
New Heuristics for Timeline-based Planning

Riccardo De Benedictis and Amedeo Cesta

CNR, Italian National Research Council, ISTC, Rome, Italy
{name.surname}@istc.cnr.it

Abstract. The timeline-based approach to planning represents an ef-
fective alternative to classical planning in complex domains where dif-
ferent types of reasoning are required in parallel. The iLoC domain-
independent planning system takes inspiration from both Constraint
Programming (CP) and Logic Programming (LP). By solving both plan-
ning and scheduling problems in a uniform schema, iLoC is particularly
suitable for complex domains arising from real world dynamic scenarios.
Despite the planner captures elements that are very relevant for appli-
cations, its theory is quite challenging from a computational point of
view and its performance are rather weak compared with those of state-
of-the-art classical planners, particularly on those domains where such
planners, typically, excel. In previous works, a resolution algorithm for
the iLoC system has been proposed and enhanced with some (static
and dynamic) heuristics that help the solving process. In this paper we
propose a first improvement of the data structures underlying the pro-
posed heuristics, producing a more informed heuristic and studying its
effectiveness as a solving strategy. We perform tests on different bench-
mark problems from classical planning domains like the Blocks World
to more challenging temporally expressive problems like the Temporal
Machine Shop and the Cooking Carbonara problems, showing how the
iLoC planner compares with respect to other state-of-the-art planners.

1 Introduction

Most of the current timeline-based planners [23], like Europa [20], ASPEN [8],
IxTeT [18] and Apsi-Trf [17, 6], are defined as complex software environments
suitable for generating planning applications, but quite heavy to foster research
work on specific aspects worth being investigated. Such architectures are, typ-
ically, inherently quite inefficient and, therefore, rely on a careful engineering
phase of the domain, possibly supported by the definition of domain-dependent
heuristics. Exception made for some works (e.g., [3]), their search control part
has always remained significantly under explored.

Mostly based on the notion of partial order planning [28], timeline-based
planners have usually neglected advantages from classical planning triggered
from the use of GraphPlan and/or modern heuristic search [4, 5, 19]. Further-
more, timeline-based architectures mostly rely on a clear distinction between
a module for temporal reasoning and other modules that perform other forms



of constraint reasoning, while there is not enough exploration of other forms of
reasoning.

In order to cope with such pitfalls, in a recent work [14] we presented a new
framework, called iLoC, able to solve both planning and scheduling problems
in a uniform schema. In addition, we described its resolution algorithm and en-
dowed it with some (static and dynamic) heuristics. The initial heuristic followed
the general principle of simplifying the initial problem, solving such simplified
problem, and then use the solution for guiding the search of the initial, more
complex, problem. At this initial stage, we left only causal relations and removed
all the other types of constraints from the problem, resulting in a heuristic which,
despite allowed us to greatly improve the performance of the reasoner, ended up
being too uninformed.

This paper reintroduces some of the “removed” constraints (in particular the
disjunctions) in the heuristic, thus enriching the informativeness and enabling
improved performances of the resolution algorithm. In particularly we targeted
those domains in which performances were worse. To explain our technique, we
first introduce the basic principles underlying the iLoC system, then describe the
new heuristic, and show how the system reasons about timelines, then compare
it with other planners on different domains.

2 iLoC: An Integrated Logic and Constraint Reasoner

The aim here is to describe to the reader a minimalistic core that should be
both sufficiently expressive as well as easily extensible so as to adapt as much
as possible to the most variety of user requirements. Specifically, the basic core
of the iLoC architecture provides an object oriented virtual environment for
the definition of objects and constraints among them. Similarly to most object
oriented environments, every object in the iLoC environment is an instance of a
specific type. iLoC distinguishes among primitive types (e.g., bools, ints, reals,
strings, etc.) and user defined complex types (e.g., robots, trucks, locations, etc.)
endowed with their member variables (variables associated to a specific object
of either primitive or complex type), constructors (a special type of subroutine
called to create an instance of the complex type) and methods (subroutines
associated with an object of a complex type). Defining a navigation problem,
for example, might require the definition of a Location complex type having two
numeric member variables x and y representing the coordinates of each Location
instance. In the following, we will address objects and their member variables
using a Java style dot notation (e.g., given a Location instance l, its x-coordinate
will be expressed as l.x).

