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Abstract. In the paper, an application of dynamic programming approach to

global optimization of exact association rules relative to length is presented. It

is an extension of the dynamic programming approach to optimization of deci-

sion rules to inconsistent tables. An information system I is transformed into

a set of decision tables {If1
, . . . , Ifn+1

}. The algorithm constructs, for each

decision table from the set {If1
, . . . , Ifn+1

}, a directed acyclic graph ∆(Ifi
),

i = 1, . . . , n + 1. Based on the graph, the set of so-called irredundant (fi)-

association rules can be described. The union of sets of (fi)-association rules,

i = 1, . . . , n + 1, is considered as a set of association rules for information

system I . Then, global optimization relative to length is made and sets of associ-

ation rules with minimum length, for each row of information system I , are ob-

tained. Preliminary experimental results with data sets from UCI Machine Learn-

ing Repository are included.

Key words: rough sets, association rules, length, dynamic programming, deci-

sion rules

1 Introduction

Association rule mining is one of the important fields of data mining and knowledge

discovery. It aims to extract interesting correlations, associations, or frequent patterns

among sets of items in data set.

There are many algorithms for construcion of association rules. The most popu-

lar algorithm for mining associaion rules is Apriori algorithm [1]. During years, based

on the Apriori, many new algorithms were designed with some modifications or im-

provements, e.g., hash based technique [15], transaction reduction [7] and others [8, 13,

18]. Another approaches are frequent pattern growth [5] that adopts divide and conquer

strategy, and algorithms that uses vertical data format [6].

In the paper, an application of dynamic programming approach to optimization of

exact association rules relative to length is presented. Construcion of short rules is con-

nected with the Minimum Description Length principle introduced by Rissanen [17]:

the best hypothesis for a given set of data is the one that leads to the largest compres-

sion of the data. Short rules are more understandable and easier for interpreting by

experts. Unfortunately, the problem of construction of rules with minimum length is
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NP -hard [11, 14]. The most part of approaches, with the exception of brute-force and

in some sense Apriori algorithm, cannot guarantee the construction of rules with the

minimum length. The proposed approach allows one to construct optimal rules, i.e.,

rules with the minimum length.

Application of rough sets theory to the construction of rules for knowledge represen-

tation or classification tasks are usually connected with the usage of decision table [16]

as a form of input data representation. In such a table one attribute is distinguished as a

decision attribute and it relates to a rule’s consequence. However, in the last years, as-

sociative mechanism of rule construction, where all attributes can occur as premises or

consequences of particular rules, is popular. Association rules can be defined in many

ways. In the paper, a special kind of association rules is studied, i.e., they relate to de-

cision rules. Similar approach was considered in [11, 12], where greedy algorithm for

minimization of length of association rules was studied.

This paper is an essential extension of the paper [3] in which consistent decision

tables were considered, i.e., they do not contain equal rows with different decisions.

When association rules for information systems are studied and each attribute is se-

quentially considered as the decision one, inconsistent tables are often obtained. So, the

approach considered in [3] is extended to the case of inconsistent decision tables. It re-

quired changes in definitions, algorithms (new conditions of stop), proofs of algorithm

correctness, and, especially, in the software.

Proposed approach by comparison with Apriori algorithm allows one to derive a

reguired number of rules for a given row only. If we consider sequential optimization

relative to coverage and length it is possible to find so-called totally-optimal rules, i.e.,

rules with maximum coverage and minimum length. Experimental resuls show that such

rules have often good coverage and small length.

The aim of the paper is to create a research tool which is applicable to medium

sized decision tables and allows one to construct exact association rules with minimum

length. To this end, an information system I with attributes {f1, . . . , fn+1} is trans-

formed into a set of decision tables {If1,...,Ifn+1
}. The algorithm constructs, for each deci-

sion table from the set {If1
,. . . ,Ifn+1

}, a directed acyclic graph ∆(Ifi
), i = 1, . . . , n+1.

Based on the graph ∆(Ifi
), the set of so-called irredundant (fi)-association rules,

i = 1, . . . , n + 1, can be described. The union of sets of irredundant (fi)-association

rules, i = 1, . . . , n + 1, is considered as the set of irredundant association rules for in-

formation system I . Using global optimization relative to length it is possible to obtain

the set of irredundant association rules for information system I with minimum length.

In [20], global optimization of association rules relative to coverage was presented.

