Designment of E-R model based on RDF(S)

Xiangbin Gao!?, Dantong Ouyang!:?, and Yuxin Ye!? *

!College of Computer Science and Technology, Jilin University,
Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering
of Ministry of Education, Changchun 130012, China

Abstract. Based on the vast domain resources of RDF(S) on the web
and SPARQL’s powerful query ability, this article presents a new method
of designment of E-R model. The steps for this design are: (1) Formu-
lating SPARQL rules (including resource query rules and schema query
rules) by the analysis of RDF(S)’s structure. (2) Parsing the optimal
resource obtained through the query sentences. (3) Completing the de-
signment by taking advantages of the translation from RDF(S) model to
entity-relationship model in accordance with the content queried. The re-
sults indicate that, the designment of E-R model based on RDF(S) could
restore user real requirements of great possibilities and help database de-
signer to complete design in a strange area.

Keywords: RDF, RDF Schema, E-R model, SPARQL, database design

1 Introduction

Generally speaking, database design depends, to a large extent, on the designer’s
understanding and representing of user requirements|1]. Passed through 60 years
development, the main ideas about database construction have improved a lot.
Much research has been put forward. Kahn raised a way of obtaining description
information in the process of database design[2], which emphasized the designer
should gather requirement in the real world and judge the requirement’s suffi-
ciency and completeness during the process of design. Blaha, Premerlani came up
with the method of Object-Oriented to build relational database[3], it promot-
ed adherence to normal forms and improved integration between databases and
applications. Finkelstein, Schkolnick took advantage of the calculation method
of heuristic to optimize data dictionary and applied it in relationship database
design[4]. Asuman, Birol designed a generalized expert system for database de-
sign[5], they optimized the expert system by adding new design approach and
modifying older method and formed the human interaction mode. Unfortunately,
because of the shock of the web, the traditional methods can not longer fit the
needs in some certain mode, so it’s confronted with more complicated problems.

Resource Description Framework (RDF)[6] provides a set of data models to
support the description of domain resources stored on the web and has strong

* corresponding author: yeyx@jlu.edu.cn (Yuxin Ye).

2 Xiangbin Gao, Dantong Ouyang, Yuxin Ye

ability on the knowledge sharing. SPARQL[7] just offers the powerful query
capabilities to RDF(S) and could be able to analyze RDF deeply. Based on vast
amounts of RDF resources and SPARQL, this article brings a fresh perspective
about designment of E-R model. As a result, the designment further strengthens
the database design system and satisfies the user in special fields a lot.

2 Frame structure

Based on the strong ability on knowledge sharing, we choose RDF as design
source. Particularly, we use WordNet[8] and Swoogle[9] to obtain user require-
ments. In this article, we propose a designment of E-R model based on RDF(S)
and it is built around the traditional method. There are three main tasks:

(1) Based on the structure features of RDFS, formulating the relevant query
rules of SPARQL;

(2) Parsing the RDF resources through the SPARQL query rules;

(3) Drawing E-R model by transformation from RDF(S) model to E-R model.

RDF resource
selection

Formulating
query rules

Parsing RDF L_ H‘Mcthnd of modcl—m-mndcl:
resources I transformation !
I

Drﬂwing—E-R
model

Fig. 1. Frame structure

For task (1), formulating query rules by the analysis of RDF(s)’s structure
and writing query sentences. Especially, we propose resource query rules which
designs by the file’s own namespace and schema query rules which designs by
RDF Schema’s namespace. For task (2), using the method of Width First Traver-
sal to traverse RDF by the sentences obtained from task (1) to get results, such
as classes, properties and data types. For task (3), using the rules of transforma-
tion between RDF(S) model which describes the structure of RDF(S) and E-R
model to draw E-R model through the analysis and arrangement of the results
from task (2). The frame structure is shown in Figure 1.