Once objects are defined, iLoC allows the definition of constraints among
them. For example, in case a robot r should always be more East of a location
l, the iLoC user could assert a constraint such [[l.x < r.x]]. iLoC considers
constraints as logic propositions and, as such, it allows the possibility for negating
them (e.g., ¬[[l.x ≤ 5]]), for expressing conjunctions (e.g., [[l.x ≤ 10]]∧ [[l.x ≥ 5]]),
disjunctions (e.g., [[l.x ≤ 5]] ∨ [[l.x ≥ 10]]) and logic implications (e.g., [[l.x ≥



10]] → [[l.y ≥ 10]]). In order for a solution to be valid, such constraints must
always be consistent among themselves therefore, whenever an inconsistency is
detected (e.g., [[l.x ≤ 10]] ∧ [[l.x ≥ 15]]), the system will return a failure.

In addition, it is possible to impose constraints on existentially quantified
variables (e.g., ∃l ∈ Locations : l.x ≥ 10) as well as universally quantified
variables (e.g., ∀l ∈ Locations : l.x ≤ 100). By combining logical quantifier and
object oriented features, iLoC allows to manage, in one shot, all the instances
of a given complex type.

A rather straightforward method for managing this kind of problems is to
translate them into a Satisfiability Modulo Theories (SMT) problem (see, for
example, [26]). There are several available SMT solvers having different perfor-
mances, capabilities as well as licenses. Since iLoC has been written in Java the
only available choices are, to the best of our knowledge, the SMTInterpol [9],
the MathSAT 5 [10] and the Z3 [15] solvers1.

Although this basic core allows the definition of quite complex problems
(without providing any demonstration, we can state that NP-Complete problems
are covered), some of the problems we are interested in are in PSPACE and thus
excluded from the possibility of being modelled with this formalism. In order
to overcome these limitations, we need something more powerful. Something
that, roughly speaking, is able to “decide” the number of involved variables,
together with their value. For this purpose, we have chosen to extend the above
formalism by allowing many-sorted first-order Horn clauses2, i.e., clauses with
at most one positive literal, called the head of the clause, and any number of
negative literals, forming the body of the clause. For example, we could use a
predicate such as FirstQuadrant, with a Location l argument, within the clause
FirstQuadrant (Location l) ⇐ [[l.x ≥ 0]] ∧ [[l.y ≥ 0]], for describing locations in
the first quadrant of a Cartesian coordinate system. Furthermore, we do not allow
constraints in the head of a clause but we slightly relax the “positive” literals
in the body by allowing constraints to appear in any logical combination (i.e.,
we could rewrite the above example as FirstQuadrant (Location l) ⇐ ¬[[l.x <
0]] ∧ ¬[[l.y < 0]]).

A consequence of what we have seen is that iLoC planning problems can be
described by a collection of clauses. There are two types of clauses: rules and
requirements. A rule is of the form Head ⇐ Body. While the head of rules is
limited to predicates, a rule’s body consists of a set of calls to predicates, which
are called the rule’s sub-goals, and a set of constraints, the latter, in any logical
combination. We consider rules having the same head as disjunctive. Clauses
with an empty head are called requirements and can be calls to predicates (either
facts or goals), or constraints, the latter, in any logical combination. Example
of requirements are goal : FirstQuadrant (Location l), [[l.x ≥ 5]] and [[l.y ≥ 5]],

1 While SMTInterpol provides a pure Java implementation, MathSAT and Z3 provide
Java wrappers to their native API. We have not found other SMT solvers that
provide, directly or indirectly, a Java API.

2 This means, in general, sacrificing decidability.



through which we are asking the planner to find a location l, among those which
are in the first quadrant, having both coordinates greater than or equal to 5.

It is worth highlighting how the object oriented architecture binds with the
discussion above. Intuitively, each variable that appears as the argument of a
predicate inside rules is considered as universally quantified. Conversely, each
variable that appears as the argument of a predicate inside a requirement is
considered as existentially quantified. The object oriented architecture, combined
with the many-sorted logic, allows to consider only the instances of a specific
complex type, rather than all the defined objects, as the allowed values for the
object variables.

Fig. 1. A high-level view of the iLoC reasoning engine.

