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Abstract. A recent meta-study shows that the conclusions driven by
human reasoners in psychological experiments about syllogistic reasoning
are not the conclusions predicted by classical first-order logic. Moreover,
current cognitive theories deviate significantly from the empirical data.
In the following, three important cognitive approaches are presented and
compared to predictions made by a new approach to model human rea-
soning tasks, viz. the weak completion semantics. Open questions and
implications are discussed.

1 Introduction

The way of how humans ought to reason correctly about syllogisms has already
been investigated by Aristotle. A syllogism consists of two quantified statements
using some of the four quantifiers all (A), no (E), some (I), and some are not (O)1

about entities like ’some a are b’ and ’no b are c’, and is questioning about the
logical consequences of these statements. E.g., ’some a are not c’ is a logical
consequence of the given two statements in classical first-order logic (FOL). The
four quantifiers and their formalization in FOL are given in Table 1. The entities
can only appear in four different orders called figures as shown in Table 2. Hence,
a problem can be completely specified by the quantifiers of the first and second
premise and the figure. E.g., the example discussed so far is IE1.

Altogether, there are 64 syllogisms and, if formalized in FOL, we can compute
their logical consequences in classical logic. However, a meta-study [24] based on
six experiments has shown that humans do not only systematically deviate from
the predictions of FOL but from any other of at least 12 cognitive theories. In
the case of IE1, besides the above mentioned logical consequence, a significant
number of humans answered no a are c which does not follow from IE1 in FOL.

In recent years, a new cognitive theory based on the weak completion se-
mantics (WCS) has been developed. It has its roots in the ideas first expressed
by Stenning and van Lambalgen [32], but is mathematically sound [17], and
has been successfully applied – among others – to the suppression task [8], the

? The authors are mentioned in alphabetical order.
1 We are using the classical abbreviations.



Mood Natural Language FOL Short

Affirmative universal (A) all a are b ∀X(a(X)→ b(X)) Aab
Affirmative existential (I) some a are b ∃X(a(X) ∧ b(X)) Iab
Negative universal (E) no a are b ∀X(a(X)→ ¬b(X)) Eab
Negative existential (O) some a are not b ∃X(a(X) ∧ ¬b(X)) Oab

Table 1. The four syllogistic moods together with their logical formalization.

Figure 1 Figure 2 Figure 3 Figure 4

Premise 1 a-b b-a a-b b-a
Premise 2 b-c c-b c-b b-c

Table 2. The four figures used in syllogistic reasoning.

selection task [9], the belief bias effect [28,29], to reasoning about conditionals
[5,7] and to spatial reasoning [6]. Hence, it was natural to ask whether WCS
is competitive in syllogistic reasoning and how it performs with respect to the
cognitive theories considered in [24]. This paper gives some preliminary results
by considering FOL, the syntactic rule based theory PSYCOP [31], and two
model-based theories that performed well in the meta-study: the verbal model
theory [30] and the mental model theory2 [19].

2 Predictions of Cognitive Theories

Due to space limitations we will refer for the assumed operations and underlying
cognitive processes of the other theories to [24]. The predictions of the theories
FOL, PSYCOP, verbal, and mental models for the syllogisms IE1, EA3, and
AA4 and those of the participants are depicted in Table 3. For the statistical
analysis, the reader is refered to [24].

FOL and the other three cognitive theories make different predictions. Ad-
ditionally, each theory provides at least one prediction which is correct with
respect to classical FOL and provides an additional prediction which is false
with respect to classical FOL.

3 Syllogisms

Various theories have tried to explain this phenomenon. Some conclusions can
be explained by converting the premises [2] or by assuming that the atmosphere
of the premises influences the acceptance for the conclusion [34]. Johnson-Laird
and Byrne [21] proposed the mental model theory [20], which additionally sup-
poses the search for counterexamples when validating the conclusion. Evans et

