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Abstract. Timeline-based Planning has been successfully applied in several con-
texts to solve Planning and Scheduling (P&S) problems. A key enabling feature
of the timeline-based approach to planning is its capability of dealing with tempo-
ral flexibility. Temporal flexibility is an important feature in real world scenarios.
Indeed, it can be exploited by an executive system for robust on-line execution
of flexible plans in order to absorb possible delays during the execution. In this
regard, it is useful to define quality metrics to evaluate the robustness of flexible
timeline-based plans. In this paper, a set of quality metrics for flexible timeline-
based plans are defined and discussed when applied to a specific timeline-based
framework. In fact, we consider the framework EPSL, developed to support the
design of P&S applications, that allows the definition of different planners en-
dowed with specific heuristics. Then, an experimental analysis is presented ex-
ploiting the planners to solve planning problem instances related to a real-world
manufacturing case study. And, finally, an evaluation of planners performance is
presented and discussed comparing results also considering robustness of gener-
ated plans.

1 Introduction

The Timeline-based approach to planning has been successfully applied in several real
world scenarios, especially in space like contexts [1,2,3,4]. Besides these applications,
several timeline-based Planning and Scheduling (P&S) systems have been deployed to
define domain specific applications, see for example EUROPA [5], IXTET [6], APSI-
TRF [7]. Like in classical planning [8], it is important to consider different aspects of
the plans generated by timeline-based P&S systems, in order to evaluate their quality.
Some temporal metrics have been defined in the literature for temporal networks (often
used to represent timeline-based plans) and scheduling [9,10]. In general these met-
rics characterize the robustness of a schedule by considering the temporal constraints
between its activities.

Analogously, the robustness of a timeline-based plan can be evaluated by means of
similar measures, which are to be defined without relying on the underlying temporal
network (TN). This is particularly important when time flexibility is taken into account.
In fact, representing a flexible timeline-based plan as a TN (or a schedule) entails a sort
of simplification of the associated plan structure causing a lost of information on the



“dependencies” among its components which can usefully be taken into account. Such
information is useful both to generate the plan, as described in [11], and to make a more
detailed analysis of the temporal features which are relevant to evaluate the overall plan
robustness. For instance, some timeline in the plan can “dominate” the behavior of other
timelines, since its temporal deviations are most likely to propagate to the others.

This paper represents a first step towards the characterization of temporal qualities
of flexible timeline-based plans. After a brief presentation of the basic concepts un-
derlying flexible timeline-based planning, some of such metrics are introduced. Their
concrete application is shown by using planners implemented in the EPSL (Extensi-
ble Planning and Scheduling Library) framework [12]. EPSL is a domain independent,
modular and extensible software environment supporting the development of timeline-
based applications. Recently, some improvements concerning the representation and
solving capabilities of EPSL have been presented in [11]. Specifically, the framework is
enriched with the capability to model and reason on renewable resources and domain
independent heuristics supporting the planning process. The general structure of EPSL
allows for preserving “past experiences” by providing a set of ready-to-use algorithms,
strategies and heuristics that can be combined together. In this way, it is possible to
develop and evaluate different solving configurations in order to find the one which
better addresses the features of the particular planning problem to be solved. This paper
resorts to the EPSL framework and its application to a real-world manufacturing case
study, in order to evaluate and compare the performances of planners using different
heuristics and the robustness of the generated plans.

2 Flexible Timeline-based Planning

This section briefly introduces the main concepts to define flexible timeline-based plans,
along the lines of [13]. The timeline-based approach to P&S aims at controlling a com-
plex system by synthesizing temporal behaviors of its features in terms of timelines. A
planning domain is modeled as a set of features, represented by multi-valued state vari-
ables, that must be controlled over time. Causal and temporal constraints specify, for
each feature, the set V of the values the variable may assume, the allowed value transi-
tions (by means of a function T : V → 2V ), and the allowed minimum and maximum
duration of each valued interval (by means of a function D associating to each value
v ∈ V a pair of time values). Moreover, the values of different state variables may be
linked by (so-called) synchronization rules, requiring that, for every time interval where
a given state variable x has the value v, there exist other time intervals where either the
same or other state variables assume some given values, which are related by some
temporal relation. All these constraints are specified in the domain specification. The
planning process aims at synthesizing temporal flexible plans that satisfy the domain
constraints and fulfill some given goals.

