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Abstract

Public health surveillance systems rely on the
automated monitoring of large amounts of
text. While building a text mining system
for veterinary syndromic surveillance, we ex-
ploit automatic and semi-automatic meth-
ods for terminology construction at different
stages. Our approaches include term extrac-
tion from free-text, grouping of term variants
based on string similarity, and linking to an
existing medical ontology.

1 Introduction

In the project Veterinary Pathology Text Mining,
we are developing tools to exploit veterinary post-
mortem data for epidemiological surveillance and
early detection of animal diseases. This paper de-
scribes the work in progress on the construction of
a veterinary terminology resource as a basis for a
text mining tool to classify, with minimal human
intervention, free-text veterinary reports with re-
spect to multiple clinical syndromes that can be
monitored.

In human medicine, text mining has been suc-
cessfully applied to clinical records in many pub-
lic health surveillance systems (Botsis et al., 2011;
Steinberger et al., 2008; Brownstein et al., 2008;
Wagner et al., 2004). The approaches range
from hand-written rule-based systems to fully au-
tomated methods using machine learning. For
example, Chapman et al. (2004) use heuristical
keyword-driven as well as supervised machine
learning techniques (Naive-Bayes classifier) for

detecting mentions of fever in free-text clinical
records. Similarly, the BioCaster system (Collier
et al., 2006; Collier et al., 2008) relies on a care-
fully constructed medical ontology combined with
a Naive-Bayes classifier as an input filter. Friedlin
et al. (2008) use a regular-expression based term-
extraction system to find positive and negative
mentions of methicillin-resistant Staphylococcus
aureus in culture reports. Hartley et al. (2010) give
an overview of surveillance systems that mainly fo-
cus on world-wide monitoring of web sources, in-
cluding news feeds and informal medical networks.

The text mining of veterinary reports faces ad-
ditional challenges such as multiple species and
a less controlled vocabulary (Smith-Akin et al.,
2007; Santamaria and Zimmerman, 2011). Up to
this point, approaches for classifying veterinary di-
agnostic data into syndromes for surveillance have
been restricted to the use of rule-based classifiers
(Dérea et al., 2013; Anholt et al., 2014). To build
these classifiers, a group of experts manually cre-
ates a large set of rules. The rules are then used
to classify veterinary diagnostic submissions into
syndromes based on the presence or absence of
specific words within various fields in the diagnos-
tic submission data.

We propose to develop a process for using text
mining methodologies (natural language process-
ing) to efficiently extract relevant health informa-
tion from veterinary diagnostic submission data
with minimal human intervention. Given a suf-
ficient amount of data (i.e. at least a few hun-
dreds of manually classified reports), a machine
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learning approach will allow us to directly classify
these data into syndromes that can be monitored
for surveillance.

Asrecognized in the Swiss Animal Health Strat-
egy 2010+, methods for early disease detection,
based on the increasing abundance of data on ani-
mal health stored in national databases, can con-
tribute to valuable and highly efficient surveil-
lance activities. Post-mortem data, available from
pathology services, are often under-exploited. The
main purpose of post-mortem investigations of
food production animals is to provide information
about the cause of disease or death with regard
to treatment, and prevention options for the af-
fected herd. Besides these major diagnoses, all
additional pathological findings are also recorded
as text and electronically archived as necropsy re-
ports. In addition to the value of this information
for veterinarians and farmers, systematic evalua-
tion of necropsy data may be of value the early
detection of spatio-temporal clusters of syndromes
which may result from a new disease emerging into
a population or from changing patterns of endemic
diseases. As such, it has the potential to be of value
for both nation-wide and international (veterinary)
public health early-warning systems.

The rest of this paper is organized as follows:
We present our efforts in constructing and exploit-
ing a veterinary terminology resource in Section 2.
Section 3 describes our work towards report clas-
sification in the context of building a surveillance
tool. The next steps and further application scenar-
ios are given in Section 4.

