
A discrete differential evolution algorithm for
multi-objective permutation flowshop scheduling

M. Baioletti, A. Milani, V. Santucci

Dipartimento di Matematica e Informatica
Università degli Studi di Perugia

Via Vanvitelli, 1
Perugia, Italy

Abstract. Real-world versions of the permutation flowshop schedul-
ing problem (PFSP) have a variety of objective criteria to be optimized
simultaneously. Multi-objective PFSP is also a relevant combinatorial
multi-objective optimization problem. In this paper we propose a multi-
objective evolutionary algorithm for PFSPs by extending the previously
proposed discrete differential evolution scheme for single-objective PF-
SPs. The novelties of this proposal reside on the management of the
evolved Pareto front and on the selection operator. A preliminary ex-
perimental evaluation has been conducted on three bi-objective PFSPs
resulting from all the possible bi-objective combinations of the criteria
makespan, total flowtime and total tardiness.

Introduction

The Permutation Flowshop Scheduling Problem (PFSP) is an important type of schedul-
ing problem which has many applications in manufacturing and large scale product
fabrication. In this problem there are n jobs J1, . . . , Jn and m machines M1, . . . ,Mm.
Each job Ji is composed bym operationsOi1, . . . , Oim. The generic operationOij can
be executed only by the machine Mj and its given processing time is pij . Moreover,
the execution of any operation cannot be interrupted (no pre-emption) and job passing
is not allowed, i.e., the jobs must be executed using the same order in every machine.
The goal of PFSP is to find the optimal job permutation π = 〈π(1), . . . , π(n)〉 with
respect to a given objective function. Three important criteria are to minimize the total
flowtime (TFT), the makespan (MS) and the total tardiness (TT) defined as follows:

TFT (π) =

n∑
i=1

C(π(i),m) (1)

MS(π) = max
i=1,...,n

C(π(i),m) = C(π(n),m) (2)

TT (π) =

n∑
i=1

max{C(π(i),m)− dπ(i), 0} (3)



where C(h, j) is the completion time of the operation Ohj and is computed by the
following recursive equation

C(π(i), j) = pπ(i),j +max{C(π(i− 1), j), C(π(i), j − 1)}

for i, j ≥ 1, while the terminal cases are C(π(0), j) = C(i, 0) = 0. In equation (3), for
each job h, also a given delivery date dh is considered.

The minimization of each one of these criteria is computationally hard. Indeed, both
the TFT and TT problems are NP-hard form ≥ 2, while the MS minimization becomes
NP-hard when m > 2.

Many single-optimization algorithms exists, either exact or approximate, for in-
stance: heuristic techniques, local searches or evolutionary algorithms [2]. Anyway, in
this paper we investigate the PFSP problem as a multi-objective optimization problem,
in which the goal is to find a set of job permutations which are good enough with respect
to two or more contrasting criteria, i.e. a set of Pareto optimal solutions.

Given k objective functions f1, . . . , fk, a solution x dominates a solution x′ (de-
noted by x ≺ x′) if fi(x) ≤ fi(x

′) for i = 1, . . . , k, and there exists at least an index
j ∈ {1, . . . , k} such that fj(x) < fj(x

′). A solution x is Pareto optimal if there exist
no other solution x′ such that x′ ≺ x. The Pareto optimal set is the set of all the Pareto
optimal solution. If two solutions x and x′ are such that neither x ≺ x′ nor x′ ≺ x, then
x and x′ are incomparable.

Since the Pareto set is in general very large, the goal is to find an approximation of
this set, i.e., a set composed by incomparable solutions which is as close as possible to
the Pareto optimal set. One of the most promising approaches to solve multi-objective
optimization problems is to use evolutionary algorithms [1].

In the context of multi-objective PFSP, many approaches have been proposed. The
surveys [3, 7] describe and compare many algorithms for PFSP with all the three possi-
ble combinations of two objectives among TFT, MS and TT.

In this paper we describe an algorithm for multi-objective optimization which is
based on Differential Evolution for Permutation (DEP) [6]. DEP is a discrete differential
evolution algorithm which directly operates on the permutations space and hence is
well suited for permutation optimization problems like PFSP. Indeed, in [6] and in [5],
it was shown that DEP reaches state-of-the-art results with respect to total flowtime
and makespan single objective optimization. Here, DEP has been extended in order
to handle multi-objective problems. The preliminary experimental results show that its
performances are comparable with state-of-the-art algorithms.