3 Formulating query rules

For the designment of E-R model by RDF(S), we parse RDF resources by SPAR-
QL to transform the elements from RDF(S) model to E-R model. As SPARQL

Designment of E-R model based on RDF(S) 3

mainly uses the rules in WHERE, so the core content of this article is focus on
the query rules. To keep things simple, the rules below mentioned keep only the
part of WHERE, the parts of PREFIX, SELECT and FROM are all ignored.

3.1 Resource query rules

Like RDF, SPARQL also provides the matching pattern of triple. Unlikely, the
triple’s subject, predicate and object all can be variable. The triples in SPARQL
are used to match the triples in RDF and there will be the results if they matches
successfully. Because every RDF file has its own namespace and builds the file
structure under it, so we can not query all of the information with a set of
inherent rules. The designer has to design the query sentences by the specific
namespace. In this case, we put forward the resource query rules in table 1.

Table 1. Resource query rules

Resource query rules Note
Rulel: {77} Listing all the triples
in the RDF resources.
{?sp7?} The condition of
Rule2: {?s?po} one known item and
{s?p 70} two unknown items.
{?spo} The condition of
Rule3: {s?po} two known items and
{sp?} one unknown item.
Rule4: { ?s pl 70} Union matching.
UNION {7s p2 70}
Rule5: { ?s pl 70} Optional matching.
OPITIONAL {7s p2 702}
Rule6: { ?s p 70} Value restrictions matching.
FILTER { 70 > cons }

In order to have a comprehensive understanding of the file, we can get all
the triples by rule 1. As needed, we may often run into the situation that there
are one known data item and two unknown or two known data items and one
unknown, so we design rule 2 and rule 3. According to the content above, we
can make a traverse only by one known data item. Based on the diversity of the
semantic, we can add some constraints and deformation to the rules to make the
semantic more richer. In rule 4, we use UNION to combine two triples together.
As a result, there will be at least one branch matching the triples in RDF. In
rule 5, we use OPTIONAL to combine two triples together. Specifically, the
second triple will modify the first. In rule 6, we use FILTER to combine two
triples together and the second triple will constrain the first. Furthermore, the
constraints can be logical expressions of Boolean value.

Specially, there will be the blank nodes in the results. The blank node is
a special variable and it only matches the element whose data type is blank.

4 Xiangbin Gao, Dantong Ouyang, Yuxin Ye

Otherwise, the blank node doesn’t represent the real meaning and it only holds
up some space to connect the other two nodes. During the process of query, we
will meet the blank nodes inevitably. At this time, designer should ignore the
blank node and skip it to search the bilateral nodes.

3.2 Schema query rules

About RDF, in addition to the user defined namespace, RDF Schema also pro-
vides its own namespace for the layout of the structure of RDF. The rules men-
tioned above describe the resource rules, but the results are always disorderly and
they are even meaningless in extreme cases. On the other hand, resource query is
always blind and has low efficiency. Therefore, we put forward the schema query
rules shown in table 2. So, we design the query sentence that one known data
item connects with one unknown by the predefined vocabulary RDF Schema
provides. Thus, as long as the designer understand the special semantics of the
predefined vocabularies, he can obtain the unknown data item from the known
easily. On the whole, the schema query rules not only improve the readability of
RDF but also enhance the regularity of the query. Specially, like resource query
rules, we can also add some constraints and deformation to schema query rules
to complete more complex query and they are no longer to be described.

Table 2. Schema query rules

Schema query rules Note

RuleT: { ?var rdf:type rdfs:Class } Class’s query.
Rule8: | { ?var rdfs:subClassOf cons } Class’s inheriting.
Rule9: { cons rdf:type ?var} Class’s type.
RulelO: { cons rdfs:seeAlso ?var} The relationship between

{ cons rdfs:isDefinedBy ?var } object and subject
Rulell: { cons rdfs:lable ?var} Class’s document.