2 Terminology Construction

In the process of report classification, we have put
a lot of effort in the construction of a terminology
resource that suited our needs. The resulting term
inventory is tailored to a very specific task. Still,
the methods, insights and even the resource itself
can be of use for other applications. Similar to the
work by Rinaldi et al. (2002), we extracted a set of
terms from a collection of raw text and used auto-
matic methods to organize them into a hierarchical
structure. Section 2.1 introduces the categories we
used for classification. In Sections 2.2 and 2.3, we
describe the steps that led to the construction of the
term inventory. Sections 2.4 and 2.5 show how this
resource can be automatically enhanced for a more
general usage.
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2.1 Syndrome and Diagnosis Classification

The work described here is based on post-mortem
reports that were compiled by the Institute of Ani-
mal Pathology (ITPA) of the Vetsuisse faculty at
the University of Bern. The data were entered
into a database by veterinary pathologists between
2000 and 2011. We used a subset of approximately
9 000 report entries regarding pigs and cattle. The
reports are written in German, with a small frac-
tion (less than 3 %) in English and French.

For subsequent quantitative analysis, we clas-
sified all reports using two categorization lev-
els. As a coarse-grained categorization, we anno-
tated each report with the syndromic groups that
were affected by a medical issue. Each report
was assigned zero, one or more of 9 syndrome
categories (gastro-intestinal, respiratory, urinary,
cardio-vascular, lymphatic, musculo-skeletal, re-
productive, neural, other). This categorization ap-
proximately meets the level of granularity found in
other work (Dérea et al., 2013; Warns-Petit et al.,
2010). For a finer-grained categorization of the re-
ports, we additionally annotated post-mortem di-
agnoses mentioned (directly or implicitly) in the
reports, such as enteritis, lipidosis, or injuries from
foreign bodies. The set of diagnoses was not de-
fined a priori, but continuously updated in the clas-
sification process. The final set comprised some
100 classes and is shown in Table 1. The diagnoses
are modeled as subcategories of the syndromes.
While some category names occur in more than
one syndromic category, it does not mean that they
are ambiguous, as they are triggered by different
terms. For example, atresia is classified as a con-
genital abnormality of the gastro-intestinal system,
whereas the ventricular septal defect is a congeni-
tal abnormality of the cardio-vascular system.

2.2 Term Normalization

The medical reports have a high number of sur-
face variants per term. The variation is caused by
inflection, inconsistent spelling and typographical
errors. On a higher level, variation is increased
by synonymy, i.e. the use of different terms for
the same concept (e. g. Lipidose/Verfettung ‘lipi-
dosis’). From the perspective of the given text min-
ing task, certain derivative forms can be consid-
ered synonymous variants as well (e. g. Ulzeration
besides Ulkus).

We split the report texts into tokens, which we
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gastro-intestinal perforation 35 | cystitis 56 | congenital hydrocephalus 18
abomasal ulcer 178 | pharyngitis 9 | hydronephrosis 30 abnormality 30 | intoxication 5
abomasitis 120 | proctitis 13 | nephritis 416 | fracture 94 | meningitis 226
acidosis 41 | reticulitis 98 | renal luxation 9 | myelitis 13
cheilitis 6 | rumenitic ulcer 4 degeneration 116 | myodegen- neural
cholangitis 84 | rumenitis 92 | trauma 8 eration 70 degeneration 54
colitis 368 | sialoadenitis 2 | urolithiasis 75 | myopathy 56 | neuropathy 78
congenital . steator.rhea 105 cardio-vascular osteochoanosis 30 other

' abngrmahty 21 sten051's. 10 cardiomyopathia 46 osteomye.h.tls 136 crushed 8]
d%latatlon 159 | stomatitis 57 congenital polyar'tl'lrltls 343 dermatitis 184
displaced traurpg 25 abnormality 84 syn0.V1.t1.s 45 | enterotoxemia 285

abom.a.sum 55 | typhlitis 37 | endocarditis 179 tendlmtls. N 25 eye related o)
duOd?I.lltlS 12 | volvulus 479 epicarditis 62 tendovaginitis 18 foreign body 118
enterltls. . 2458 respiratory heart reproductive hernia 73
esopbagltls 46 | pronchiolitis 256 degeneration 50 | abortion 642 | hydrothorax 104
gastr%c' uleer 206 1 onchitis 466 | hydropericard 319 | congenital inanition 74
gastr 1.t1.s 121 broncho- myocarditis 77 abnormality 8 | intoxication 95
glOSSI,U,S 16 pneumonia 1040 | pericarditis 427 | dystocia 9 | iron deficiency 65
hepatitis 200 laryngitis 23 | pleuritis 41 | metritis 70 | mastitis 66
EIS 361 pharyngitis 1 Ivmphatic perforation 4 | neoplasia 68

oflund .. ymp ... ...