2 http://mentalmodels.princeton.edu/models/mreasoner/



participants3 FOL PSYCOP verbal models mental models

IE1 Eac, Oac Oac Oac, Iac, Oac Eac, Eca, Oac,

Ica Oca, NVC

EA3 Eac, Eca Eac, Eca Eac, Eca, NVC, Eca Eac, Eca

Oac, Oca

AA4 Aac, NVC Iac, Ica Iac, Ica NVC, Aca Aca, Aac,

Iac, Ica

Table 3. The conclusions drawn by the participants are highlighted in gray and com-
pared to the predictions of the theories FOL, PSYCOP, verbal, and mental models for
the syllogisms IE1, EA3, and AA4. NVC denotes that there are no valid conclusions.

al. [12,11] proposed a theory which is sometimes referred to as the selective
scrutiny model [14,1]. First, humans heuristically accept any syllogism having a
believable conclusion, and only check on the logic if the conclusion contradicts
their belief. Adler and Rips [1] claim that this behavior is rational because it
efficiently maintains our beliefs, except in case if there is any evidence to change
them. It results in an adaptive process, for which we only make an effort to-
wards a logical evaluation when the conclusion is unbelievable. It would take a
lot of effort if we would constantly verify them even though there is no reason
to question them. As people intend to keep their beliefs consistent, they invest
more effort in examining statements that contradict them, than the ones that
comply with them. However, this theory cannot fully explain all classical logical
errors in the reasoning process. Yet another approach, the selective processing
model [13], accounts only for a single preferred model. If the conclusion is neutral
or believable, humans attempt to construct a model that supports it. Otherwise,
they attempt to construct a model, which rejects it.
As summarized in [14], there are several stages in which a belief bias can take
place. First, beliefs can influence our interpretation of the premises. Second, in
case a statement contradicts our belief, we might search for alternative models
and check whether the conclusion is plausible.

4 Weak Completion Semantics

The general notation, which we will use in the paper, is based on [26,16].

4.1 Logic Programs

We assume the reader to be familiar with logic and logic programming, but recall
basic notions and notations. A (logic) program is a finite set of (program) clauses
of the form A← >, A← ⊥ or A← B1 ∧ . . . ∧Bn, n > 0, where A is an atom,

3 156 participants have been asked where the population ranges from highschool to
university students.



F ¬F

> ⊥
⊥ >
U U

∧ > U ⊥

> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ > U ⊥

> > > >
U > U U
⊥ > U ⊥

← > U ⊥

> > > >
U U > >
⊥ ⊥ U >

↔ > U ⊥

> > U ⊥
U U > U
⊥ ⊥ U >

Table 4. >, ⊥, and U denote true, false, and unknown, respectively.

Bi, 1 ≤ i ≤ n, are literals and > and ⊥ denote truth and falsehood, resp. A is
called head and >, ⊥ as well as B1∧ . . .∧Bn are called body of the corresponding
clause. Clauses of the form A← > and A← ⊥4 are called positive and negative
facts, respectively. We restrict terms to be constants and variables only, i.e. we
consider data logic programs. Throughout this paper, P denotes a program. We
assume for each P that the alphabet consists precisely of the symbols occurring
in P and that non-propositional programs contain at least one constant. When
writing sets of literals we will omit curly brackets if the set has only one element.

gP denotes the set of all ground instances of clauses occurring in P. A ground
atom A is defined in gP iff gP contains a clause whose head is A; otherwise A
is said to be undefined. def (S,P) = {A ← Body ∈ gP | A ∈ S ∨ ¬A ∈ S} is
called definition of S in P, where S is a set of ground literals. S is said to be
consistent iff it does not contain a pair of complementary literals.

4.2 Three-Valued  Lukasiewicz Semantics

We consider the three-valued  Lukasiewicz Semantics [27], for which the corre-
sponding truth values are >, ⊥ and U, which mean true, false and unknown,
respectively. A three-valued interpretation I is a mapping from formulas to a set
of truth values {>,⊥,U}. The truth value of a given formula under I is deter-
mined according to the truth tables in Table 4. We represent an interpretation
as a pair I = 〈I>, I⊥〉 of disjoint sets of atoms, where I> is the set of all atoms
that are mapped to > by I, and I⊥ is the set of all atoms that are mapped to ⊥
by I. Atoms which do not occur in I> ∪ I⊥ are mapped to U. Let I = 〈I>, I⊥〉
and J = 〈J>, J⊥〉 be two interpretations: I ⊆ J iff I> ⊆ J> and I⊥ ⊆ J⊥.
I(F ) = > means that a formula F is mapped to true under I. M is a model
of gP if it is an interpretation, which maps each clause occurring in gP to >. I
is the least model of gP iff for any other model J of gP it holds that I ⊆ J .