{ cons rdfs:comment ?var}

Rulel2:| { ?var rdf:type rdf:Property} Property’s query.
Rulel3:[{ ?var rdfs:subPropertyOf cons }| Property’s inheriting.
Rulel4: { cons rdfs:domain ?var} Property’s domain.
Rulel5: { cons rdfs:range ?var} Property’s range.
Rulel6: { cons rdf:datatype 7var} Property’s data type.
RulelT: { cons rdf:value ?var} Property’s value.

Given the uncertainties associated with RDF deign, we use resource query
rules and schema query rules comprehensively to improve the results’ accuracy.

4 Parsing RDF resources

Benefiting by the hierarchical structure, we simulate the whole RDF file as the
tree model and regard the triples as the nodes of the tree. For the elements we

Designment of E-R model based on RDF(S) 5

have found without redundancy and missing, this article takes the strategy of
top-down and the method of gradually precision to query. Furthermore, Width
First Traversal method is also used during the whole process. It is necessary
to state that with the query nodes expanding, the semantic relevance between
the follow-up nodes and the initial nodes will decrease rapidly. So, in order to
pledge the usefulness, the designer should define the layer of query with actual
requirement to improve the quality of query results.

4.1 The structure of RDF(S) model

In order to achieve the model-to-model transformation, it’s necessary for us to
analyze the models’ structures with their characters to ensure the relation of the
specific elements between the two models. As the source, RDF has rich semantic
content and can describe the domain knowledge in more detail. We will get rdf-
s:class which represents class and rdf:Property which represents property by the
generalization of rdfs:Resource. About the RDF(S) model, the most important
characteristic is hierarchy, the class can be inherited by rdfs:subClassOf, while
the property by rdfs:subPropertyOf. Using the tree structure, rdfs:Resource acts
as the root node while rdfs:Class and rdf:Property and their subclasses act as
the sub-nodes to expand. Because RDF is a kind of resource to store informa-
tion, so we save the classes and the attributes after they have been instantiated.
For stipulating the class connected with property and the relationship between
class and property, RDF provides rdfs:domain and rdfs:range to constrain the
property’s domain and range respectively. Based on the constraints, we will be
able to find the relationship between the class and the property as well as the
relationship between the classes. Finally, the RDF network will be presented
clearly. The structure is showed in Figure 2.

rdfs:Resource

E-R Model

i

I

I

I

|

I

I i ? : i
[|

e

i ; N7
rdfs:Class _rﬂf_s'_df'"_“l“_ rdf:Property Entity Relationship Attribut
- —
S I
|
: T rdfs:range T 1 : T :
) t : !) I
vdfs: subClassOf il SubEronertylt : Relationship Type | Keyword
Instances of Class |- — — — — >(Value of Property) 00— —— = —— = !
| e ﬁ Relationship Type
Fig. 2. The structure of RDF/RDFS Fig. 3. The structure of E-R model

4.2 Method of query

(1) Query against class. Based on the characteristic of hierarchy, we can
use rule 7 and rule 8 to search for all the classes and their sub-classes. The

6 Xiangbin Gao, Dantong Ouyang, Yuxin Ye

subclass not only has the attributes its parent class has, but also has its own.
Correspondingly, the primary key and the foreign key are also inherited. As rule
9 says, rdf:type describes the connection between the instance and its corre-
sponding class. Rule 10 defines the relationship between the subject class and
the object class, it connects the classes with the keywords such as rdfs:seeAlso
and rdfs:isDefinedBy. Document query provides the designer with a readable
description and explains the class’s specific definition by rule 11.

When traversing, the classes act as the starting points and the ones searched
in the first case stored in queues. Then, putting out the first class and finding
its sub-nodes as well as the sibling-nodes until the sub-nodes are all searched.
After the traverse of the first class, we put out the second one and do the same
process. Likewise, making a traverse for the whole tree. While, because of the
namespace user defined, we may not get classes by rule 1 directly sometimes. So
the designer should traverse from the result’s first record. By the instance and
the property mentioned in the first record, we will find the related class.