pleuritis 40 lymph- placentitis 126 | oftitis 20
. syndrome 10 pneumonia 769 d hv 24 retained placenta 3 | perforation 257
icterus 39 rhinitis 11 o eprat Y > uterine peritonitis 866
ileitis 60 o splenitis 77 . -
. . rhinitis tonsillitis 38 perforation 4 | pleuritis 643
%n'Vagllr.latlon 59 atrophicans 196 uterine torsion 3 | pododermatitis 19
Jejunitis 301 Ginusitis g | musculo-skeletal | y,qipijs 8 | polyserositis 297
lip ld_OSlS, 93 | tracheitis 28 | arthritis 231 rumen drinker 33
ObStlpatIOIl 13 arthrosis 31 neural sepsis 647
omasitis 18 urinary bone congenital 11) ic torsion 18
pancreatitis 7 | congenital degeneration 17 abnormality 5 fl?niiliccu(: S10
parasites 13 abnormality 1 | . ¢ 14 | encephalitis 116 related 17

Table 1: The diagnoses used for classification, grouped by syndrome, with number of occurrences.

defined as consecutive runs of alphanumeric char-
acters or hyphens. We then performed a series of
normalization steps in order to reduce the number
of term variants when compiling an index.

The bulk of the spelling variation stems from
Latin/Greek-originated terms, such as Zdkum ‘ce-
cum’. Besides the German spelling (using the let-
ters d, 0, z/k), the Latin spelling is often used (ae,
oe, c, respectively), and even combinations of the
two are encountered. For the previous example,
the following variants are present, among others:
Caecum, caecum, Cdcum, Cikum, Zaecum. We
normalized the usage of these letters by replacing d
with ae and ¢ with oe unconditionally, while treat-
ing ¢ differently based on its right context: be-
fore a front vowel it was replaced by z, before A
and k it was kept as ¢, and in all other cases (in-
cluding word-final position) we replaced it with

k. The complexity of this rule is owed to the fact
that this normalization is applied to all words, i. e.
including originally German words like Kinn/Zinn
‘chin’/‘tin’, which would be confused by an uncon-
ditional conflation of ¢, k, z. As a side effect, the
normalization of German terms occasionally cap-
tured closely spelled English terms (which were
not systematically gathered), such as Enzephali-
tis/encephalitis.

Subsequently, we removed inflectional suffixes
using the NLTK! implementation of the “Snow-
ball” stemmer for German (Porter, 1980). Stem-
ming is the process of removing inflectional and
(partially) derivational affixes, thus truncating
words to their stems. For example, minimally and
minimize are both reduced to minim in Porter’s En-
glish stemmer, which is not a proper word, but nev-

'Natural Language Toolkit: www.nltk.org
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variants
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Zakumtorsion, Caecumtorsion
Kokzidiose, Coccidiose

Aborts, Abort, Abortes, Aborte, Aborten
perforierter Ulcus, perforierten Ulkus

Kardiomyopathie, Cardiomyopathie, Kardiomyopathien

normalized form explanation
zaekumtorsion o
- } a/o/c/k/z normalization

kokzidios
abort stemming

erforiert ulkus
perto .~} both
kardiomyopathi

Table 2: Normalization examples.

ertheless a useful key for lumping together etymo-
logically related words.

Stemming is based on orthographical regulari-
ties and uses only a minimal amount of lexical in-
formation. Although the method is not flawless —
it may be prone to errors with very short and ir-
regularly inflected words — it generally works well
for languages with alphabetic script and has been
successfully applied to many European languages.
Using a stemmer, we were able to considerably re-
duce the number of inflectional/derivational vari-
ants. However, a number of inflectional forms
were still missed by the stemmer — especially plural
forms with Latin inflection, such as Ulkus/Ulzera,
or Enteritis/Enteritiden, which are not covered by
the stemming rules for general German grammar.
The stemmer also failed to capture most of the
spelling errors. Table 2 illustrates the conflation
with examples.

