
Modeling Software Process Configurations for Enterprise

Adaptability

Zia Babar

Faculty of Information, University of Toronto

zia.babar@mail.utoronto.ca

Abstract. Modern enterprises are expected to continuously evolve and adapt to

uncertain environmental conditions and evolving customer trends. Adaptability

in software processes enable enterprises to respond to changing situations by se-

lecting software process configurations that help best meet enterprise-level

business goals. Conventional methods of modeling and designing software pro-

cesses are limited in their ability to visualize these software process configura-

tions, reason about them and select an appropriate configuration which meet

functional and non-functional requirements while considering enterprise-level

perspectives. As part of our PhD project, we propose a requirements-based

software process adaptability framework that considers software process adapt-

ability, first at a process-centric and then at an agent-centric level. Key con-

structs for this framework are discussed and illustrated by using the DevOps

approach as an example.

Keywords: Enterprise Modeling, Software Processes, Software Process Varia-

bility, Agent and Goal Modeling, Adaptive Enterprises.

1 Introduction

1.1 Background

Modern enterprises are expected to continuously evolve and adapt to uncertain en-

vironmental conditions and increased competition from new market players, including

those from non-traditional sectors [1]. Customers are increasingly expecting personal-

ized services while emerging technologies are causing the digital transformation of

enterprises. To this end, more and more enterprises are relying on software to aid in

the delivery of customer-centric products and services in progressively more turbulent

and dynamic environments [2]. As a result, software processes (SPs) are becoming an

integral part of enterprises’ strategic and operational processes. Recent years have

seen the emergence of various software development approaches and practices. The

current rapid adoption of DevOps [3] creates an opportunity to re-examine the ability

of enterprises to quickly deploy new software product features, through to the end-

user, by having frequent product release cycles. DevOps enables the achievement of

enterprise business objectives through (a) the automation of process tasks in the soft-

Jolita
Typewritten Text
S. España J. Ralyté, P. Soffer, J. Zdravkovic and Ó. Pastor (Eds.):
PoEM 2015 Short and Doctoral Consortium Papers, pp. 125-132, 2015.

Jolita
Typewritten Text

ware development lifecycle, (b) solicitation of customer feedback and usage of soft-

ware metrics to continuously refine and improve the software development process,

and (c) reducing department silos by promoting a culture of collaboration and sharing

of information across teams [2][4]. The above are attained through diverse considera-

tions, ranging from systems design and software tool support, business and process

configuration, to social and organizational behavior matters.

1.2 Problem Statement

Each enterprise has unique characteristics and business goals; software development

processes can vary significantly between enterprises as these processes are configured

considering the unique variations and nature of software products and projects, and

the behavioral peculiarities of each organization [5]. An appropriate configuration of

SP needs to be selected based on defined enterprise-level functional requirements

(FRs) and non-functional requirements (NFRs). The SP needs to be adaptable so as to

be able to handle evolving enterprise situational needs, particularly those that result

from emerging digital technologies (such as social media, mobile technologies, big

data analytics, and cloud computing) within an enterprise setting. NFRs for SPs in-

clude adaptability of the development process, speed of adaptation, shortening the

deployment cycle etc.

Adaptability requires the consideration of social- and enterprise-level perspectives,

while addressing practices such as continuous software engineering, using concepts of

multi-level adaptive systems, and linking software process design considerations with

organizational stakeholder interests and enterprise-level business goals. While there is

significant literature which studies the variations and commonalities between SP fam-

ilies, these studies do not sufficiently cover the high-level abstractions for represent-

ing adaptation constructs of SPs and mostly deliberate at a software process adoption

and implementation level. Furthermore, conventional methods of modeling SP recon-

figurations are limited in their ability to consider the multiple enterprise-level view-

points for each alternative SP configuration and have also not been applied to the

range of considerations that are present in DevOps.

1.3 Research Objectives

The objective of this research can be succinctly described as “to define and develop a

requirements-based SP adaptability framework which enables enterprises to ensure

ongoing and sustained delivery of products and services under varying circumstances

while adhering to enterprise-level FRs and NFRs.” An enterprise has fundamental SP

adaptation tendencies, particularly those pertaining to emerging digital technologies;

the nature and nuances of these need to be understood, determined and categorized, as

well as the link established between SP reconfigurations and enterprise business

goals. Based on this understanding, SP adaptability realization techniques need to be

developed and abstracted for representing SP adaptability with respect to relevant

constructs, concepts, relationships, information flows, dimensions etc.