(2) Query against property. Similar to the structure of class, property al-
so has the corresponding hierarchical structure. According to rule 12 and 13, we
can respectively find all the properties and their sub-properties. RDF Schema is
a description framework centered on property. It utilizes domain class qualified
by rdfs:domain and range class qualified by rdfs:range to constraint the prop-
erty’s semantic. On the other hand, it also links up class and property closely.
Frequently, using the constraints to query property and class which connects
with given nodes is a major way to traverse. As above, we query the domain
classes of property through rule 14 and the range classes by rule 15. The rules
take the property as predicate and specify the subject’s type as well as object’s.

Due to the semantic absence of query, some properties only connects with
instances rather than classes. In this case, we can only query by instances to find
the relationship between property and class.

(3) Query on datatype. Since RDFS does not have its own datatype, it
uses XSD’s (XML Schema Datatype). If and only if the property value is text
type, we will get the corresponding data. Specifically, we use rule 16 to query
datatype and rule 17 to query the value.

(4) Query on instance. The instance of class is described by the corre-
sponding property’s value (the range of the property). Since the instance could
be obtained by the method of data inquiry, so we won’t give specific rules, de-
signer could use the rules of datatype inquiry to accomplish the instance inquiry.

4.3 Semantic absence of query

Due to the truth that RDF is an open semantic framework, writers are not
under the specific discipline to construct classes, properties and instances. Thus,
they could use the namespace they have defined or RDFS predefined. In the
reason that there is little or not any RDFS’s predefined vocabularies in the RDF
files, designer often needs resource query by the requirements. This leads to the
situation that some elements are unlikely to be acquired. On the contrary, E-
R model makes demands on the form and structure of data with unified and

Designment of E-R model based on RDF(S) 7

refine requirements. Base on the standard, all the elements are designed strictly
to follow the regulation and they are not permitted by default. Therefore, it is
inevitable to cause semantics absence when doing the transformation.

5 Drawing E-R model

5.1 The structure of E-R model

As design result, relational database has the ability of data storage and offers a
standard to manage resources. Entity, relationship and attribute together con-
stitute the E-R model whose structure is shown in Figure 3. The relationship
defines the relation between entities and it extends the large network structure by
connecting entities. An entity has several attributes, while the attributes modify
the entity and express the entity’s features. Among those, when an attribute
or a set of attributes can uniquely determine the entity, we call it primary key.
Specially, the relationship between the entities has many types, such as one-to-
one (1:1), one-to-many (1:n) and many-to-many (m:n). The types express the
correspondence of the entities.

5.2 Model-to-model transformation

(1) Transformation of class. We transform every class to an entity and take
the class name as the entity name. Using the existing knowledge, the designer
can select the proper attribute as primary key which can describe the class
only such as ID, name, etc. The specific condition should be determined by the
actual requirements. Particularly, if the attribute appeared in one class is also
the keyword of some other classes, we call it foreign key. While transforming the
models, the keywords (primary key and foreign key) should be marked.

(2) Transformation of property. According to the different semantics,
property can be classified into text type (rdfs:Literal) and resource type (URI).
When the type is text, we can take the property as attribute which corresponds
to its domain class. Also, making the property name as attribute name and
property datatype as attribute datatype. When the type is resource, we can take
the property as relationship between the entities which correspond to the domain
and the range. What’s more, we also make the property name as relationship
name. Based on the the query about the domains and the range’s instances, we
can ensure the cardinality of the relationship. Specially, if the entity in one hand
has one instance and the other also has one, we call it 1:1; if the entity in one
hand has one instance and the other has many, we call it 1:n; if the entity in one
hand has many instances and the other also has many, we call it m:n.

(3) Transformation of datatype. The database makes a specific request
for the datatype of attribute. Therefore, we need to specify the datatype in the
model-to-model transformation. Taking the datatype of MySQL as an example,
the corresponding relation of several main datatypes is given in Table 3. By
comparison, it is found that there are many similarities between XSD datatype
and SQL datatype, which also provides the possibility for the conversion.