From an operational point of view, iLoC uses an adaptation of the resolu-
tion principle [25] for first-order logic, extended for managing constraints in the
more general scheme usually known as constraint logic programming (CLP) [1].
Starting from the initial set of objects, facts and constraints, as described by the
initial requirements, the reasoner maintains an agenda of the current (sub)goals.
Incrementally, the system chooses (sub)goals from the agenda and, by exploit-
ing rules, adds facts and constraints into the working memory. Figure 1 shows a
general description of the iLoC reasoning engine.

For each goal P (tg1, . . . , t
g
i ), in general, a branch in the search space is created.

Resolution, at first, will try to unify goals with existing facts, if any, creating
a single branch for all the possible unifications. Specifically, given the existing

facts P
(
t11, . . . , t

1
i

)
, . . ., P

(
tj1, . . . , t

j
i

)
, having the same predicate of the goal, the

formula [[tg1 = t11∧. . .∧t
g
i = t1i ]]∨. . .∨[[tg1 = tj1∧. . .∧t

g
i = tji ]] is added to the current

solution. Intuitively, the purpose of unification is to avoid considering goals whose
(any) rule has already been applied. In addition, a branch is also created for
each of the rules whose head unifies with the chosen goal and, whenever such a
branch is chosen by the resolution algorithm, the body of the corresponding rule
is added to the current solution possibly generating further goals to be managed.
Summarizing, the basic operations for refining a partial solution π toward a final
solution are the following:

1. find the (sub)goals of π (i.e., the agenda).
2. select one such (sub)goals.



3. find ways to resolve it.
4. choose a resolver for the (sub)goals.
5. refine π according to that resolver.

The process follows an A* search strategy that aims at minimizing the num-
ber of goals in the agenda, proceeding until there are no more goals into the
agenda and while all the constraints in the working memory are consistent.
Whenever the constraints become inconsistent the system performs a backtrack-
ing step.

3 The MinReach Heuristic

Since all the goals must be solved sooner or later, there is almost no difference
among which goal is solved first. Selecting the “right” goal, however, impacts
heavily with the efficiency of the resolution algorithm. In order to overcome this
obstacle we can take advantage of some heuristics. In our previous work [14] we
have presented a data structure, called static causal graph, and we showed how
information could be extracted from it to guide the search process.

The static causal graph has a node for each of the predicates that appear in
our rules and, for every rule, an edge from the head of the rule to each of the
predicates that appear in the body of the same rule. The cost for solving a goal,
as suggested by our heuristic, is equal to the number of reachable nodes from
the node relative to the predicate associated to the goal. The rough idea behind
this strategy is to evaluate goals by considering a kind of worst case scenario
where none of the formulas unify. Another way of looking at it is to consider,
for each predicate, a new problem having rules without any constraints and a
sole goal of the same predicate. We called such a strategy AllReachable (AR)
goal selection heuristic.

Fig. 2. A set of rules and requirements, along with the associated static causal graph.

Figure 2 shows a set of rules and the static causal graph resulting from them.
As an example, the cost for solving an A (w) goal, according to AR, is 1 (since



the sole node B is reachable from node A) while the cost for solving an E (t)
goal is 4 (since all the nodes F , G, H and I are reachable from node E). Such an
heuristic is completely agnostic of disjunctions, putting at the same level all the
predicates that appear in the body, whether they were in a disjunction or not,
resulting in a too uninformed heuristic and, consequently, in bad performance
of the search strategy. Indeed, solving a G () goal would be evaluated as having
cost 3, regardless of the two (disjunctive) rules having G () as head.

A slight improvement to our heuristic is constituted by the addition of dis-
junctions into the static causal graph by means of two special nodes representing
conjunctions (AND nodes) and disjunctions (OR nodes). Figure 3 shows the im-
proved static causal graph generated from the example in Figure 2. The cost
for solving a goal is now evaluated as the minimum number of reachable nodes
starting from the node associated to the goal predicate. The general idea here is
the following: whenever the resolution algorithm finds a disjunction, the appli-
cation of the rule that would lead to the minimum number of formulas should
be chosen. We call such a strategy MinReach (MR). As an example, the cost
for solving a G () goal is now reduced from 3 to 1 since all the nodes F , H and
I are reachable from node E, yet introducing a sole formula I () (second rule
associated to predicate G) is probably preferable than introducing both formulas
F () and H () (first rule associated to predicate G), and far more preferable than
introducing all the three formulas F (), H () and I () as expected by heuristic
AR.