The paper consists of six sections. Section 2 contains main notions. In Section 3, an

algorithm for construction of a directed acyclic graph is presented. Section 4 contains a

description of optimization procedure relative to length. Section 5 contains experimen-

tal results for decision tables from UCI Machine Learning Repository, and Section 6 -

conclusions.
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2 Main Notions

An information system I is a table with n + 1 columns labeled with attributes

f1, . . . , fn+1. Rows of this table are filled by nonnegative integers which are interpreted

as values of attributes.

An association rule for I is a rule of the kind

fi1 = a1 ∧ . . . ∧ fim
= am → fj = a,

where fj ∈ {f1, . . . , fn+1}, fi1 , . . . , fim
∈ {f1, . . . , fn+1} \ {fj}, and a,a1,. . . ,am

are nonnegative integers.

The notion of an association rule for I is based on the notion of a decision table and

decision rule.

A decision table T is a table with n columns labeled with (conditional) attributes

f1, . . . ,fn. Rows of this table are filled by nonnegative integers which are interpreted as

values of conditional attributes. Each row is labeled with a nonnegative integer (deci-

sion) which is interpreted as a value of a decision attribute. It is possible that T contains

equal rows with the same or different decisions.

For each attribute fi ∈ {f1, . . . , fn+1}, the information system I is transformed

into a decision table Ifi
. The column fi is removed from I and a table with n columns

labeled with attributes f1, . . . , fi−1, fi+1, . . . , fn+1 is obtained. Values of the attribute

fi are attached to the rows of the obtained table which will be denoted by Ifi
.

I =

f1 f2 f3

r1 1 1 2

r2 0 0 2

r3 1 1 1

⇒ If1
=

f2 f3

r1 1 2 1

r2 0 2 0

r3 1 1 1

Fig. 1. Decision table If1
obtained from information system I

The set {If1
, . . . , Ifn+1

} of decision tables obtained from the information system I

is denoted by Φ. Let T ∈ Φ. For simplicity, it is assumed that T = Ifn+1
.

The table T is called degenerate if it is empty or all rows of T are labeled with the

same decision, or all rows of T are equal.

A minimum decision value that is attached to the maximum number of rows in T

will be called the most common decision for T .

A table obtained from T by the removal of some rows is called a subtable of the

table T . Let fi1 , . . . , fim
∈ {f1, . . . , fn} and a1, . . . , am be nonnegative integers. A

subtable of the table T , which contains only rows of T that have numbers a1, . . . , am

at the intersection with columns fi1 , . . . , fim
, is denoted by T (fi1 , a1) . . . (fim

, am).
Such subtables (including the table T ) are called separable subtables of T .

The set of attributes from {f1, . . . , fn} which are nonconstant in T is denoted by

E(T ). For any fi ∈ E(T ), the set of values of the attribute fi in T , is denoted by

E(T, fi).
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The expression

fi1 = a1 ∧ . . . ∧ fim
= am → fn+1 = d (1)

is called a decision rule over T if fi1 , . . . , fim
∈ {f1, . . . , fn}, and a1, . . . , am, d are

nonnegative integers. It is possible that m = 0. In this case (1) is equal to the rule

→ fn+1 = d. (2)

Let r = (b1, . . . , bn) be a row of T . Rule (1) will be called realizable for r, if

a1 = bi1 , . . . , am = bim
. If m = 0 then rule (2) is realizable for any row from T .

Rule (1) will be called true for T if the table T ′ = T (fi1 , a1) . . . (fim
, am) is

degenerate and d is the most common decision for T ′. If m = 0 then rule (2) is true for

T if T is degenerate and d is the most common decision for T .

If rule (1) is true for T and realizable for r, then (1) will be called a decision rule

for T and r.

Decision rules for T and r will be called (fn+1)-association rules for I and r. In

general case, the notion of (fi)-association rule for I and r coincides with the notion

of decision rule for Ifi
and r, i = 1, . . . , n + 1. The union of sets of (fi)-association

rules, i = 1, . . . , n + 1, will be considered as the set of association rules for I and r.

Let T = Ifn+1
and (1) be a decision rule over T . Rule (1) will be called an irredun-

dant rule for T and r if (1) is a decision rule for T and r and the following conditions

hold if m > 0:

(i) fi1 ∈E(T ), and if m>1 then fij
∈E(T (fi1 , a1) . . . (fij−1 , aj−1)) for j =2,. . . ,m;

(ii) if m = 1 then the table T is nondegenerate, and if m > 1 then the table

T (fi1 ,a1) . . . (fim−1
,am−1) is nondegenerate.