8 Xiangbin Gao, Dantong Ouyang, Yuxin Ye

Table 3. The correspondence of data type between XSD and SQL

XSD |[MySQL Database|| XSD MySQL Database
byte TINYINT time TIME
int INT dateTime DATETIME
long BIGINT gDay DATE
short SMALLINT Name |VARCHAR(TEXT)
double DOUBLE string |[VARCHAR(TEXT)
date DATE token |VARCHAR(TEXT)

Note: VARCHAR stores the variable length strings with the mazimum length
of 255 characters. If the length is greater than 255 characters, we use TEXT.

In the actual process, the query and the transformation is a process of the two
at the same time, there is no obvious sequence. In combination with the resource
query rules and the schema query rules, we parse RDF of the tree structure and
facilitate the transformation from RDF(S) model to E-R model. Figure 4 shows
the corresponding relationship between RDF(S) model and E-R model.

RDF/RDFS E-R Model

rdfs: Class

— & |

rdfs:ConstraintProperty,

» Relationship

Attribute

rdf:Property

Key

(rdfs:Literal

. v

Fig. 4. The correspondence between RDF/RDFS model and E-R model

6 Example for the Designment based on ”blogger”

The article chooses the inference engine Jena[?] to assist SPARQL with querying
and reasoning. The RDF file and the SPARQL file are used as input and the
query results are used as output. Designer selects the content that he wants
according to the RDF resources and writes some corresponding query sentences
into SPARQL file.

As a typical example, we choose "blogger” whose address is "http:// wik-
i.creativecommons.org/ Special:ExportRDF/ Blogger” given by IBM to act as
source file to design. Specificly, we use resource query rules and schema query
rules to parse the file and the layer of query is defined at 5. Based on rule 1, we
can list all of the triples which is shown in Figure 5. However, according to rule
7, we can not find any classes, so we traverse from the result’s first record.

Designment of E-R model based on RDF(S) 9

x Iy	z	
<http://blog.planetrdf.com/rss.xml>	foaf:topic	<http://www.w3.org/RDF/>
<http://blog.planetrdf.com/rss.xml>	foaf:topic	<http://www.w3.0rg/2001/sw/>
<http://blog.planetrdf.com/rss.xml>	foaf:maker	_:bo
<http://blog.planetrdf.com/rss.xml>	rdf:type	rss:channel
_:b1	foaf:interest	<http://www.w3.org/RDF/>
_:b1	foaf:interest	<http://www.w3.org/2001/sw/>
_:b1	foaf:weblog	<http://blog.aksw.org/>
_:b1	foaf:name	"AKSW Group - University of Leipzig"”
_:b1	rdf:type	foaf:Agent
<http://blog.aksw.org/feed/rdf/>	foaf:topic	<http://www.w3.0rg/RDF/>
<http://blog.aksw.org/feed/rdf/>	foaf:topic	<http://www.w3.org/2001/sw/>
<http://blog.aksw.org/feed/rdf/>	foaf:maker	_:b1
<http://blog.aksw.org/feed/rdf/>	rdfitype	rssichannel

| foaf:interest | <http://www.w3.org/RDF/> |
| foaf:interest | <http://www.w3.org/2001/sw/> |

| foaf:topic | <http://www.w3.org/RDF/> |

| foafitopic | <http://wiw.w3.org/2001/sw/> | | foaf:weblog | <http://blog.planetrdf.com/> |
| foaf:maker | _:be | | foaf:name | "Planet ROF"
| rdf:type | rss:channel | | rdf:type | foaf:Agent |
Fig. 6. Querying with the instance Fig. 7. Querying with the blank node
Iy |z |

foaf:interest	<http://www.w3.org/RDF/>
foaf:interest	<http://www.w3.org/2001/sw/>
foaf:weblog	<http://blog.planetrdf.com/>
I I |