The evolution of a single temporal feature over a temporal horizon is called the
timeline of that feature. In general, plans synthesized by temporal P&S systems may be
temporally flexible. They are made up of flexible timelines, describing transition events
that are associated with temporal intervals (with given lower and upper bounds), instead
of exact temporal occurrences. In other words, a flexible plan describes an envelope of



possible solutions aimed at facing uncertainty during actual execution. In this regard,
they can be exploited by an executive system for robust execution. Some formalizations
have been recently proposed to describe timelines and timeline-based plans [13,14].

Broadly speaking a timeline consists of a sequence of values that are temporally
qualified by means of tokens. A token specifies the temporal interval (start and end
times) assigned to a specific value over a timeline. Flexible tokens specify a flexible in-
terval for values over timelines (i.e. values have a start interval and end interval, instead
of time points) and, as proposed in [13], they can be defined as follows (where T is the
set of “time points” and T∞ denotes T ∪ {∞}):

Definition 1 Let x = (V, T,D) be a state variable describing the set of allowed values
V , the value transition function T and the value duration function D for a domain
feature. A flexible token for the state variable x is a tuple of the form

(xi, v, (b, b′), (e, e′), (d, d′))

where i ∈ N, b, b′, e, e′, d ∈ T, d′ ∈ T∞, v ∈ V, b < e′ and dmin ≤ d < d′ ≤ dmax,
where (dmin, dmax) = D(v). The element xj is the token identifier.

Definition 2 A flexible timeline for x is a finite sequence of flexible tokens for x, whose
identifiers are x0, x1, ..., xk:

FTLx = (x0, v0, (b0, b
′
0), (e0, e

′
0), (d0, d

′
0))

...(xk, vk, (bk, b
′
k), (ek, e

′
k), (dk, d

′
k))

where b0 = b′0 = 0, ek = e′k = H is the temporal horizon of the timeline and for all
i = 0, ..., k − 1, ei = bi+1, e

′
i = b′i+1 and vi+1 ∈ T (vi).

A flexible token represents the set of its instances, i.e. the set of all non-flexible
tokens that satisfy the value duration constraints. Similarly a flexible timeline FTLx
represents the set of its instances. Namely, an instance of a flexible timeline FTLx is
made up of a sequence of instances of the tokens of FTLx and an instance of a set FTL
of timelines is a set of instances of the timelines in FTL.

However the representation of flexible plans must include also information about
the relations that have to hold between tokens in order to satisfy the synchronization
rules of the planning domain. Thus, the representation of flexible plans must include
also a set of temporal relations on tokens, guaranteeing that such rules are satisfied.

Let us consider two flexible tokens, with token identifiers xi and yk, belonging re-
spectively to the state variables x and y. A synchronization rule of the domain may
require that the flexible token xi precedes the flexible token yk. In such a case the
set of temporal relations of included in the flexible plan must contain the relations
xi before yk (i.e. e

′

x < by) in order to satisfy the synchronization rule of the domain.
Like in [15], a small set of primitive temporal relations can be considered, in terms

of which all the usual quantitative constraints can be defined, such as, for instance,
the relations xi contains[lb1,ub1][lb2,ub2] y

k and xi overlaps[lb1,ub1][lb2,ub2] y
k (where

lbj ∈ T and ubj ∈ T∞, for j = 1, 2) .



Definition 3 A flexible plan Π over the horizon H is a pair (FTL, R), where FTL is a
set of flexible timelines over the same horizon H and R is a set of relations on tokens,
involving token identifiers in some timelines in FTL.