The rest of the paper is organized as follows. The second section describes the
classical Differential Evolution algorithm. Its extension to the permutations space and
multi-objective PFSP is introduced in the third section. An experimental investigation
of the proposed approach is provided in the fourth section, while conclusions are drawn
at the end of the paper.

The Differential Evolution algorithm

In this section we provide a short introduction to Differential Evolution (DE) algorithm.
For more detail see [4]. Differential Evolution (DE) is a powerful population-based evo-
lutionary algorithm for optimizing non-linear and even non-differentiable real functions



inRn. The main peculiarity of DE is to exploit the distribution of the solutions’ differ-
ences in order to probe the search space.

DE initially generates a random population ofNP candidate solutions x1, . . . , xNP
uniformly distributed in the solutions space. At each generation, DE performs mutation
and crossover in order to produce a trial vector ui for each individual xi, called target
vector, in the current population. Each target vector is then replaced in the next genera-
tion by the associated trial vector if and only if the produced trial is fitter than the target.
This process is iteratively repeated until a stop criterion is met (e.g., a given amount of
fitness evaluations has been performed).

The differential mutation is the core operator of DE and generates a mutant vector
vi for each target individual xi. The most used mutation scheme is “rand/1” and it is
defined as follows:

vi = xr0 + F · (xr1 − xr2) (4)

where r0, r1, r2 are three random integers in [1, NP ] mutually different among them.
xr0 is called base vector, xr1−xr2 is the difference vector, and F > 0 is the scale factor
parameter.In [4] it is argued that the differential mutation confers to DE the ability to
automatically adapt the mutation step size and orientation to the fitness landscape at
hand.

After the mutation, a crossover operator generates a population of NP trial vectors,
i.e. ui, by recombining each pair composed by the generated mutant vi and its corre-
sponding target xi. The most used crossover operator is the binomial one that builds the
trial vector ui taking some components from xi and some other ones from vi according
to the crossover probability CR ∈ [0, 1].

Finally, in the selection phase, the next generation population is selected by a one-
to-one tournament among xi and ui for 1 ≤ i ≤ NP .

Discrete Differential Evolution for Multi-Objective Optimization

In this section we describe the proposed Multi-Objective Differential Evolution for Per-
mutation (MODEP) which directly evolves a population ofNP permutations π1, . . . , πNP .
With respect to the classical DE, important variations have been made to the genetic
operators of mutation, crossover and selection. Moreover, an additional archive of so-
lutions is introduced to maintain the evolved Pareto front.

To simplify our description, let us restrict to the case of two objective functions f1
and f2. A population of NP permutations π1, . . . , πNP is randomly generated at the
beginning. At each iteration, a secondary population of trial elements υ1, . . . , υNP is
generated by means of the mutation and crossover operators. Then, a selection operator
selects, for i = 1, . . . , NP , which element among υi and πi should be part of the
population for the next iteration.

The pseudo-code of MODEP is depicted in Alg. 1.

Differential Mutation

The mutation operator used is the same of DEP [6]. It produces a mutant νi for each
population element πi using some algebraic concepts related to the symmetric group of
permutations. Here we briefly recall its structure:



Algorithm 1 MODEP
1: Initialize Population
2: Update ND
3: while num fit eval ≤ max fit eval do
4: for i← 1 to NP do
5: νi ← DifferentialMutation(i)
6: υ

(1)
i , υ

(2)
i ← Crossover(πi, νi)

7: Update ND
8: υi ← SelectChild(υ(1)

i , υ
(2)
i )

9: end for
10: for i← 1 to NP do
11: πi ← Selection (πi, υi)
12: end for
13: end while

1 Find r0, r1, r2 different to i and to each other
2 δ ← π−1r2 ◦ πr1
3 S ← RandBS(δ) (S is a sequence of adjacent swaps)
4 L← Length(S)
5 k ← dF · Le
6 νi ← πr0
7 for j = 1, . . . , k apply Sj to νi

where ◦ is the ordinary permutation composition operator, ·−1 denotes the inverse of
a permutation, and RandBS is the randomized bubble sort procedure which allows to
decompose a permutation in a sequence of adjacent swaps (that are themselves simple
permutations). For more details, see [6].