If m = 0 then rule (2) is an irredundant decision rule for T and r if (2) is a decision

rule for T and r, i.e., if T is degenerate and d is the most common decision for T .

Let T = Ifn+1
, τ be a decision rule over T , and τ be equal to (1). The length of τ

is the number m of descriptors (pairs attribute=value) on the left-hand side of τ . It is

denoted by l(τ). If m = 0 then the length of the rule τ is equal to 0.

3 Algorithm for Directed Acyclic Graph Construction

In this section, an algorithm for construction of a directed acyclic graph for a given

decision table T is presented. Based on this graph it is possible to describe the set of

irredundant rules for T and for each row r of T . This algorithm is repeated for each

decision table Ifi
, i = 1, . . . , n + 1, obtained from the information system I .

Let T = Ifn+1
. The constructed graph is denoted by ∆(T ). Nodes of the graph are

some separable subtables of the table T . During each step, the algorithm processes one

node and marks it with the symbol *. At the first step, the algorithm constructs a graph

containing a single node T which is not marked with *. Let the algorithm have already

performed p steps. Now the step (p + 1) will be described. If all nodes are marked with

the symbol * as processed, the algorithm finishes its work and presents the resulting

graph as ∆(T ). Otherwise, choose a node (table) Θ, which has not been processed yet.

If Θ is degenerate then mark the considered node with symbol * and proceed to the step
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(p + 2). Otherwise, for each fi ∈ E(Θ), draw a bundle of edges from the node Θ. Let

E(Θ, fi) = {b1, . . . , bt}. Then draw t edges from Θ and label these edges with pairs

(fi, b1), . . . , (fi, bt) respectively. These edges enter to nodes Θ(fi, b1), . . . , Θ(fi, bt).
If some of nodes Θ(fi, b1), . . . , Θ(fi, bt) are absent in the graph then add these nodes

to the graph. Each row r of Θ is labeled with the set of attributes E∆(T )(Θ, r) = E(Θ).
Mark the node Θ with the symbol * and proceed to the step (p + 2).

The graph ∆(T ) is a directed acyclic graph. A node Θ of this graph will be called

terminal if there are no edges leaving this node. A node Θ is terminal if and only if Θ

is degenerate.

Later, a local optimization of the graph ∆(T ) relative to the length will be described.

As a result, a graph G(T ), with the same sets of nodes and edges as in ∆(T ), is obtained.

The only difference is that any row r of each nonterminal node Θ from G(T ) is labeled

with a nonempty set of attributes EG(T )(Θ, r) ⊆ E(Θ), possibly different from E(Θ).
Let G ∈ {∆(T ), G(T )}. Now, for each node Θ of G and for each row r of Θ, a set

of rules RulG(Θ, r) will be described.

Let Θ be a terminal node of G. In this case Θ is a degenerate table and

RulG(Θ, r) = {→ fn+1 = d},

where d is the most common decision for Θ.

Let now Θ be a nonterminal node of G such that, for each child Θ′ of Θ and for

each row r′ of Θ′, the set of rules RulG(Θ′, r′) is already defined. Let r = (b1, . . . , bn)
be a row of Θ. For any fi ∈ EG(Θ, r), the set of rules RulG(Θ, r, fi) is defined as

follows:

RulG(Θ, r, fi) = {fi = bi ∧ γ → fn+1 = s :

γ → fn+1 = s ∈ RulG(Θ(fi, bi), r)}.

Then RulG(Θ, r) =
⋃

fi∈EG(Θ,r) RulG(Θ, r, fi).
One can prove the following statement.

Theorem 1. For any node Θ of ∆(T ) and for any row r of Θ, Rul∆(T )(Θ, r) is equal

to the set of all irredundant rules for Θ and r.

The algorithm for the directed acyclic graph construction is repeated for each deci-

sion table Ifi
, i = 1, . . . , n+1, obtained from the information system I . In general, the

obtained graph is denoted by ∆(Ifi
), i = 1, . . . , n+1. As a result, for i = 1, . . . , n+1,

the set Rul∆(Ifi
)(Ifi

, r) of irredundant decision rules for Ifi
and r is obtained. This set

will be called the set of irredundant (fi)-association rules for I and r, i = 1, . . . , n+1.

The union of sets Rul∆(Ifi
)(Ifi

, r) forms the set Rul(I, r) of irredundant association

rules for I and r:

Rul(I, r) =
⋃

i=1,...,n+1

Rul∆(Ifi
)(Ifi

, r).