A flexible plan represents the set of its instances. An instance of a plan Π=(FTL,
R) is an instance of FTL that respects the relations in R. When there are different ways
how a synchronization rule can be satisfied by the same set of flexible timelines FTL,
each flexible plan represents a choice among them, and different plans with the same set
FLT and different sets of relationsR represent different ways to satisfy synchronization
rules.

A planner like those described in the following can leave timelines open on the
right, i.e. they can leave an undefined temporal interval at the end of a timeline. This
means that the planner does not decide which is the temporal evolution of the timeline
after its last meaningful token.

3 Characterizing Robustness for Timeline-based Plans

Given a flexible timeline-based planner it is important to define some metrics that allow
to characterize the capacity of the generated plans to absorb temporal deviations, i.e.
their robustness. In this section, some quality metrics concerning temporal features of
plans are introduced.

There are several works in the literature that define quality metrics for evaluating
plans and planning algorithms [8,16,17,18]. In this regards we consider temporal met-
rics such as fluidity and disruptibility (introduced by [9] to characterize the robustness
of schedules on temporal networks), in order to check temporal flexibility and provide
an assessment of the robustness of timeline-based plans. In particular we adapt fluid-
ity and disruptibility metrics to timelines and define the notion of the makespan of a
timeline to indicate the “useful” portion of a timeline. Note that the term “makespan” is
typically used in scheduling problems to express the maximum duration of a schedule.
Here, we are using the same term with a slightly different meaning.

The timeline fluidity metric is an estimate of the capacity of the timeline to absorb
temporal deviations w.r.t. other timelines. It is defined as follows:

Definition 4 If FTLx is a flexible timeline for the state variable x, the fluidity of the
timeline w.r.t. the other timelines FTLy of the plan is

ξ(FTLx) =
∑
xi∈FTLx,yj∈FTLy

ρ(xi,yj)
H×n×(n−1) × 100

where xi is a token in the timeline FTLx, yj is a token in a timeline FTLy 6= FTLx,
H is the temporal horizon of the plan, and n is the number of tokens involved in the
computation.

Fluidity is computed by taking into account the temporal slack between tokens, that
is a measure of the temporal flexibility between the end time of a token and the start
time of another one:

ρ(xi, yj) = |dmax(xiend, y
j
start)− dmin(xiend, y

j
start)|



where dmax and dmin are respectively the maximum and minimum allowed temporal
distances between the end time of xi and the start time of yj .

The higher is the value of the fluidity of a timeline FTLx, the higher is the capacity
of other timelines of the plan to absorb its temporal deviations. Namely the higher is
the value, the lower is the risk of cascading changes on other timelines of the plan. This
metric provides a measure of temporal dependencies among the timelines of the plan.

The timeline disruptibility metric measures the amount of changes in a plan caused
by the introduction of a delay in a timeline and is defined as follows:

Definition 5 If FTLx is a flexible timeline for the state variable x, the disruptibility of
the timeline w.r.t. other timelines FTLy of the plan is

ψ(FTLx) =
1
n

∑
xi∈FTLx,yj∈FTLy

ρ(0,xi)
|{yj :yj∈∆(xi,δ)}|

where xi and yj are token of the timelines FTLx and FTLy , respectively. ∆(xi, δ) is
the set of tokens in the plan that change after the introduction of a delay δ on the token
xi ∈ FTLx.

Disruptibility is computed by taking into account the slack ρ(0, xi) of tokens, which
is a measure of the temporal flexibility between the temporal origin of the timeline and
the start time of the token.

ρ(0, xi) = |dmax(0, xistart)− dmin(0, xistart)|

It is a measure of the flexible temporal allocation of the token over the timeline.

The disruptibility metric ψ(FTLx) counts the number of changes (temporal devia-
tions) in the plan due to a temporal delay on tokens xi of the timeline FTLx.

Finally the makespan metric of a timeline is a measure of the temporal flexibility
between the last (meaningful) token of a timeline and the temporal horizon, when the
timeline leaves an undefined temporal interval at its end.