It is worth to notice that this operator works directly with permutations, simulating
from an algebraic point of view, the expression of equation (4).

Crossover

The crossover operator for permutation representations is the same of DEP and pro-
duces two children υ(1)i and υ(2)i from πi and νi. The details are described in [6].

The two permutations υ(1)i and υ(2)i are compared with respect to both f1 and f2. If
υ
(1)
i dominates υ(2)i , then the trial υi is υ(1)i . Analogously, if υ(2)i dominates υ(1)i , then

the trial υi is υ(2)i . When υ(1)i and υ(2)i are incomparable, then one of them is randomly
selected to become the trial υi.

Selection

The selection operator chooses the new population element π′i between the old element
πi and the trial νi. If πi ≺ νi, then π′i becomes πi, i.e., πi remains in the population.
Otherwise, if νi ≺ πi or it is equal to πi, then π′i becomes νi, that is νi replaces πi in



the next generation population. However, if πi and νi are incomparable, then we use a
probabilistic method somehow similar to the α-selection described in [6].

Suppose first that f1(νi) < f1(πi) but f2(νi) ≥ f2(πi). Then, π′i becomes νi with
probability max{0, α2 −∆(2)

i }, otherwise it retains the old element πi, where

∆
(2)
i =

f2(νi)− f2(πi)
f2(πi)

is the relative worsening of νi with respect to πi according to f2.
Analogously, if f1(νi) ≥ f1(πi) and f2(νi) < f2(πi). Then, π′i becomes νi with

probability max(0, α1 −∆(1)
i ), where

∆
(1)
i =

f1(νi)− f1(πi)
f1(πi)

.

The rationale behind this selection operator is that νi enters the population if it
dominates or is equal to πi or, with a small probability, if it is not too worse than πi
in one of the objective functions, while it is better than πi in the other objective func-
tion. Moreover, note that the probability of accepting a slightly worsening population
element linearly shades from αh, when ∆(h)

i = 0, to 0, when ∆(h)
i = αh, for h = 1, 2.

Therefore, the parameters αh regulates how worse νi can be in order to be accepted
in the new population: if α1 = α2 = 0 only better elements (in the Pareto sense) can
replace old elements in the population.

Pareto Front

The algorithm keeps updated the approximated Pareto front ND, which contains all
the non-dominated elements ever generated and evaluated. Initially ND contains all
the non-dominated population elements created during the random initialization. Then,
at each generation, all the couples of children υ(1)i and υ(2)i are used to update ND. A
new element υ enters ND if it is not dominated by any element of ND. Moreover, all
the elements of ND which are dominated by υ are removed.

Experimental Results

In this section we report some preliminary experimental results obtained with an imple-
mentation of MODEP.

The experiments have been performed by solving the well known Taillard’s in-
stances with the additional due times given in [3]. These instances are divided in 11
groups of 10 instances with the same values of n and m. The values of n are in the set
{20, 50, 100, 200}, while m lies in {5, 10, 20}. The combination (n = 200,m = 5)
is not considered. The processing time pij of each instance are randomly generated in
{1, . . . , 99}, while the due date of each job Ji are generated by multiplying the value∑m
j=1 pij for a random factor in [1, 4]. MODEP has been run 10 times for each in-

stance and the adopted stopping criterion is the maximum number of evaluations, which



has been set to 2000 · n ·m. Three combinations of objectives have been considered:
(MS,TFT ), (MS,TT ), and (TFT, TT ). For each execution the obtained Pareto front
(corresponding to ND) has been analyzed by computing two performance indices: the
hypervolume IH and the unary multiplicative epsilon I1ε . IH is computed as the area
delimited by the solutions of ND and a reference point. I1ε compares ND with the best
known Pareto front B and is computed as

I1ε = max
x∈B

min
y∈ND

max
j=1,2

fj(y)

fj(x)
.

The indices have been computed by averaging over the multiple executions and
instances for every combination of n×m.