Fig. 3. An AND/OR static causal graph.

One might argue that by introducing disjunctions into the static causal graph
we increase the complexity of the evaluation from polynomial to exponential.
However, just as the AR heuristic, this graph and, consequently, the costs for
each of their nodes, solely depend from the rules, therefore, our heuristic is
independent from the requirements and thus can be built once and for ever
at the beginning of the solving process, allowing constant-time cost retrieval.
Nevertheless the problem can easily be encoded into a MIN-ONE SAT problem
(i.e., given a propositional formula, if it is satisfiable, find the variable assignment



that contains the minimal number of positive literals) and let a SAT-solver (e.g.,
Sat4j [21]) solve it for us. The encoding is trivial:

– a boolean variable is associated to each predicate and to each AND node;
– for each arc 〈s, t〉, going from source node with boolean variable s to target

node with boolean variable t, a clause (¬s, t) is added;
– for each arc 〈s,OR〉, going from source node with boolean variable s to an

OR target node, we consider the variables b1, . . . , bn associated to all the n
nodes directly reachable from the OR node and a clause (¬s, b0, . . . , bn) is
added.

Each predicate can now be evaluated as follows: we assume a unit clause
containing the variable associated to the predicate we want to evaluate, solve
the resulting MIN-ONE SAT problem, count the number of positive literals
associated to predicates and subtract 1, since we don’t count the starting node.
As an example, the resulting MIN-ONE SAT problem associated to predicate G
of Figure 3 is the following (we use lowercase names for the associated boolean
variables):

(g) (¬a, b) (¬c, d) (¬e, f) (¬e, g)

(¬g, and, i) (¬and, f) (¬and, h)

resulting in the sole g and i positive literals and, consequently, in an estimated
cost of 1.

Similar to what we did in [14] for the AR heuristic, we exploit the MR
heuristic both for goal selection and for node selection. Also, we refine the MR
heuristic with the less merges dynamic heuristic (see that paper for further
details).

4 Timeline-based Planning and iLoC

The search space of a timeline-based planner has typically partially specified plans
as nodes and plan refinement operations as arcs. Plan refinement operations are
intended to further complete a partial solution, i.e., to achieve an open goal or
to remove some possible inconsistency. Intuitively, these refinement operations
avoid adding to the partial plan any constraint that is not strictly needed for
addressing the refinement purpose (this is called the least commitment principle).
The solving procedure starts from an initial node corresponding to an empty
solution and the search aims at a final node containing a solution that correctly
achieves the required goals.

A possible approach to the resolution of timeline-based planning problems
is to provide the predicates described in the previous sections with numerical
arguments in order to represent their starting times, their ending times and their
durations. Also, it will be required to define some specific complex types, whose
instances will be called timelines, in order to add further “implicit” constraints



among the formulas defined “over” their instances. This will also result in a
slight adaptation of the resolution procedure in order to check the consistency
for every object in the current partial solution so as to make explicit the just
mentioned implicit constraints.

What does it mean to define a formula “over” a timeline? We simply add
a parameter having the same type as the timeline to the predicates and call
such a parameter scope. It is worth noting that most timeline-based planners
like Europa, or Apsi-Trf, indeed, consider timelines as a sort of “containers”
for formulas. In our approach, since the core reasoning element are the atomic
formulas, and consistently with a classical logical approach, we choose to incor-
porate the timelines “inside” the formulas. In other words, the type of our scope
variables will be a “distinguisher” for triggering further reasoning. Furthermore
the resulting scope variables are, to all effects, variables and, therefore, could be
subject to constraints.

(a) State variable (b) Consumable resource

(c) Reusable resource

Fig. 4. Different kinds of timelines with formulas and resource profiles.

In the following we describe the minimal set of the complex types commonly
used in timeline-based planning.