foaf:name "Planet RDF"
rdf:type foaf:Agent

foaf:Document

foaf:topic foaf:interest

VARCHAR VARCHAR VARCHAR VARCHAR

Fig. 9. E-R model of the Experiment

As we can see, the first record gives a description to the instance of ” <http://
blog.planetrdf.com/rss.xml>”. Therefore, we use rule 9 to query the instances
type and the result is ”rss:channel”. Unfortunately, we don’t have found some
properties connected with ”rss:channel”. For this reason, we turn to give a query
to the instance of ” <http://blog.planetrdf.com/rss.xml>" again. With rule 3,
we can get the property (”foaf:topic”) of ”rss:channel”. In addition, its value and
data type which is ”string”. Then, we transform it to ”VARCHAR” which is the
data type of SQL. What’s more , we can also find the relationship ”foaf:maker”

10 Xiangbin Gao, Dantong Ouyang, Yuxin Ye

that connects "rss:channel” and a blank node. What is shown in Figure 6. Ac-
cording to the query sentence like
{ < http://blog.planetrdf.com/rss.xml > foaf:maker _:b0.
b0 ?y ?z. },

we will get the resource ”<http://blog.planetrdf.com/>” connected with
"rss:channel” by the blank node. Otherwise, we can also search for ”foaf:Agent”
which represents the blank node and its properties ” foaf:name” and ”foaf:interest”.
By convention, we regard ”foaf:name” as primary key and underline it. What is
shown in Figure 7. Based on the query about the classes ”foaf:maker” connects
with, we can ensure the cardinality is "m:n”. What is shown in Figure 8.

Repeating the steps, we draw the E-R model about "blogger” in Figure 9.

7 Conclusion

Designment of E-R model based on RDF(S) is a new method for database design.
It takes advantages of RDF’s ability on knowledge sharing and makes use of the
resources stored on the web vastly. The results show that the method could
restore user real requirements of great possibilities and help database designer
to complete design in a strange area.

References

1. Sugumaran Vijayan, Storey Veda C: The role of domain ontologies in database de-
sign: An ontologymanagement and conceptual modeling environment, ACM Trans-
actions on Database Systems,2006,31(3):1064-1094.

2. Kahn Beverly K: A method for describing information required by the database
design process, Proceedings of the 1976 ACM SIGMOD international conference on
Management of data, 1976:53-64.

3. Blaha Michael R., Premerlani William J.: Relational database design using an
object-oriented methodology, Communications of the ACM,1988,31(4):414-427.

4. Finkelstein S.,Schkolnick M: Physical database design for relational database, ACM
Transactions on Database Systems,1998,13(1),91-128.

5. Dogac A, Spaccapietra S.: A generalized expert system for database design, Software
Engineering, IEEE Transactions on, 1989, 15(4): 479-491.

6. Ebiri Sejla, Goasdoue Francois: Query-Oriented summarization of RDF graphs, Pro-
ceedings of the 30th British International Conference on Databases, Edinburgh,
United kingdom, July, 2015: 87-91.

7. Meehan Alan, Brennan Rob: SPARQL based mapping management, Proceedings
of the 9th International Conference on Semantic Computing, Anaheim CA, United
states, February,2015:456-459.

8. Zhang Li, Li Jing-Jiao, Hu Ming-Han: Implementation of Chinese WordNet, Dong-
bei Daxue Xuebao/Journal of Northeastern University,2003,24(4):327-329.

9. Ding Li, Finin Tim: Swoogle: A search and metadata engine for the semantic web,
Proceedings of thel3th ACM Conference on Information and Knowledge Manage-
ment, Washington DC, United state, November, 2004:652-659.

10. Ameen Ayesha: Extracting knowledge from ontology using Jena for semantic web,
Proceedings of 2014 International Conference for Convergence of Technology, Pune,
India, April, 2014.

