-dense iff for any maximal P -clique E′ of Ẽ and for any maximal

Q-clique E′′ of Ẽ, (E′ ∩ E′′) is a (unique) (P ∩ Q)-clique of Ẽ, or A 6⊆ E′, for

any Q-closed set A of Ẽ,

• Ẽ is PQ-algebraic iff (QCl(Ẽ),⊆) is an algebraic lattice,

• S is PQ-encountering (weak KPQ-dense, PQ-algebraic, respectively) iff any max-

imal (P∪Q)-clique Ẽ of E is PQ-encountering (weak KPQ-dense, PQ-algebraic,

respectively).

Fig. 5.

The following fact will be helpful to obtain weak KPQ-density as a necessary con-

dition of PQ-algebraicity.

Theorem 3. Given a ⊲⊳PQ-dense relational structure S with a transitive relation P

and a symmetric relation Q,

S is KPQ-dense ⇐⇒ S is PQ-encountering.

Example 6. Consider the relational structures S14 = (E14, V
′, V ′′) and S15 =

(E15, V
′, V ′′) with the transitive relation V ′ and the symmetric relation V ′′, shown

in Fig. 5. One can easily check that S14 is V ′V ′′-encountering, ⊲⊳V ′V ′′ - and KV ′V ′′ -

dense. On the other hand, S15 is V ′V ′′-encountering and, obviously, not ⊲⊳V ′V ′′-dense.

Moreover, as the maximal V ′-clique {e1, e4} and the maximal V ′′-clique {e2, e3} of

E15 are disjoint, S14 is not KV ′V ′′ -dense. We know from Example 3 that the relational

structure S7 depicted in Fig. 3 is ⊲⊳V ′V ′′ -dense but not KV ′V ′′ -dense. Furthermore, S7

is not V ′V ′′-encountering, because for the maximal V ′-clique E′ = {e1, e3, e5, . . .}
and the maximal V ′′-clique E′′ = {e2, e3, e6, . . .} of E7, we have E′ ∩ E′′′

V ′′V ′′ =
E′ ∩ E′′′ = ∅ for any finite E′′′ ⊆ E′′.

Finally, the following theorem describes interconnections between the properties of

KPQ-density and weak KPQ-density, and PQ-algebraicity of a relational structure.

Theorem 4. Given a P -degree-restricted, P -degree-finite and P -interval-finite rela-

tional structure S with a transitive relation P and a symmetric relation Q,

(i) S is KPQ-dense =⇒ S is PQ-algebraic,

(ii) S is weak KPQ-dense ⇐= S is PQ-algebraic.



232

Fig. 6.

Example 7. Contemplate the V ′-degree-restricted relational structures S16–S18, with

the transitive relation V ′ and the symmetric relation V ′′, depicted in Fig. 6. The re-

lational structure S16 = (E16, V
′, V ′′) is, obviously, V ′-degree-finite, V ′-interval-

finite and KV ′V ′′ -dense. Since it is finite, it is V ′V ′′-algebraic. Next, consider the

V ′-degree-finite relational structure S17 = (E17, V
′, V ′′) with the maximal V ′-clique

E′ = {e2·i+1 | i ≥ 0} of E17 and the maximal V ′′-clique E′′ = {e2·j | j ≥ 1∧ j 6= 2}
of E17. Since E′ ∩ E′′ = ∅, S17 is not KV ′V ′′ -dense. Moreover, S17 is not weak

KV ′V ′′ -dense, because A = {e3} is a V ′′-closed set of E17 such that A ⊆ E′. Fur-

thermore, A is not compact in the lattice (V ′′Cl(E17),⊆). This implies that ∅ is the

only compact element less than A. As
∨
∅ = ∅ 6= A, S17 is not V ′V ′′-algebraic. Fi-

nally, consider the non-V ′-degree-finite relational structure S18. One can easily check

that S18 is KV ′V ′′ -dense and V ′-interval-finite. As the V ′′-closed set A = {e1} is not

compact in the lattice (V ′′Cl(E18),⊆), S18 is not V ′V ′′-algebraic.
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