Definition 6 Given a flexible timeline FTLx for the state variable x with k tokens, the
makespan of the timeline is

µ(x) = ρ(xk,H)
H × 100

where ρ(xk, H) is the slack between the last token of the timeline xk ∈ FTLx and the
horizon H

ρ(xi, H) = |dmax(xiend, H)− dmin(xiend, H)|

It is a measure of the portion of timeline left to be used.

The higher is the value of µ(FTLx), the larger is the width of the flexible distance
between the last token of FTLx and the horizon.

In the next section we consider a case study in order to make an experimental evalua-
tions of the different planners we have defined by means of our timeline-based planning



framework EPSL. In particular we aim at characterizing qualities of plans generated us-
ing different planner configurations. It is also interesting to evaluate relations among
the defined metrics as, in some cases, metrics may be in contrast. This means that it is
not possible to obtain a plan with the maximum level of all desired qualities but that the
planner must be carefully configured in order to obtain the desired balance among all
desired qualities

4 Extensible Planning and Scheduling Library

EPSL [12] is a layered framework built on top of APSI-TRF1 [7]. It aims at defining a
flexible software environment for supporting the design and development of timeline-
based applications. The key point of EPSL flexibility is its interpretation of a planner as
a “modular” solver which combines together several elements to carry out its solving
process.

Modeling	  Layer	  -‐	  APSI-‐TRF	  

EPSL	  framework	  

Engine	   Heuris>cs	  Search	  

Applica>on	  

Microkernel	  

Fig. 1. EPSL Architectural Overview

Figure 1 describes the main architectural elements of the architecture of EPSL. The
Modeling layer provides EPSL with timeline-based representation capabilities to model
a planning domain in terms of timelines, state variables, synchronizations and manage
flexible plans. The Microkernel layer is the key element which provides the framework
with the needed flexibility to “dynamically” integrate new elements into the framework.
It is responsible to manage the lifecycle of the solving process and the elements com-
posing the application instances (i.e. the planners). The Search layer and the Heuristics
layer are the elements responsible for managing strategies and heuristics that can be
used during the solving process.

1 APSI-TRF is a software framework developed for the European Space Agency by the Planning
and Scheduling Technology Laboratory at CNR (in Rome, Italy).



The Engine layer is the element responsible for managing the portfolio of algo-
rithms, called resolvers, available to EPSL-based planners. Resolver encapsulate the
logic for refining timeline-based plans. Each resolver, solves some specific conditions
(called flaws) that threat the completeness or correctness of a plan. The set of available
resolvers characterizes the expressiveness of the framework. Namely they determine
what EPSL-based planners can actually do to solve problems.

Finally the Application layer is the top-most element which carries out the solving
process and finds a solution if any. EPSL architecture allows to define modular plan-
ner instances which can be configured in different ways according to the particular
feature of the problem to address. An EPSL-user configure planners by selecting the el-
ements (e.g. heuristics, strategies and resolvers) that compose the application instance.
Similarly the user can also extend EPSL capabilities by integrating domain-specific el-
ements.

EPSL solving approach is a standard plan refinement search procedure which can be
adapted to the particular problem to solve by changing the the planner configuration. As
a matter of fact the particular strategy or heuristic applied can strongly affect planner
behaviour and performances. In particular, the planner has two important choice points
during a the search: (i) node selection choice concerning the selection of the search
space node to expand next and (ii) flaw selection choice concerning the selection of the
flaw to solve next in order to refine the current plan (i.e. node expansion).

We focused our attention on the flaw selection choice which is not a backtracking
point of the search but, in our experience, a crucial aspect to enhance planner perfor-
mances. Indeed, a careful selection of the next flaw to solve can prune the search space
by cutting off branches that would not lead to solutions. Flaws can have dependencies,
indeed, and the resolution of a flaw can simplify the resolution of other flaws in the
plan. In this regard, EPSL allows to define heuristics that support the search in selecting
the most promising flaws to solve. Typically these heuristics encapsulate some evalu-
ation criteria that allow to rate plan flaws by taking into account one or more feature.
In [11], we developed a domain independent heuristic, called Hierarchical Flaw Se-
lection heuristic (HFS), which rate flaws by analyzing the hierarchical structure of a
timeline-based domain.