4.3 Reasoning with Respect to Least Models

For a given P, consider the following transformation:

1. For each A where def (A,P) 6= ∅, replace all
A← Body1, . . . , A← Bodym ∈ def (A,P) by A← Body1 ∨ . . . ∨ Bodym.

2. Replace all occurrences of ← by ↔.

4 We consider weak completion semantics and, hence, a clause of the form A ← ⊥ is
turned into A↔ ⊥ provided that this is the only clause in the definition of A.



The obtained ground program is called weak completion of P or wcP.5

It has been shown in [18] that logic programs as well as their weak completions
admit a least model under  L-logic. Moreover, the least  L-model of wcP can be
obtained as the least fixed point of the following semantic operator, which is due
to Stenning and van Lambalgen [32]: ΦP(〈I>, I⊥〉) = 〈J>, J⊥〉, where

J> = {A | A← Body ∈ def (A,P) and Body is true under 〈I>, I⊥〉}
J⊥ = {A | def (A,P) 6= ∅ and

Body is false under 〈I>, I⊥〉 for all A← Body ∈ def (A,P)}

Weak completion semantics (WCS) is the approach to consider weakly com-
pleted logic programs and to reason with respect to the least  L-models of these
programs. We write P |=wcs F iff formula F holds in the least  L-model of wcP.
In the remainder of this paper, MP denotes the least  L-model of wcP.

The correspondence between weak completion semantics and well-founded
semantics [33] for tight programs, i.e. those without positive cycles, is shown
in [10].

4.4 Integrity Constraints

A set of integrity constraints IC comprises clauses of the form ⊥ ← Body,
where Body is a conjunction of literals. Under a three-valued semantics, there
are several ways on how to understand integrity constraints [23], two of them
being the theoremhood view and the consistency view. Consider the IC

⊥ ← ¬p ∧ q

The theoremhood view requires that a model only satisfies the set of integrity
constraints if for all its clauses, Body is false under this model. In the example,
this is only the case if p is true or if q is false in the model. In the consistency
view, the set of integrity constraints is satisfied by the model if Body is unknown
or false in it. Here, a model satisfies IC already if either p or q is unknown.

In this paper we adopt the consistency view. Formally, given P and set IC,
P satisfies IC iff there exists I, which is a model for gP, and for each ⊥ ←
Body ∈ IC, we find that I(Body) ∈ {⊥,U}.

5 Reasoning Towards an Appropriate Logical Form

5.1 Existential Import: Modeling Gricean Implicature

We assume that humans understand quantifiers with existential import, i.e. for
all implies there exists. This is a reasonable assumption – called the Gricean
Implicature [15] – as in natural language we normally do not quantify over
things that do not exist. Furthermore, Stenning and van Lambalgen [32] have
shown that humans require existential import for a conditional to be true. The
program for A in Table 1 together with existential import is

PA = {b(X)← a(X), a(o)← >}
5 Note that undefined atoms are not identified with ⊥ as in the completion of P [3].



where the first clause represents ‘all a are b’ and the second clause states that
there exists a constant, viz. o, for which a(o) is true. The least  L-model of PA is

〈{a(o), b(o)}, ∅〉

which maps Aab, Iab, Iba and Aba to true, i.e. the programs which represent
Aab, Iab, Iba and Aba are true under the least  L-model of PA. We will now show
how we can represent the corresponding programs for Iab and Iba.

5.2 Positive and Negative Facts

The second and the third mood in Table 1, I and E, each implies two facts about
something, e.g., about some constant o. The program for I in Table 1 is

PI = {a(o)← >, b(o)← >}

where o is a constant for which it holds that a(o) and b(o) are true. Its least
 L-model is

〈{a(o), b(o)}, ∅〉

which maps Iab, Iba, Aab, and Aba to true. Section 5.4 explains why whenever
Iab is mapped to true, Iba is mapped to true as well, and vice versa. As o is the
only object for which a(o) and b(o) is true, we can generalize over all constants.
Accordingly, Aab and Aba hold as well. Similarily, the program for E is

PE = {a(o)← >, b(o)← ⊥}

where o is a constant for which a(o) is true and b(o) is false. Its least  L-model is

〈{a(o)}, {b(o)}〉

which maps Eab and Oab to true. Like in the case of I, as o is the only object
for which a(o) is true and b(o) is false, we can generalize over all constants.
Therefore, Eab holds as well.