State variables. They are used to describe the “state” of a dynamical system
as, for example, the position of a specific object at a given time or a simple



manufacturing tool that might be operating or not. The semantics of a state
variable (and thus the implicit constraints we need to make explicit) is sim-
ply that, for each time instant t ∈ T, the timeline can assume only one value.
Figure 4(a) represents an example of state variable with three atomic formulas
(parameter types are omitted for sake of space). The example shows a robot
r0, a state variable of type Robot, which might be At a given location or might
be Going to another location. We thus have the two predicates At (sc, l, s, e, d)
and Going (sc, l, s, e, d) each having a parameter sc of type Robot describing the
scope of the formulas and parameters l, s, e and d respectively for the location,
the start, the end and the duration. The planner will take care of adding the
proper constraints for avoiding the temporal overlapping of the incompatible
states (i.e., all the formulas which have the same scope and do not unify) or
for “moving” the states on other instances of type Robot (i.e., choosing another
value, for example r1, for the scope of the formula).

Resources. They are entities characterized by a resource level L : T → R, rep-
resenting the amount of available resource at any given time, and by a resource
capacity C ∈ R, representing the physical limit of the available resource. We
can identify several types of resources depending on how the resource level can
be increased or decreased in time. A consumable resource is a resource whose
level is increased or decreased by some activities in the system. An example
of consumable resource is a reservoir which is produced when a plan activity
“fills” it (i.e., a tank refueling task) as well as consumed if a plan activity “emp-
ties” it (i.e., driving a car uses gas). Consumable resources have two predefined
rules, each having an empty body, and a predicate Produce (sc, id, a, s, e, d)
(Consume (sc, id, a, s, e, d)) as head, so as to represent a resource production
(consumption) on the consumable resource sc of amount a from time s to time e
with duration d (we use an id parameter to prevent unification among these for-
mulas). In addition, the consumable resource complex type has four member vari-
ables representing the initial and the final amount of the resource, the min and
the max value for the resource level. Quite popular in the scheduling literature,
reusable resources are similar to consumable resources where productions and
consumptions go in tandem at the start and at the end of the activities. Reusable
resources can be used for modelling, for example, the number of programmers
employed on a given project for a given time interval. Reusable resources have
one predefined rule having an empty body and a predicate Use (sc, id, a, s, e, d)
as head so as to represent an instantaneous production of resource sc of amount
a at time s and an instantaneous consumption of the same resource sc of the
same amount a at time e. In addition, the reusable resource type has a mem-
ber variable for representing the capacity of the resource. Figures 4(b) and 4(c)
represent, respectively, an example of consumable resource and an example of
reusable resource with some associated formulas.

By introducing these complex types, we require the reasoner to add further
constraints so as to avoid object inconsistencies (e.g., different states overlapping
for some state variable; resource levels L exceeding resource capacity C or going
lower than min, etc.). We chose to refine our resolution process by introducing a



step for detecting such inconsistencies and for adding required constraints which
would remove them. The resulting basic operations for refining a partial solution
π toward a final solution are thus the following:

1. find the (sub)goals of π.
2. select one such (sub)goals.
3. find ways to resolve it.
4. choose a resolver for the (sub)goals.
5. refine π according to that resolver.
6. check for any object inconsistency and remove it.

Similar to [7], we use a lazy approach for detecting inconsistencies. Namely,
we let the underlying SMT solver to extract a solution given the current con-
straints and, in case some inconsistency is detected we add further constraints
so as to remove the inconsistency. A simple example should clarify the idea. Let
us suppose in a given partial solution there are two formulas describing a state
variable svk having two overlapping states si and sj , we solve the inconsistency
by adding the constraint [[si.start ≥ sj .end]] ∨ [[sj .start ≥ si.end]] ∨ [[si.scope 6=
sj .scope]] preventing further overlapping of these states on the same state vari-
able. The core idea for solving resource inconsistencies follows a very similar
schema.

5 Preliminary Results

To assess the value of our heuristic, we have endowed iLoC with the proposed
MinReach (MR) heuristic and tried to compare the resulting system with differ-
ent planners on different benchmarking problems. Specifically, we have selected
four planners that are interesting for their features and compared them with
iLoC: iLoC(AR) is the previous version of iLoC exploiting the simpler All-
Reachable (AR) heuristic, VHPOP [27] shares with our planner the partial
ordering approach, OPTIC [2] and COLIN (see [11]) are both based on a clas-
sic FF-style forward chaining search [19]. All the test have been executed with
default configurations for every planner.