126 Z. Babar

The determined abstraction will be visually depicted through modeling notations.

Additionally, these aspects need to be represented as a meta-model formalization.

Existing modeling languages from the areas of system dynamics, systems and com-

ponent modeling, business and software process modeling, agent and goal modeling

etc. will be considered and extended as required. SP adaptability requirements need to

be established and verified for requirements satisfaction. The SP adaptability frame-

work aims to provide a way of characterizing the as-is and to-be states as alternate SP

configurations. An existing as-is state may be deemed to not be satisfying adaptability

requirements and thus necessitate the selection of an alternate to-be state. This re-

search will develop software tool support for different parts of the framework such as

the visualization and drawing of adaptability requirements, analysis of adaptability

models and simulation of model evaluation.

2 Related Work

Tactics exist for the tailoring [6] and improvement [7] of standard SPs to meet the

specific needs of an enterprise; this is accomplished through some form of adaptation

of certain activities or SP parameters based on an assessment of environmental fac-

tors, product and project goals, and other organizational aspects. The Capability Ma-

turity Model Integration (CMMI) models provide guidance for process development

and maturity for different organizational areas, including software processes [8].

Software Product Lines (SPL) can reduce development cost for product families

through the determination and reliance on variation points [9]; delaying the placement

of these variation points along the software development cycle can provide certain

technical and business benefits (e.g., increased code reuse) across multiple products at

the expense of other goals (e.g. simpler architecture). A family of software processes

can have task commonalities and variabilities; these could be integrated to produce

Software Process Lines (SPrL) [10] which would help reduce the effort of managing

many individual SPs that exist in any enterprise.

Situational Method Engineering (SME) can be used to create development methods

for specific purposes by selecting and combining method fragments previously stored

in method repositories [11]. Social actor modeling frameworks (such as i* [12]) focus

on the social dimension of any domain by allowing the incorporation of actor inten-

tionality, motives and goals during domain analysis. This allows for the evaluation of

alternatives based on the satisfaction of actor goals which can assist in the selection of

software process configurations based on enterprise NFRs. At an enterprise level,

Business Product Architectures (BPAs) have been previously discussed in [13], in-

cluding the nature of relationships and the dependency types that exist between busi-

ness processes, and the “binding” of variation points on alternative selection.

The above is not an exhaustive listing of related work but serves to demonstrate the

range of study that can be considered related to the general “software process adapta-

bility” area. This research aims to deal with software process adaptability at an enter-

prise level by considering system-, process-, and social-level factors while advancing

current methods for software process modeling and design.

Modeling Software Process Configurations for Enterprise Adaptability 127

3 Initial Results and Expected Outcomes

Key constructs from the general area of SPs need to be abstracted to express the

adaptability nature of SPs. The constructs for SP adaptability will be depicted through

a modeling notation with multiple enterprise modeling and architecture perspectives

being leveraged for considering these constructs. DevOps is used as an illustration for

SP adaptability as the multiple enterprise-level perspectives (such as systems, process,

social, and organizational) in the DevOps approach provide an interesting challenge

for enterprise modeling. Further, the DevOps approach permits the study of SP adapt-

ability at a process-centric and at an agent-centric level. Supplementing process-

centric models with agent-centric models allows for the inclusion of stakeholder in-

terests during reasoning and analysis resulting in more suitable adaptability designs.

3.1 Process-Centric Framework

The process-centric framework builds on the work previously introduced in [14]

where the dimensions of Business Process Architecture (BPA) were discussed. Pro-

cess elements (PEs) can be thought of as being a unit of any SP with a PE producing a

measurable output based on a set of control and data inputs. Placing of PEs can be

done along multiple BPA dimensions; the dimensions being temporal, recurrence,

plan-execute and design-use. SP configurations (e.g., different variations of DevOps)

can be represented through the placement of PEs along an SP. Similar placements

across two configurations are referred to as commonalities while differences between

configurations are considered as variabilities with “choice-points” indicating alterna-

tive options of PE placements. The placement of a PE along any one of these dimen-

sions, including their movement along these dimensions, is done after considering

suitable enterprise-level NFR trade-offs. Boundary conditions exist in any DevOps

configuration, with PEs being placed within a boundary based on their relative char-

acteristics. These concepts also allow us to handle different software engineering

concepts, such as technical debt [15]. Movement of PEs within a boundary may not

result in increased technical debt however moving a PE beyond the boundary may

either increase or decrease technical debt significantly. Thus, alternative DevOps

reconfigurations are obtained by considering technical debt (or other appropriate)

trade-offs of PE placements across boundaries.