5.3 Negative Conclusions

The consequence in the third mood E is the negation of b(X). As the weak com-
pletion semantics does not allow negative heads in clauses, we cannot represent
this inference straightaway. Therefore, for every negative conclusion ¬p(X) we
introduce an auxiliary formula p′(X) together with the clause p(X) ← ¬p′(X).
Accordingly, the program of the example for E in Table 1 together with the
assumption of existential import, is

PE = {b′(X)← a(X), b(X)← ¬b′(X), a(o)← >}

Its least  L-model is
〈{a(o), b′(o)}, {b(o)}〉



which maps Eab and Oab to true. With the introduction of these auxiliary
atoms, the need for integrity constraints arises. A model I = 〈I>, I⊥〉 for P
that contains both b(c) and b′(c) in I>, where c is any constant in P, should be
invalidated. This condition can be represented by the integrity constraint

IC = {⊥ ← b(X) ∧ b′(X)}

and is to be understood as discussed in Section 4.4. For the following examples,
whenever there exists a p(X) and its p′(X) counterpart in P, we implicitly
assume IC = {⊥ ← p(X) ∧ p′(X)}.

5.4 Symmetry

The results of the psychological experiments presented in [25] show that partic-
ipants distinguish between the cases ‘some a are c’ or ‘some c are a’ (Iac and
Ica). However, for the mood I, a and c can be interchanged in FOL, because by
commutativity, ∃X(a(X)∧c(X)) is semantically equivalent to ∃X(c(X)∧a(X)).
Likewise, the formalizations of Iac and Ica under WCS, i.e. {a(o)← >, c(o)← >}
and {c(o) ← >, a(o) ← >} are semantically equivalent. Thus, neither FOL nor
WCS can distinguish between Iac and Ica.

In FOL, ∀X(a(X) → b(X)) is semantically equivalent to ∀X(¬b(X) →
¬a(X)) by modus tollens. Likewise, ∀X(a(X) → ¬b(X)) is semantically equiv-
alent to ∀X(b(X) → ¬a(X)). For the representation under WCS and, in par-
ticular, given the additional fact representing the existential import, these two
formulas are not semantically equivalent anymore. Eab is represented by

{b′(X)← a(X), b(X)← ¬b(X), a(o)← >}

whereas Eba is represented by

{a′(X)← b(X), a(X)← ¬a(X), b(o)← >}

both together with the corresponding integrity constraints.

6 Predictions by the Weak Completion Semantics

In this section we present the three problems IE1, AA3, and EA3 and show the
generated conclusions under the weak completion semantics.

6.1 Syllogism IE1

The program representing syllogism IE1 assuming existential import is

PIE1 = {a(o1)← >, b(o1)← >, c′(X)← b(X), c(X)← ¬c′(X), b(o2)← >}

The weak completion of gPIE1 is

{ a(o1)↔ >, b(o1)↔ >, c′(o1)↔ b(o1), c(o1)↔ ¬c′(o1),
b(o2)↔ >, c′(o2)↔ b(o2), c(o2)↔ ¬c′(o2) }



Its least  L-model is

〈{a(o1), b(o1), c′(o1), b(o2), c′(o2)}{c(o1), c(o2)}〉,

which maps Oac and Eac to true. These are exactly the conclusions drawn by
the participants and, hence, there is a perfect match in this example. One should
observe that Oac is the only valid conclusion in classical FOL, whereas Eac is
not a valid conclusion in classical FOL. Likewise, neither PSYCOP nor verbal
models nor mental models match the participant’s choices (see Table 3).