We start the comparison by solving the Blocks World domain, a workhorse
for the planning community. As known, in this domain a set of cubes (blocks)
are initially placed on a table. The goal is to build one or more vertical stacks
of blocks. The catch is that only one block may be moved at a time: it may
either be placed on the table or placed atop another block. Because of this,
any blocks that are, at a given time, under another block cannot be moved. We
used the 4-operator version of the classic Blocks World domain, as found on the
IPC-2011 website, as a starting point. Specifically, for each block, we defined a
state variable for representing what is on top of the block (i.e., either another
block or the value “Clear”) and a state variable for representing if the block is
on the table or not. An additional state variable has been defined for modeling
the robotic arm modeling values that represent either the arm holding a block or
the value “Empty”. Finally, we defined an “Agent” complex type for modeling



Fig. 5. Blocks world.

the agents’ actions. Rules have been defined so as to have an atomic formula for
each effect of the PDDL actions as head and an atomic formula for the actions as
body, aside from rules having an atomic formula for each PDDL action as head
and an atomic formula for their preconditions and effects as body. Temporal
constraints have been conveniently added for guaranteeing that preconditions
precede actions and effects follow actions.

As shown in Figure 5, despite the introduction of our heuristic planners
endowed with “classical heuristics” still perform significantly better than our
approach, nevertheless we were able to boost the system performance apprecia-
bly, allowing us to find solutions up to, approximately, one third of the time it
was required before.

We have also checked our system with two other problems, namely the Tem-
poral Machine Shop [13] and the Cooking Carbonara domain [22]. Both these
problems are temporally expressive (see [12]) since they require concurrency for
being solved.

The first problem is the only temporally expressive problem of the Inter-
national Planning Competition (IPC) and, within the same competition, it is
solved by the sole ITSAT planner (see [24]). The problem models a baking ce-
ramic domain in which ceramics can be baked while a kiln is firing. Different
ceramic types require a different baking time. While a kiln can fire for at most
20 minutes at a time (and then it must be made ready again), baking a ceramic
takes, in general, less time, therefore we can save costs by baking them alto-
gether. Additionally, similar to [24], we have slightly complicated the domain
by considering the possibility for ceramics to be assembled, so as to produce
different structures which should be baked again to obtain the final product.
Specifically, for each kiln we defined a state variable for distinguishing either the
kiln is “Ready” or “on Fire”. In addition, each kiln has associated a reusable
resource for representing its capacity. For each ceramic piece we defined a state



variable for representing either the piece is “Baking” (with an additional pa-
rameter for representing the kiln in which is baking), or the piece is “Baked”,
or the piece is “Treating”, or the piece is “Treated”. Similarly, for each ceramic
structure we defined a state variable for representing either the structure is “As-
sembling”, or the structure is “Assembled”, or the structure is “Baking” (with
an additional parameter for representing the kiln in which it is baking), or the
structure is “Baked”. Rules force these values to appear in time, in each state
variable, in the intuitive manner (i.e., in the order in which these values have
just been introduced). The interesting aspect, however, is that ceramic struc-
tures can bake concurrently with ceramic pieces both while (hence the temporal
expressiveness) the kiln is firing.

Fig. 6. Temporal machine shop.

The Cooking Carbonara domain represents another temporally expressive
problem in which the aim is the preparation of a meal, as well as its consump-
tion by respecting constraints of warmth. Problems cooking-carbonara-n allow
to plan the preparation of n dishes of pasta. The concurrency of actions is re-
quired to obtain the goal because it is necessary that the electrical plates work
in a way that water and oil are hot enough to cook pasta and bacon cubes. It
is also necessary to perform this baking in parallel to serve a dish that is still
hot during its consumption. Specifically, for each plate we defined a reusable
resource for representing its (unary) capacity. For each pot we defined a state
variable for distinguishing either the pot is “Boiling” (with an additional param-
eter for representing the plate on which is boiling) or the pot is “Hot”. For each
pan we defined a state variable for distinguishing either the pan is “Boiling”
(with an additional parameter for representing the plate on which is boiling)
or the pan is “Hot”. Each portion of spaghetti has associated a state variable
for distinguishing either the portion is “Cooking” (with an additional parameter
for representing the pot in which is cooking) or the portion has been “Cooked”.