4.1 Hierarchical Flaw Selection heuristic

A timeline-based domain specifies relations between different timelines by means of
synchronization rules. Thus, given a timeline A and a timeline B, a synchronization
rule SA,B from a token x ∈ A to a token y ∈ B implies a dependency between these
timelines. Namely, tokens on timeline B are subject to tokens on timeline A.

Therefore, it is possible to build a Dependency Graph (DG) among timelines by
looking at synchronization rules. Figure 2(a) shows a set of timelines with synchro-
nization rules and Figure 2(b) shows the resulting dependency graph (note that the
dependency graph defined here is different from the graph used in EUROPA2 [19]).

The DG encodes dependencies among timelines, and a hierarchy can be extracted
by analysing the graph. An edge from a node A to a node B in the DG represents a
dependency between timeline A and timeline B (i.e. tokens of timeline B depend on
tokens of timeline A). Consequently the hierarchy level of timeline A is not lower than



the hierarchy level of B. If no path in the DG connects B to A, then A is at a higher
level in the hierarchy than B (i.e. timeline A is more independent than timeline B).
Conversely if A is connected to B and vice-versa in the DG (i.e. a cycle is detected) then
timelines A and B have the same hierarchical level, and they are said to be hierarchically
equivalent. For instance the hierarchy extracted from the DG in Figure 2 is A ≺ C ≺
B ≺ D.

Usually planning domain specifications that follow a hierarchical modeling ap-
proach (like the approach described in [11]), generate a non-flat hierarchy of timelines
(and sometimes even an acyclic DG).

A	  

B	  

C	  

D	  

SA,B	  SA,C	  

SC,B	   SB,D	  

SC,D	  

SB,D 

A

B

C

D

SA,B	  

SA,C	  

SC,B	  

SC,D	  

(a) (b)

Fig. 2. From Synchronization rules to Dependecy Graph: (a) domain timelines and synchroniza-
tion rules; (b) the dependency graph resulting from synchronization rules between timelines

The HFS exploits this hierarchy to define a flaw hierarchy feature and characterize
the independency degree of plan flaws. The idea is to solve first “independent” flaws,
i.e. flaws belonging to the top most timeline in the hierarchy (e.g. flaws on timeline A
w.r.t. Figure 2), in order to simplify the resolution of “dependent” flaws. In addition to
the hierarchy feature, HFS uses a flaw type feature to define a structure for the solving
process and the flaw degree feature to characterize the criticality of a flaw (similarly to
the fail first principle in constraint satisfaction problems).

The HFS selects the best flaw to solve next by combining together all the features
described above as a pipeline of filters:

Φ0(π)
fh−→ Φ1(π)

ft−→ Φ2(π)
fd−→ Φ3(π)→ φ∗ ∈ Φ3(π)

where fh filters plan flaws according to the flaw hierarchy feature (i.e. it returns
only the subset of flaws belonging to the most independent timeline of the hierarchy),
ft filters flaws according to the flaw type feature and fd filters flaws according to the
flaw degree feature. Then, given a set of flaws of a plan Φ0(π) every filter extracts
the subset of the relevant flaws according to the related feature. The pipeline resulting
set Φ3(π) ⊆ Φ0(π) is composed by flaws representing equivalent choices from the
heuristic point of view, so HFS randomly select the “best” one to solve next φ∗ ∈ Φ3(π).



5 Experimental Evaluation

The objective of the experimental analysis is to evaluate flexible timeline-based plans
generated by EPSL-based planners with different configurations. In particular we evalu-
ate plans by considering the fluidity and makespan metrics3 as well as the planners time
performances. In this regards, we use two configurations of EPSL-based planners by
selecting two different heuristic functions: (i) the HFS planner, using the HFS heuris-
tic; (ii) the TFS planner (Type Flaw Selection planner), which uses a heuristic function
based only on the flaw type feature to select flaws (configuration used before the intro-
duction of the HFS heuristc).