2.3 Focus Terms

For the syndromic classification of the veterinary
reports, we manually created a list of focus terms
which served as indicators for the clinical syn-
dromes and diagnoses. Starting from a frequency-
ranked list of the words found in all of the reports
(already grouped by their normalized form), we
manually selected terms that were likely to indicate
(positive) diagnoses in the reports. The list was re-
fined by inspecting the reports that produced hits
for the focus terms.

The focus terms typically consist of a single to-
ken, but we also allowed multi-word expressions.
The terms are grouped by diagnosis. Thus, each
diagnosis refers to a set of terms which either con-
stitute a common name of the diagnosis or describe
some of its aspects. For example, concerning in-
juries caused by foreign bodies, we consider Draht
‘wire’ and Nagel ‘nail’ as focus terms, even though
these words only refer to the cause, but not to the
injuries themselves.

As each focus term is represented by its normal-

ized form, a number of variant forms is already
matched, as described above. We aimed to addi-
tionally cover variants produced by misspellings
as well as inflected forms not recognized by the
stemmer. Using approximate string matching, we
searched the reports for similar terms for each of
the focus terms. We used the simstring tool
(Okazaki and Tsujii, 2010) for retrieving similarly
spelled terms among the entire text collection. Ap-
proximate matching is a difficult task, as it is hard
in general to formally define similarity among (the
orthographical representations of) words in a way
consistent with human judgement. simstring
measures similarity as a function of the number
of shared n-grams (runs of n characters) in two
words, which is only a rough approximation of
the task. However, compared to other similarity
measures — e. g. Levenshtein’s edit distance® — it
is considerably more efficient for retrieval in large
amounts of text. In the inevitable trade-off of good
precision and high recall, we strove for recall by
choosing a low similarity threshold for retrieval.
As expected, this resulted in a high number of hits,
including many false positives, i.e. words with a
high n-gram similarity score, that are not actually
similar to the input term (e. g. arthritis and arteri-
tis). Due to the limited number of focus terms it
was feasible to manually clean the list of similar
words.

Figure 1 illustrates how term variants were gath-
ered around the concept of a diagnosis. A num-
ber of synonymous and hyponymous terms were
added to a specific diagnosis by a human ex-
pert. These terms were used as seeds to automat-
ically find more variants, such as inflectional and
spelling variants as well as misspellings. Please
note that the labeled edges are only added for il-
lustration purposes — the relations between term

ZFor a study of agreement between human judgement and
different similarity measures, see e. g. Efremova et al. (2014);
for a general overview of similarity measures cf. Navarro
(2001) and Christen (2006).
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diagnosis
voIvuluy
——

Volvolus
4 Vovulus

canonical term

Darmtorsionen

inflection_ Darmtorsion

‘/hypo@m

Dinndarmtorsion

/syn/on\yms\

Dunndarmdrehungen

Dunndarmvolvulus

misspellings
AW % Voluvlus
Volvulus

synonym

\hypon&‘

Caecumtorsion —-

)spg%llng

variants

Zakumtorsion <« /
Zakumstorsion

Caecum-Torsion

Figure 1: Term variants for the diagnosis volvulus.

forms (such as synonym, misspelling) were not
captured during this phase, as they were not needed
for syndrome/diagnosis classification. However,
we examined ways to partly recover this underly-
ing structure in an automated way, as is described
in the following sections.

2.4 Further Term Conflation

The UMLS Metathesaurus® is a large collection
of various medical terminology resources. One of
its key features is the assignment of unique con-
cept identifiers to entries from different vocabular-
ies in many languages, thus establishing equiva-
lence relations across them. By creating links to
Metathesaurus concepts, we can enrich our own
terminology resource with information contained
in the Metathesaurus, as well as making it more
valuable when sharing it with others.