For each bacon portion we defined a state variable for distinguishing either the
bacon is “Cooking” (with an additional parameter for representing the pan in
which is cooking) or the bacon has been “Cooked”. Each egg has associated a
state variable for distinguishing either the egg is “Being beaten” or the egg has
been “Beaten”. Finally, for each carbonara portion we defined a state variable
for distinguishing either the portion is “Cooking” (with an additional parameter
for representing the plate on which should be cooked), or the portion has been
“Cooked”, or someone is “Eating” the portion or the portion has been “Eaten”.
Again, rules force values to appear in time, in each state variable, in the intu-
itive manner (i.e., in the order in which these values have just been introduced).
Furthermore, carbonara portions should be cooking after spaghetti, bacon and
eggs have been correctly prepared, hence requiring spaghetti to be “Cooking”
while the water in pots is “Hot” as well as bacon to be “Cooking” while the oil
in pans is “Hot”. Finally, cooking carbonara portions, boiling water in pots and
oil in pans should be performed while plates are available.

Experimental results on these domains (figures 6 and 7) show that the heuris-
tic does neither guarantee a substantial improvement nor the overhead produces
a significant worsening (performance remains almost unchanged). Specifically,
in the first problem iLoC performs almost inline with those of state-of-the-art
planners. Even though COLIN performs better than iLoC, it is not able to solve
problems with more than 50 ceramics since it runs out of memory (we used the
default configuration for the planner). In the Cooking Carbonara domain, how-
ever, by removing the maximum duration for plate firing, the problem is reduced
to a basic scheduling problem hence allowing iLoC to outperform state-of-the-
art solvers. This behavior can be explained by observing that these problems
are biased toward a temporal kind of reasoning rather than a causal kind of,
therefore they find minimum benefit from the improvements introduced in the
new heuristic which is mostly oriented toward causal aspects.

Fig. 7. Cooking carbonara.



A separate discussion it is worth doing concerns the expressiveness of iLoC.
All the competing planners use the PDDL2.1 language (see [16]) for model-
ing their planning problems and, in general, it is quite cumbersome to impose
temporal constraints among plain PDDL actions. In the Cooking Carbonara do-
main, for example, it is important that the cooking happens before the eating
but eating should not start too late to avoid that food becomes cold. In [22]
a PDDL extension is proposed to overcome this issue and to model properly
the domain, however, none of the available planners supports this extension and
thus they have been evaluated in a simplified domain in which the warmth con-
straint decays and dishes can be served anytime after they have been cooked. It
is worth noting how this constraint is naturally captured in the iLoC modelling
language by creating a rule having as head an action and as body a second ac-
tion in conjunction with a constraint among the temporal parameters of the two
actions.

6 Conclusions

This paper has introduced a new general heuristic for the iLoC planner that
improves the planner performance with respect to those of a previous work. The
initial heuristic was the result of a too strong simplification and therefore was
probably too uninformed. With the present work we started in the direction of
reintroducing parts previously neglected. In particular by introducing disjunc-
tions we produced a heuristic that allowed us to improve the performance of the
resolution algorithm, especially on those domains in which the performance were
weaker.

The iLoC planner already had comparable (or even better) performance of
other planners in those domains in which temporal reasoning constitutes the
main reasoning requirements (i.e., temporally expressive domains). For this rea-
son we focused on those domains in which the temporal aspects were negligible
compared to the causal ones. The current results are still not competitive with
respect to those of other planners, nevertheless we succeeded in improving perfor-
mance on the class of problems not very suited for the timeline-based approach.

We are pursuing a domain-independent planner able to solve efficiently a
wider spectrum of planning problems, therefore, work is still needed at heuristic
level to reduce the differences with respect to classical approaches.

Acknowledgments. Authors work is partially funded by the Ambient Assisted

Living Joint Program under the SpONSOR project (AAL-2013-6-118).