5.1 A pilot plant

Here, we consider a pilot plant involved in an on-going research project called Generic
Evolutionary Control Knowledge-based mOdule (GECKO): a manufacturing system for
Printed Circuit Boards (PCB) recycling [20]. The objective of the system is to analyze
defective PCBs, automatically diagnose their faults and, depending on the gravity of
the malfunctions, attempt an automatic repair of the PCBs or send them directly to
shredding.

The pilot plant contains 6 working machines (M1,..., M6) that are connected by
means of a Reconfigurable Transportation System (RTS), composed of mechatronic
components, i.e., transport modules. Figure 3(a) provides a picture of a transport mod-
ule. Each module combines three transportation units. The units might be either uni-
directional or bidirectional; specifically the bidirectional units enable the lateral move-
ment (i.e., cross-transfers) between two transportation modules. Thus, each transport
module can support two main (straight) transfer services and one to many cross-transfer
services. Figure 3(b) depicts two possible configurations.

Configuration 1 supports the forward (F) and backward (B) transfer capabilities
as well as the left (LC1) and right (RC1) cross transfer capabilities. Configuration 2
extends Configuration 1 by integrating a further bidirectional transportation unit with
cross transfer capabilities LC2 and RC2. The maximum number of bidirectional units
within a module is limited just by its straight length (three, in this particular case). The
transport modules can be connected back to back to form a set of different conveyor
layouts. The manufacturing process requires PCBs to be loaded on a fixturing system
(pallet) in order to be transported and processed by the machines. The transportation
system is to move one or more pallets and each pallet can be either empty or loaded
with a PCB to be processed.

Such an RTS generally allows for a number of possible routing solutions for each
single pallet which is associated to a given destination. Transport modules control sys-
tems have to cooperate in order to define the paths the pallets have to follow to reach
their destinations. These paths are to be computed at runtime, according to the actual
status and the overall conditions of the shop floor (i.e., no static routes are used to move
pallets).

3 In this preliminary experimental analysis, disruptibility metric does not provide relevant data
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Fig. 3. (a) A transport module; (b) Their transfer services

The description of the distributed architecture and some experimental results re-
garding the feasibility of the distributed approach w.r.t. the part routing problem can be
found in [21]. Transportation Modules (TMs) rely on P&S technology to synthesize
activities for supporting the work flow within the shop floor. As a matter of fact TM
agents are endowed with Timeline-based planners (build on top of EPSL framework)
that assess modules’ internal capabilities during the part routing computation process
and build modules’ plans for coordination and transportation task.

Figure 4 shows the timeline-based model of a generic transportation module (TM)
of the GECKO case study extended with energy consumption resource to estimate en-
ergy consumption profile of transportation tasks. The Channel state variable models
the high-level transporting tasks the TM is able to perform. Each value of the Channel
state variable models a particular transportation task indicating the ports of the mod-
ule involved in the execution of the task. For instance Channel F B models the task of
transporting a pallet form port F to port B w.r.t. Figure 3(b).

The Change-Over state variable models the set of internal configuration the trans-
portation module can assume in order to actually exchange pallets with other modules.
Namely configurations identify the internal paths a pallet can follows to traverse the
module. For instance, CO F B in Figure 4 represents the configuration needed to trans-
port a pallet from port F to port B.