We used the 2014AA release of the Metathe-
saurus for this work. For each concept that was
represented in a German vocabulary, we normal-
ized its lemma and tried to match it against an en-
try among our focus terms. With this approach, we
were able to establish a link to one or more UMLS
concepts for 80.6 % of the diagnoses.

Since our data were organized by diagnosis,
each covering a number of terms with sometimes
quite disparate meanings, the connection to the
Metathesaurus produced a high number of one-to-
many mappings (cf. Figure 2). This difference in

*www.nlm.nih.gov/pubs/factsheets/

umlsmeta.html

Figure 2: Ontology matching before (a) and after (b)
term conflation. In both graphics, the left-hand side
represents a diagnosis as a set of terms, some of which
are linked to a UMLS concept (connected bullets) on
the right-hand side.

granularity hinders the exploitation of the linked
information, as the meaning of many diagnoses ap-
pears highly ambiguous in terms of the Metathe-
saurus. In order to better match the semantic range
of the UMLS concepts, we passed on to perform
the mapping at the level of terms rather than di-
agnoses. This required us to add a hierarchical
layer to our data structure: We needed to distin-
guish term variants (spelling and inflectional al-
ternations, such as Caecumtorsion vs. Zdkumstor-
sion) from separate terms (e. g. Zikumstorsion vs.
Darmtorsion). Please note that synonyms such
as Darmtorsion and Darmdrehung are considered
separate terms, even though they have the same
meaning.

For each diagnosis, we organized all term forms
into groups of term variants. The arrangement was
performed automatically, based on string similar-
ity. While string similarity is only an unreliable
approximation of human similarity judgement, and
while there are a number of concurring ways of
computing it, it is also difficult to determine a
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Figure 3: Two different similarity measures for pairs of
similar and dissimilar words.

threshold that clearly separates similar from dis-
similar pairs of words. We therefore chose to per-
form supervised machine learning, i.e. automatic
learning by example. We compiled a training set
of positive instances of inflectional/spelling alter-
nation as well as negative instances, i.e. pairs of
unrelated words. For each pair, we computed two
different string similarity measures (cf. Figure 3):
cosine similarity of character trigram vectors, and
Levenshtein ratio. These two measures cover dif-
ferent aspects of similarity, and thus their combi-
nation might capture more information than just
one of them. We trained a Support Vector Ma-
chine on the two-dimensional space of the similar-
ity measures, using a polynomial kernel function.

The automatic term grouping yielded very satis-
factory results. We manually evaluated the result-
ing groups, requiring that all members be ortho-
graphical or inflectional variations of each other.
We also allowed derivational variants (e. g. Weiss-
muskelkrankheit/...erkrankung ‘white muscle dis-
ease’) to be in the same group, although the
separation of derivatives (e.g. Ulkus/Ulzeration)
was not counted as false negative. We found
that less than 6.7 % of the groups contained un-
equal terms (false positives), and only 1.9 % of
the groups were erroneously isolated instead of
being merged with the correct equivalents (false
negatives). Many false positive judgements were
caused by terms with only small differences in
meaning, such as Muskeldegeneration ‘muscle de-
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generation’ and Muskelfaserdegeneration ‘muscle
fiber degeneration’, which might even be regarded
equal in a less strict evaluation. As for the false
negatives, the number of misses could be reduced
by extending the stemmer with Latin-inflection
endings like Ulkus — Ulzera.

2.5 Connecting to UMLS

Each group of term variants was then linked to a
UMLS concept if there was a match between at
least one member of the group (i.e. a term vari-
ant) and of the German concept descriptions, re-
spectively. Only exact agreement of the normal-
ized forms was counted as a match, as preliminary
experiments had shown that fuzzy matching intro-
duced a great amount of false positives (connec-
tions between similarly spelled, but otherwise un-
related words) while adding only very few desired
links. However, we were able to improve the link-
age with simple heuristics, such as the removal of
boilerplate expressions like nicht ndher bezeichnet
‘not otherwise specified’.