References

1. Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLiPSe. Cam-
bridge University Press, New York, NY, USA (2007)



2. Benton, J., Coles, A., Coles, A.: Temporal Planning with Preferences and Time-
Dependent Continuous Costs. In: Twenty-Second International Conference on Au-
tomated Planning and Scheduling (2012)

3. Bernardini, S., Smith, D.: Developing Domain-Independent Search Control for Eu-
ropa2. In: Proceedings of the Workshop on Heuristics for Domain-independent
Planning at ICAPS-07 (2007)

4. Blum, A., Furst, M.L.: Fast Planning Through Planning Graph Analysis. In: IJ-
CAI. pp. 1636–1642. Morgan Kaufmann (1995)

5. Bonet, B., Geffner, H.: Planning as Heuristic Search. Artificial Intelligence 129(12),
5–33 (2001)

6. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an End-to-End Plan-
ning Application from a Timeline Representation Framework. In: IAAI-09. Pro-
ceedings of the 21st Innovative Applications of Artificial Intelligence Conference,
Pasadena, CA, USA (2009)

7. Cesta, A., Oddi, A., Smith, S.F.: A Constraint-based Method for Project Schedul-
ing with Time Windows. Journal of Heuristics 8(1), 109–136 (2002)

8. Chien, S., Tran, D., Rabideau, G., Schaffer, S., Mandl, D., Frye, S.: Timeline-Based
Space Operations Scheduling with External Constraints. In: ICAPS-10. Proc. of
the 20th Int. Conf. on Automated Planning and Scheduling (2010)

9. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver. In:
Model Checking Software - 19th International Workshop, SPIN 2012, Oxford, UK,
July 23-24, 2012. Proceedings. pp. 248–254 (2012)

10. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS. LNCS, vol.
7795. Springer (2013)

11. Coles, A.J., Coles, A.I., Fox, M., Long, D.: COLIN: Planning with Continuous
Linear Numeric Change. Journal of Artificial Intelligence Research 44, 1–96 (May
2012)

12. Cushing, W., Kambhampati, S., Mausam, Weld, D.S.: When is Temporal Planning
Really Temporal? In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence. pp. 1852–1859. IJCAI’07, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (2007)

13. Cushing, W., Weld, D.S., Kambhampati, S., Mausam, Talamadupula, K.: Evalu-
ating temporal planning domains. In: Boddy, M.S., Fox, M., Thibaux, S. (eds.)
Proceedings of the Seventeenth International Conference on Automated Planning
and Scheduling, ICAPS 2007, Providence, Rhode Island, USA, September 22-26,
2007. pp. 105–112. AAAI (2007)

14. De Benedictis, R., Cesta, A.: Integrating Logic and Constraint Reasoning in a
Timeline-based Planner. In: AI*IA 2015 - XIVth International Conference of the
Italian Association for Artificial Intelligence (2015)

15. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. pp. 337–340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

16. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

17. Fratini, S., Pecora, F., Cesta, A.: Unifying Planning and Scheduling as Timelines
in a Component-Based Perspective. Archives of Control Sciences 18(2), 231–271
(2008)



18. Ghallab, M., Laruelle, H.: Representation and Control in IxTeT, a Temporal Plan-
ner. In: AIPS-94. Proceedings of the 2nd Int. Conf. on AI Planning and Scheduling.
pp. 61–67 (1994)

19. Hoffmann, J.: FF: The Fast-Forward Planning System. AI Magazine 22(3), 57–62
(2001)

20. Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in Inter-
planetary Space: Theory and Practice. In: AIPS-00. Proceedings of the Fifth Int.
Conf. on AI Planning and Scheduling (2000)

21. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2-3), 59–6 (2010)
22. Maris, F., Régnier, P.: TLP-GP: Un planificateur pour la rsolution de problmes

temporellement expressifs. Revue d’Intelligence Artificielle 24(4), 445–464 (2010)
23. Muscettola, N.: HSTS: Integrating Planning and Scheduling. In: Zweben, M. and

Fox, M.S. (ed.) Intelligent Scheduling. Morgan Kauffmann (1994)
24. Rankooh, M.F., Mahjoob, A., Ghassem-Sani, G.: Using Satisfiability for Non-

optimal Temporal Planning. In: Logics in Artificial Intelligence - 13th European
Conference, JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings.
pp. 176–188 (2012)

25. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the Association for Computing Machinery 12(1), 23–41 (1965)

26. Sebastiani, R.: Lazy Satisability Modulo Theories. JSAT 3, 141–224 (2007)
27. Simmons, R.G., Younes, H.L.S.: VHPOP: Versatile Heuristic Partial Order Plan-

ner. CoRR (2011)
28. Weld, D.S.: An Introduction to Least Commitment Planning. AI Magazine 15(4),

27–61 (1994)