The Energy-Consumption resource models the energy consumption policy o the
TM. It estimates the energy consumption of transportation tasks of the module, i.e.
the energy requirements for channel activities of the module. Activities such as moving
conveyors or cross transfers require energy to be performed and we model a system
requirement which entails that the instant energy consumption of TMs cannot exceed
a predefined limit for safety and optimization reasons of the physical device. In this
way, the planner must organize activities in order to not violate the energy consumption
constraint of the module.
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Fig. 4. Timeline-based model for a full instantiated TM

A set of external state variables complete the domain by modeling possible states
of TM’s neighbor modules. Neighbors are modeled by means of external state variables
because they are not under the control of the module. Namely, the TM cannot decide
the state of its neighbors. However it is important to monitor their status because a
TM must cooperate with them in order to successfully carry out its tasks. For instance
the TM must cooperate with Neighbor F and Neighbor B to successfully perform a
Channel F B task. Therefore Neighbor F and Neighbor B must be Available during
task “execution”.

Finally a set of synchronization rules specify how a TM implements its channel
tasks. Figure 4 groups these rules in the dotted arrows between state variables for read-
ability reasons. These rules specify operative constraints (causal and temporal con-
straints) describing the sequence of internal configurations and “external” conditions
needed to safely perform Channel tasks. For instance, a synchronization rule for the
Channel F B task require that the module must be set in configuration CO F B and
that neighbor F and neighbor B must be Available during the “execution” of the task.

5.2 Evaluating Plan Robustness

In the GECKO case study we have defined four planning domain variants by considering
different physical configurations of a TM of the manufacturing plant, i.e., by varying
the number of cross-transfer units composing the module and under the assumption that
module’s neighbors are always available for cooperation. Namely, the tests were run on
the following planning domains: (i) simple, the configuration with no cross transfer; (ii)
single, the configuration with only one cross transfer unit; (iii) double, the configuration
with two cross transfer units; (iv) full, the configuration with three cross transfer units
(the maximum allowed in the case study we considered). The higher is the number
of available cross transfers, the higher is the number of elements and constraints the
planner has to deal with at solving time.
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Fig. 5. HFS and TFS planners performances on: (a) simple configuration; (b) single configuration;
(c) double configuration; (d) full configuration

The charts in Figure 5 show the solving time trends of the EPSL-based planners
(within a timeout of 180 seconds) w.r.t. the growing dimension of the planning problem
(i.e. a growing number of goals) and the growing complexity of the module to control
(i.e. the number of available cross transfers). The results show that the HFS planner
dominates TFS planner on the considered planning domains. The introduction of the
HFS heuristic in the solving process entails a general improvement of the performances
in terms of both solving time and scalability of framework.

Let us consider the subset of problems solved by both HFS and TFS planners in
Figure 5 and make a comparison of generated plans. Figure 6 compares the generated
plans by considering the fluidity metric previously introduced.

The chart in Figure 6(a) shows the trend of the fluidity of the plans w.r.t. the growing
complexity of the addressed problems in terms of number of goals and constraints to
manage. Results show that the higher is the complexity of the problems the lower is the
amount of fluidity of the generated plans. Thus, as expected, the higher is the number
of tokens on timelines the higher is the probability that a temporal deviation on a token
causes temporal deviations on tokens of other timelines.

The charts in Figure 6(b) and (c) compare respectively the total fluidity and the
average makespan of the generated plans. Results show that TFS planner generates
plans more robust than HFS planner w.r.t. fluidity metric. The total fluidity of the plans
generated by TFS planner, indeed, is higher than the total fluidity of the plans generated
by HFS planner. Thus, the introduction of HFS heuristic in the solving process seems to



0"

10"

20"

30"

40"

50"

60"

70"

1" 2" 3" 4" 5" 6" 7" 9" 9" 10"

so
lv
in
g(
)m

e(
(in

(se
co
nd

s)
(

number(of(goals(

HFS" TFS" TLFS" DFS" RFS"

0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

g1	   g2	   g3	   g4	   g1	   g2	   g3	   g4	   g1	   g2	   g3	   g4	   g1	   g2	   g3	   g4	  

simple	   single	   double	   full	  

(a)

184	  

186	  

188	  

190	  

192	  

194	  

196	  

198	  

200	  

fluidity	  
0	  

10	  

20	  

30	  

40	  

50	  

60	  

70	  

80	  

90	  

100	  

makespan	  

(b) (c)

Fig. 6. Comparison of HFS and TFS planners on: (a) plan fluidity trend; (b) total plan fluidity; (c)
average plan makespan

lead to a loss of the robustness of the generated plans despite a significant improvement
of the solving capabilities as shown in Figure 5.