The value for the parameter NP has been set to 100 after some preliminary experi-
ments. The parameter F used in the mutation operator is, as in [6], self-adapted during
the evolution. Instead, the values for the selection parameters α1 and α2 have been set
after a calibration phase according to Table 1.

Table 1. Calibration values for α1 and α2

Opt. α1 α2

(MS,TFT ) 0.025 0.015
(MS,TT ) 0.01 0.01
(TFT, TT ) 0.01 0.01

The results of the optimization of (MS,TFT ) are shown in Table 2. MODEP works
well on this problem and the values of the second index I1ε (whose optimal value is 1)
are quite good, while the values for IH (whose optimal value is 1.44) are however good,
compared to those reported in [3].It is worth to notice that, fixing n, IH seems to have
a decreasing behavior as m increases (except when n = 20).

Table 2. Results for (MS,TFT )

n m IH I1ε
20 5 1.089 1.015
20 10 1.185 1.014
20 20 1.188 1.013
50 5 1.248 1.045
50 10 1.149 1.050
50 20 1.119 1.042

100 5 1.238 1.065
100 10 1.140 1.072
100 20 1.067 1.057
200 10 1.143 1.083
200 20 1.058 1.073



The results of the optimization of (MS,TT ) are shown in Table 3 and are similar
to those for (MS,TFT ), even if the decreasing behavior of IH with respect tom is not
so apparent.

Table 3. Results for (MS,TT )

n m IH I1ε
20 5 1.241 1.048
20 10 1.136 1.162
20 20 1.071 1.038
50 5 1.219 1.078
50 10 1.140 1.175
50 20 1.195 1.237

100 5 1.221 1.086
100 10 1.137 1.119
100 20 1.138 1.167
200 10 1.138 1.105
200 20 0.976 1.117

Finally, the results of the optimization of (TFT, TT ) are shown in Table 4. Here,
while the performances as measured by I1ε are still satisfactory, the results of IH are
slightly worse than in the previous cases.

Table 4. Results for (TFT, TT )

n m IH I1ε
20 5 1.081 1.026
20 10 1.088 1.193
20 20 1.032 1.038
50 5 0.6525 1.024
50 10 0.899 1.083
50 20 1.021 1.206

100 5 0.540 1.027
100 10 0.660 1.055
100 20 0.799 1.103
200 10 0.588 1.051
200 20 0.641 1.077

Conclusion and Future Work

In this paper we have described an algorithm for optimization of multi-objective per-
mutation flowshop scheduling problems. Some preliminary experimental results show
that this approach is promising and reaches results which are comparable to the state-
of-the-art algorithms. As a future line of research, we would like to add to our algorithm



some method to enhance the diversity of the population, as done in other evolutionary
multi-objective algorithms, like crowding distance or niching techniques.

References

1. Carlos A. Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler. Evolutionary multi-
objective optimization. European Journal of Operational Research, 181(3):1617–1619, 2007.

2. J. Gupta and J.E. Stafford. Flowshop scheduling research after five decades. European Journal
of Operational Research, (169):699–711, 2006.

3. Gerardo Minella, Rubén Ruiz, and Michele Ciavotta. A review and evaluation of multiob-
jective algorithms for the flowshop scheduling problem. INFORMS Journal on Computing,
20(3):451–471, 2008.

4. K.V. Price, R.M. Storn, and J.A. Lampinen. Differential Evolution: A Practical Approach to
Global Optimization. Springer, Berlin, 2005.

5. Valentino Santucci, Marco Baioletti, and Alfredo Milani. Solving permutation flowshop
scheduling problems with a discrete differential evolution algorithm. submitted to AI Commu-
nication.

6. Valentino Santucci, Marco Baioletti, and Alfredo Milani. A differential evolution algorithm
for the permutation flowshop scheduling problem with total flow time criterion. In Parallel
Problem Solving from Nature - PPSN XIII - 13th International Conference, Ljubljana, Slove-
nia, September 13-17, 2014. Proceedings, pages 161–170, 2014.

7. M.M. Yenisey and B. Yagmahan. Multi-objective permutation flow shop scheduling problem:
Literature review, classification and current trends. Omega, (45):119–135, 2014.