Example 1. To illustrate the presented algorithm the information system I depicted in

Fig. 1 will be considered. Set Φ = {If1
, If2

, If3
} contains three decision tables obtained

from I . Figure 2 presents a directed acyclic graph for decision table If1
. Based on the

graph ∆(If1
) the sets of rules attached to rows of If1

are described.

Rul∆(If1
)(If1

, r1) = {f2 = 1 → f1 = 1, f3 = 2 ∧ f2 = 1 → f1 = 1};
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Let Θ be a nonterminal node of ∆(T ) and all children of Θ have already been

treated. Let r = (b1, . . . , bn) be a row of Θ. The number

Optl∆(T )(Θ, r) = min{Optl∆(T )(Θ(fi, bi), r) + 1 : fi ∈ E(Θ, r)}

is assigned to the row r in the table Θ and

E∆(Θ, r) = {fi : fi ∈ E∆(T )(Θ, r), Optl∆(T )(Θ(fi, bi), r) + 1 = Optl∆(T )(Θ, r)}.

Theorem 2. For each node Θ of the graph G(T ) and for each row r of Θ, the set

RulG(T )(Θ, r) is equal to the set Rull
∆(T )(Θ, r) of all rules with the minimum length

from the set Rul∆(T )(Θ, r).

Now, a global optimization relative to the length is presented. It is made for the

information system I .

The set of irredundant association rules for I and r with the minimum length from

Rul(I, r) is denoted by Rull(I, r), and the minimum length of an association rule from

Rul(I, r) is denoted by Optl(I, r).
To make global optimization relative to the length, the directed acyclic graph is

constructed for each decision table Ifi
∈ Φ, and local optimization relative to the length

of the graph ∆(Ifi
), i = 1, . . . , n+1, is made. As a result, the graph G(Ifi

) is obtained

and each row r of Ifi
, i = 1, . . . , n + 1, has assigned the set RulG(Ifi

)(Ifi
, r) of (fi)-

association rules for I and r with the minimum length from Rul∆(Ifi
)(Ifi

, r) and the

number Optl
∆(Ifi

)(Ifi
, r), which is the minimum length of (fi)-association rule from

Rul∆(Ifi
)(Ifi

, r).

Then, the value Optl(I, r) is obtained, such that,

Optl(I, r) = min{Optl∆(Ifi
)(Ifi

, r) : i = 1, . . . , n + 1},

and among all numbers, i = 1, . . . , n + 1, only these are selected, where

Optl∆(Ifi
)(Ifi

, r) = Optl(I, r).

These numbers forms the set N(I). Then

Rull(I,r)=
⋃

i∈N(I)

RulG(Ifi
)(Ifi

, r).

As a result of the global optimization relative to the length each row r of I has as-

signed the set Rull(I, r) of association rules with the minimum length and the number

Optl(I, r).
Below one can find the set Rull(I, r) and the value Optl(I, r) for the information

system I depicted in Fig. 1 and each row r of this system.

Rull(I, r1) = {f2 = 1 → f1 = 1, f1 = 1 → f2 = 1, f1 = 1 → f3 = 1, f2 = 1 →
f3 = 1}, Optl(I, r1) = 1;

Rull(I, r2) = {f2 = 0 → f1 = 0, f1 = 0 → f2 = 0, f1 = 0 → f3 = 2, f2 = 0 →
f3 = 2}, Optl(I, r2) = 1;
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Rull(I, r3) = {f2 = 1 → f1 = 1, f3 = 1 → f1 = 1, f1 = 1 → f2 = 1, f3 = 1 →
f2 = 1, f1 = 1 → f3 = 1, f2 = 1 → f3 = 1}, Optl(I, r3) = 1.

The problem of rule length minimization is NP-hard [11, 14]. The algorithms con-

sidered in this paper have polynomial time complexity depending on the size of decision

table and the number of separable subtables in it. In general case, the number of sepa-

rable subtables grows exponentially with the growth of table size. However, in [9, 10]

classes of decision tables are described for each of which the number of separable sub-

tables in tables from the class is bounded from above by a polynomial on the size of

decision table.

5 Experimental Results

Experiments were made using data sets from UCI Machine Learning Repository [4]

and modified software system Dagger [2].

Each data set was considered as information system I and, for each attribute

fi ∈ {f1, . . . , fn+1}, the system I was transformed into a decision table Ifi
. The

column fi was removed from I and a table with n columns labeled with attributes

f1, . . . , fi−1, fi+1, . . . , fn+1, was obtained. Values of the attribute fi were attached to

the rows of the obtained table Ifi
. The set {If1

, . . . , Ifn+1
} of decision tables obtained

from the information system I is denoted by Φ.