In 42.1 % of the terms, we could find a match
with a UMLS concept. Only 6.7 % of the match-
ing terms point to more than one concept, which
means that 93.3 % of the terms with a match can
be mapped to the Metathesaurus unambiguously.
However, for more than half of the terms no cor-
responding UMLS concept could be found at all,
which is mainly due to the different domains of
our veterinary texts and the predominantly human-
medicine-based UMLS. Table 3 shows some ex-
amples of the mapping.

The connections to the Metathesaurus allowed
us to further enrich our data. For example, ev-
ery UMLS concept has a semantic type assigned
to it, such as “Disease or Syndrome” or ‘“Patho-
logic Function”. Additionally, we used the concept
descriptions in Metathesaurus to find more focus
terms. By matching the descriptions of connected
concepts against our text collection, we were able
to enlarge the set of focus terms by almost 10 %.

As next steps, we plan to create links to other
widely-used terminology resources, such as the
Central key for health data recording by the
International Committee for Animal Recording
(ICAR).*

4See www.icar.org
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diagnosis/terms UMLS
stenosis
Darmstenose C0267465 Darmstenose/Darmstriktur/Stenose des...
Diinndarmstenose C0151924 Diinndarmstenose/Stenose des Diinndarms
Rectumstenose, Rektumstenose -
myodegeneration
Belastungsmyopathie

Muskelfaserdegeneration, Muskelfaserndegeneration

Muskelfasernekrose

Muskelldsionen

Muskelnekrose, Muskelnekrosen

Myodegeneration, myodegeneration

Myonekrose, myonecrosis

Rhabdomyolyse

Weiss-Muskel-Krankheit, Weiss-Muskelkrankheit,
Weissmuskelerkrankung, Weissmuskelkrankeit,
Weissmuskelkrankheit

C0234958 Muskeldegeneration/Degeneration des ...

C0235957 Muskelnekrose/Myonekrose

C0235957 Muskelnekrose/Myonekrose

C0035410 Rhabdomyolyse

C0043153 Muskeldystrophie, nutritive/
Weimuskelkrankheit

Table 3: Mapping to the UMLS Metathesaurus.

3 Annotation Tool

The terminology resource described above is a
key component in our efforts to create a veteri-
nary surveillance system. We wrote a pipeline of
Python scripts that assists our semi-automatic an-
notation of the pathology reports. The tool per-
forms automatic annotation of syndromes and di-
agnoses based on the term resource, while also
keeping track of manual verfications and rejec-
tions. Through a web interface, it accepts a Mi-
crosoft Excel workbook as input and produces a
modified version in the same format, which allows
a veterinary domain expert to inspect and modify
the automatic annotations. All relevant informa-
tion — such as the term resource and the assigned
categories, negations (see below), and the previous
manual annotations — are contained within this file.

3.1 Negation Detection

In a keyword-based system for detecting evidence,
negative expressions can play a crucial role. Oc-
casionally, negative outcomes of an analysis are
reported in the texts, and suspected diagnoses are
rejected quite frequently, such as keine Hinweise
auf eine Pneumonie ‘no evidence of a pneumonia’.
Therefore, we aimed at identifying occurrences of
focus terms that are mentioned in a negated con-
text.

Besides the identification of negated expres-
sions, negation detection heavily depends on the
correct determination of their scope. Tanushi et
al. (2013) compare different approaches to nega-

tion scope detection in Swedish clinical reports.
According to them, “[e]Jmploying a simple, rule-
based approach with a small amount of negation
triggers and a fixed context window for determin-
ing scope is very efficient and useful, if results
around 80 % F-score are sufficient for a given pur-
pose” (Tanushi et al., 2013, p. 393). We included a
simple negation-detection module in our pipeline,
which looks for a set of negative expressions in a
context window of 5 tokens to either side of the
focus term. The context can be restricted for each
expression (e. g. only to the right of or only imme-
diately preceding a focus term). The context win-
dow is shortened at sentence boundaries and other
indicators of a break. However, as the results of the
negation detection are not yet satisfactory, we plan
to integrate an existing library for this task, e. g. the
Python package pyConTextNLP (Chapman et al.,
2011).