This can be explained by considering that the TFS planner maintains a “complete”
view of the plan during the solving process. The planner reasons about the overall plan
by taking into account all the timelines of the domain, so that it can organize the tokens
on timelines as best as it can. Conversely, the HFS planner maintains a “local” view of
the plan which is related to single timelines of the domain. Namely, the HFS planner
builds one timeline at a time. Therefore, when the planner must manage “intermediate”
timelines, its choices are partially constrained by the choices made before.

This behavior of HFS heuristic can lead also to a loss of performances in some
specific cases such as the simple domain in Figure 5(a). The chart shows that, despite the
general trend, the TFS planner performs better than HFS planner in the simple domain.
Because of its “local” approach, the HFS planner is not able to effectively organize
tokens on timelines as TFS planner does. In particular TFS planner is able to efficiently
group tokens of channel timeline requiring the same configuration of the module, i.e.
the same type of token on the change-over timeline. Conversely the HFS reasons on
one timeline at a time, so it is not able to group tokens requiring the same configuration
on channel timelines. As a consequence the planner must manage much more tokens
on the change-over timeline increasing the complexity of the problem resolution.
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Fig. 7. Comparison of plans generated for the simple domain on: (a) the total fluidity, (b) the
average makespan

As a matter of fact the chart of Figure 7(a) shows that the fluidity of the change-over
timeline in the TFS generated plans is quite higher than the fluidity of the same timeline
in the HFS generated plans.

Finally the introduction and analysis of temporal metrics allow also to extract useful
information about planning domains. Let us consider the contribution of single time-
lines to the total fluidity of the generated plans shown in Figure 8.

HFS$overall$fluidity$

channel' change)over' energy'

HFS	  overall	  fluidity	   TFS	  overall	  fluidity	  

(a) (b)

Fig. 8. Contribution of the single timelines to the overall plan fluidity for (a) HFS generated plans
and (b) TFS generated plans

It is possible to see that, regardless the heuristic applied during the solving process,
the relationships among domain timelines remain constant. The charts in Figure 8, show
that, in general, the energy timeline is the one with the highest value of fluidity while
the channel timeline is the one with the lowest value of fluidity. Thus, the channel
timeline is the most critical one w.r.t. the robustness of the plan. Namely a temporal
deviation on a token of the channel timeline is more likely to produce side effects on
other timelines of the domain than tokens on other timelines. This sort of information is
very interesting since they can be used to classify planning domains and introduce some
learning mechanism to adapt the solving process to the specific features of a planning
domain.



6 Conclusions and Future works

In this paper we have presented our preliminary work about the introduction of quality
metrics to evaluate the robustness of flexible timeline-based plans. In particular, we have
adapted some temporal metrics defined in scheduling to timelines. Then we have intro-
duced EPSL, a timeline-based planning framework we use to design and develop P&S
applications. Finally we made an experimental evaluation of two EPSL-based planners
on a manufacturing case study.

Experimental results have shown how temporal metrics allow to make an assess-
ment of the heuristics applied during the solving process. In particular, temporal metrics
let us able to evaluate EPSL-based planners both from the solving performance and the
plan quality point of views. An important issue to be addressed in future works is the
introduction of a “dynamic” measure of flexibility in order to make a deeper analysis
and assessment of the robustness of a plan. In particular we believe that an analysis
of this sort is especially needed to provide a valid estimate of the disruptibility metric.
Another objective is to develop some parametrized search heuristics heuristcs allowing
to exploit temporal features of (partial-)plans during the solving process.

Moreover the experimental results have shown that these metrics charaterize infor-
mation about the structure and relationships among domain timelines. Thus, another
interesting future goal is to introduce some learning mechanism for dynamically adapt-
ing heuristics to the specific features of the problem to address.
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