Table 1 presents preliminary results of experiments connected with the minimum

length of irredundant association rules (column “Association rules”). For each row r of

I , the minimum length of an irredundant association rule for I and r was obtained. After

that, for rows of I the minimum length of an association rule for I and r with the min-

imum length (column “Min”), the maximum length of such rule (column “Max”) and

the average length of association rules with the minium length - one for each row (col-

umn “Avg”) were obtained. Column “Rows” contains the number of rows in I , column

“Attr” contains the number of attributes in I . This table contains also, for the purpose

of comparison, minimum, average and maximum length of exact irredundant decision

rules (column “Decision rules”) obtained by the dynamic programming algorithm.

Based on the results in Table 1, it is possible to see that the proposed approach

allows one to obtain short association rules. The minimum value of minimum length

(column “Min”) is equal to 3 only for two data sets, for the rest of data sets, this value

is equal to 1. In the case of comparison of length of association and decision rules,

the minimum values (columns “Min”) of minimum lenght of rules are the same. The

average values (columns “Avg”) and the maximum values (columns “Max”), often are

smaller in the case of association rules. Only for data sets “Monks-1-test” and “Monks-

3-test”, the obtained results are the same for association and decision rules.

Table 2 presents the average number of nodes (column “Nodes”) and the average

number of edges (column “Edges”) related to the data set I and the graph ∆(Ifi
),

i = 1, . . . , n + 1. For each data set I , the set Φ was obtained. For each decision table

Ifi
, i = 1, . . . , n + 1, the graph ∆(Ifi

) was constructed and the number of nodes and

edges were calculated. Then, the average number of nodes and edges in the directed

acyclic graphs ∆(Ifi
), i = 1, . . . , n + 1, were computed.
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Table 1. Minimum length of rules

Association rules Decision rules

Data set Rows Attr Min Avg Max Min Avg Max

Adult-stretch 16 5 1 1.00 1 1 1.25 2

Balance-scale 625 5 3 3.14 4 3 3.20 4

Breast-cancer 266 10 1 1.83 3 1 2.67 6

Cars 1728 7 1 2.02 6 1 2.43 6

Hayes-roth-data 69 5 1 1.62 3 1 2.15 4

Lenses 24 5 1 1.25 3 1 1.40 3

Monks-1-test 432 7 1 2.25 3 1 2.25 3

Monks-3-test 432 7 1 1.75 2 1 1.75 2

Shuttle-landing 15 7 1 1.00 1 1 1.40 4

Teeth 23 9 1 1.00 1 1 2.26 4

Tic-tac-toe 958 10 3 3.00 4 3 3.02 4

Zoo-data 59 17 1 1.00 1 1 1.56 4

Table 2. Average number of nodes and edges

Data set Rows Attr Nodes Edges

Adult-stretch 16 5 48.0 104.0

Balance-scale 625 5 742.0 2386.0

Breast-cancer 266 10 6082.0 61063.6

Cars 1728 7 4335.3 17697.1

Hayes-roth-data 69 5 190.8 569.0

Lenses 24 5 70.8 174.8

Monks-1-test 432 7 1734.9 6760.1

Monks-3-test 432 7 1584.9 5770.4

Shuttle-landing 15 7 73.6 368.6

Teeth 23 9 112.3 952.7

Tic-tac-toe 958 10 31415.1 264362.9

Zoo-data 59 17 3595.4 57868.2

The proposed approach of rule induction is based on the analysis of the directed

acyclic graph constructed for a given decision table. The structure of the graph depends

on data set, i.e., number of attributes, distribution of values of attributes, number of

rows. Such graph can be huge for larger data set. Therefore, possibilities of decreasing

the size of the graph were studied by the author. In [19], the graph is constructed only

for selected values of attributes contained in a decision table.

6 Conclusions

In the paper, an application of dynamic programming to global optimization of ex-

act association rules relative to length was presented. It is based on the dynamic pro-

gramming approach to optimization of decision rules. However, there are differences:

(i) definitions are different, (ii) the information system is used, (ii) decision table can be
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inconsistent, and (iv) global optimization relative to length was studied. The presented

approach can be considered as a research tool which allows one to construct association

rules with minimum length.

Possible applications of association rules obtained using presented approach are

construction of classifiers, inference process in knowledege base system, filling missing

values of attributes.

Future works will be connected with future selection, construction of classifiers and

possibilites of decreasing the size of the directed accyclic graph.
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