6.2 Syllogism AA4

The program representing syllogism AA4 assuming existential import is

PAA4 = {a(X)← b(X), b(o1)← >, c(X)← b(X), b(o2)← >}

The weak completion of gPAA4 is

{ a(o1)↔ b(o1), c(o1)↔ b(o1), b(o1)↔ >,
a(o2)↔ b(o2), c(o2)↔ b(o2), b(o2)↔ > }

Its least  L-model is

〈{b(o1), c(o1), a(o1), b(o2), c(o2), a(o2)}, ∅〉

and maps Iac, Ica, Aac, and Aca to true. The majority of the participants con-
cluded Aac and NVC. Hence, there is a partial overlap in this example. One
should observe that Iac and Ica are the only valid conclusions in classical FOL.
From Table 3 we observe that in this example PSYCOP computes a perfect
match, the conclusions computed by the mental model theory overlap, and there
is no overlap between the participant’s choices and the conclusions computed by
the verbal model theory.

6.3 Syllogism EA3

The program representing syllogism EA3 assuming existential import is

PEA3 = {b′(X)← a(X), b(X)← ¬b′(X), a(o1)← >, b(X)← c(X), c(o2)← >}

The weak completion of gPEA3 is

{ b′(o1)↔ a(o1), b(o1)↔ ¬b′(o1) ∨ c(o1), a(o1)↔ >,
b′(o2)↔ a(o2), b(o2)↔ ¬b′(o2) ∨ c(o2), c(o2)↔ > }

Its least  L-model is

〈{a(o1), b′(o1), c(o2), b(o2)}, {b(o1)}〉

which does not map any statement involving A, I, E, or O to true. Hence, WCS
leads to NVC. The majority of the participants concluded Eac and Eca. Hence,
there is no overlap in this example. One should observe that Eac and Eca are the
only valid conclusions in classical FOL. Inspecting the results depicted in Table 3
we observe that PSYCOP, the verbal model theory as well as the mental model
theory compute solutions which overlap with the participants choices.



participants FOL PSYCOP verbal models mental models WCS

IE1 Eac, Oac Oac Oac, Iac, Oac Eac, Eca, Eac, Oac

Ica Oca, Oac,

NVC

EA3 Eac, Eca Eac, Eca Eac, Eca, NVC, Eca Eac, Eca NVC

Oac, Oca

AA4 Aac, NVC Iac, Ica Iac, Ica NVC, Aca Aca, Aac, Aca, Aac,

Iac, Ica Iac, Ica

Table 5. The conclusions drawn by the participants are highlighted in gray and com-
pared to the predictions of the theories FOL, PSYCOP, verbal and mental models as
well as WCS for the syllogisms IE1, EA3, and AA4.

6.4 Summary

We have formalized three examples under WCS and have compared them to
FOL, PSYCOP, the verbal, and the mental model theory. The results are sum-
marized in Table 5. The selected examples are typical in the sense that for some
syllogisms the conclusions drawn by the participants and WCS are identical, for
some syllogisms the conclusions drawn by the participants and WCS overlap,
and for some syllogisms the conclusions drawn by the particpants and WCS are
disjoint. Moreover, WCS differs from the other cognitive theories.

7 Discussion

Our goal is to compare WCS to existing cognitive theories on syllogistic reason-
ing. To this end, we need to evaluate the predictions of WCS concerning all 64
syllogisms and compare it to all the cognitive theories mentioned in [24].

We did not consider abnormalities in the specification of implications as
suggested in [32]. If each abnormality is mapped to false, then the specification
with abnormalities is semantically equivalent to the specification given in this
paper. On the first sight it appears that all abnormalities are indeed mapped to
false, but we should take a second look. In particular, because we need to break
the symmetry between our current specifications of Iac and Ica. Furthermore,
in the reported meta-study participants dealt with abstract reasoning problems.
This may explain why we did not need abnormalities here. However modeling the
belief bias in syllogistic reasoning can require the abnormality predicate [28,4].

Rules like b(X)← ¬b′(X) have been introduced as a technical means to deal
with implications whose conclusion is negative. Such negative conclusions cannot
be directly modelled in WCS as the model intersection property would be lost.
This technical reason might be justified by the principle of truths [22], which
states that only true items can be represented. Please note that these additional



rules come without existential import. Adding such import will introduce a new
constant for each of these rules, which may lead to different conclusions.
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