3.2 Inter-Annotator Agreement

In order to validate the quality of our annotations,
we organized a multi-annotator evaluation. We
performed an experiment with six experts of vet-
erinary pathology, which were asked to classify a
number of reports with respect to the syndromic
categories described in Section 2.1. For this pur-
pose, we created a web interface which displayed
the report text together with some metadata, one
report at a time, and allowed to mark each of
the syndromes as present or absent. The reports
were randomly sampled, keeping the distribution
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syndrome reports D, D, «

gastro-int. 52 (13) 0.059 0.251 0.764
respiratory 28 (10) 0.045 0.207 0.781
urinary 9 (3 0.014 0.083 0.836
cardio-vasc. 15 9 0.041 0.115 0.644
lymphatic 3 (3 0014 0.018 0.240
musc.-skel. 13 (3) 0.014 0125 0.891
reproductive 9 (I) 0.005 0.094 0952
neural 5 () 0.009 0.052 0.825
other 38 (21) 0.095 0226 0.577
avg. 0.723

Table 4: Inter-annotator agreement of the syndromic
categories, measured with Krippendorff’s Alpha. The
second column gives the number of reports where
at least one annotator marked the corresponding syn-
drome as present; following in parentheses is the num-
ber of reports with disagreement. D, and D, are the
observed and expected disagreement, respectively.

of species and year of creation as close to the entire
collection as possible (approaching stratified sam-
pling). Each annotator was provided with a sample
of 20 reports, which was extended to twice or three
times the size when an annotator asked for more.
In order to increase sample size, the same report
was given to only two or three annotators, rather
than all of them. In total, 81 distinct reports were
annotated.

We evaluated the inter-annotator agreement
with Krippendorff’s Alpha (Krippendorff, 2013,
pp- 267-309), as is shown in Table 4. For com-
puting the agreement, we regarded each syndrome
as an independent, binary variable (each syndrome
is either present or absent in a report). The agree-
ment value o ranges from 1 (perfect agreement)
to 0 (agreement as by chance) or even below (sys-
tematic disagreement). A high agreement means
that identifying syndromes is a clear task, while
a low agreement indicates that the decisions can-
not be easily made. Most of the syndromes have a
good (>0.8) or acceptable (>0.6) o score,” whereas
some are clearly identified as problematic. For the
lymphatic system, the sparse representation (only
3 reports) does not allow for valid conclusions;
further investigation is required in this case. The
“catch-all” class other, however, most likely suf-
fers from having an unclear scope. As a conse-
quence of this evaluation, we decided to reduce the
ambiguity of other by including additional classes

3For a discussion of the interpretation of absolute agree-
ment scores see Artstein and Poesio (2008, p. 591)
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in the next revision of the syndromic categoriza-
tion.

4 Outlook

We will assess the performance of the text-mining
tool based on a small number of diseases which
have been relevant in Switzerland in the last 10
years:

1. Bovine Viral Diarrhoea in cattle (an eradica-

tion campaign for the disease was introduced
in 2008)

. Porcine Circovirus type 2 infection in pigs

. Gastro-intestinal syndromes in pigs (for which
we observe an increasing amount of pathology
submissions)

Time-series analyses will be performed to quantify
trends, seasonality and other effects (day of week,
day of month etc.) on the number of submissions
for syndromes potentially related to these diseases.
For each disease, “in-control” data (data collected
in the absence of an outbreak) will be used to estab-
lish a baseline model describing the amount of nor-
mal “noise” in the data (expected number of sub-
missions in the absence of disease outbreaks). Ret-
rospective analyses of the time-series will be done
to see whether alerts (signals) were produced when
the number of submissions for syndromes poten-
tially linked to the disease was higher than ex-
pected from our baseline model (event detection).
This will allow us to evaluate whether the system
would have worked as an early-warning system.

The tools developed in this project will be
adapted to reports from different pathology in-
stitutes throughout Switzerland, thus contributing
to a nation-wide syndromic surveillance system.
Similarly, the methodology developed may be ap-
plicable to the analysis of text-based disease infor-
mation which is recorded in other contexts. For ex-
ample, there is a great potential of using such a sys-
tem to systematically analyse health data which are
recorded by veterinary practitioners in their prac-
tice management software, slaughter data or by an-
imal health services in their central database.
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