As with any modeling technique, adaptability constructs are connected to each oth-

er through relationships for representing sequencing, dependencies, information

transfer, compositionality, triggers etc. Existing notions of relationships and interac-

tions from multiple enterprise modeling techniques will be considered with the objec-

tive of extending them by considering the influence of emerging digital technologies

and enterprise adaptability demands. For example, DevOps could undergo ongoing

adaptation and refinement through the monitoring of software metrics collected

through big data analytics which are propagated through feedback and feedforward

loops. Adaptation from one DevOps configuration to another can be initiated through

triggers. Triggers can be “fired” through data-driven sensing mechanisms and re-

directed through to PEs as inputs. These triggers would then allow the PE to interpret

128 Z. Babar

this new sensory input and act with respect to the selection of suitable alternatives that

satisfy the enterprise NFRs based on the changed situation. Fig. 1 shows a BPA

DevOps implementation model with some of the aforementioned constructs.

Implement

Product

Feature

Commit Code

Change

Meet Daily for

Status

Exchange

Review

Iteration

Deliverables

Sprint Cycle

Plan Iteration
Sprint

Backlog

Perform QA

Testing

Execute Builds
Execute

Testing Scripts

Generate

Report

Continuous Integration

Continuous Deployment

Deploy to

Staging

Perform

System

Testing

Package

Product

Release

Elicit

Requirements

Develop

Product

Backlog

Product Management

Product Backlog Grooming

Estimate

Delivery Effort

Prioritize

Product

Backlog Items

Release Planning

Identify

Above-the-Line

Items

Create

Release

Backlog

Deploy to

Production

Testing Plan

Create Testing

Plan

Create Testing

Scripts

Test

Plan

X

User

Input

Business

Need

1:N

Product Backlog

1:N

Release Backlog

Checkin

Trigger

1:N

Product Build

Stakeholder

FeedbackProduct

Information

Build

Results

Operational Support

Monitor

Production

Environment

Measure Key

Metrics

Release

Package

Detect and Fix

Production

Issues
Plan

Stage
Process

Element
Data

Input

1:N

Input
Design

Recurrence Plan-Execute Design-Use

Testing Results

2

1

3

Environment Setup

Setup

Production

Environment

4

Tools

U

Create

Release

Backlog

Create

Release

Backlog

Groom

Release

Backlog

Effort

Refinement

Install

Third-Party

Tools

Operations

Feedback

Environment

Parameters

Legend

X U

Fig. 1. Business Process Architecture (BPA) for a DevOps approach (Source: [16])

Execution of some PEs result in the production of artifacts. Artifacts can adopt dif-

ferent forms; they may be physical objects, a digitized entity or even be informational

in nature. A PE along the plan-execute dimension can produce a planning artifact or

an executable artifact. Similarly, a PE along the design-use dimension can produce a

design artifact or an artifact that is used for some purpose. Examples of artifacts in the

DevOps approach include testing plans, testing scripts, testing tools, environment

setup configurations, product planning backlogs, software product features etc. Some

Modeling Software Process Configurations for Enterprise Adaptability 129

of these artifacts (such as testing plans or testing tools) are internal to the SP process

and are intended to be used for the production of the final delivered artifact (such as

product features or product releases). In other cases, the progression along the SP may

result in artifacts to manifest into another form. For example, a testing case design

artifact can manifest itself as a testing case implementation (testing script) artifact. Fig

2. shows a goal-oriented approach for evaluation between two different process re-

configurations through the use of enterprise NFRs (represented by softgoals) [17].

Collaborative
Perform QA

Testing

@S: Sprint Cycles

Methodicalness

Perform QA

Testing

@P: Before

Checkin

Perform QA

Testing

@P: After Checkin

OR OR

[T] ++

Implement

Product

Feature

Commit Code

Changes

Sprint Cycle

Perform QA

Testing1

A1

A2

After CheckinBefore Checkin

Implement

Product

Feature

Perform QA

Testing

Sprint Cycle

Commit Code

Changes

After CheckinBefore Checkin

B

Fig. 2. QA testing alternatives (A1) As a separate phase from product feature implementation,

(A2) As part of the product feature implementation phase. (B) Analyzing the temporal place-

ment of QA testing process element based on NFRs. (Source: [16])

3.2 Agent-Centric Framework

The agent-centric framework extends the process-centric framework by allowing the

inclusion of social and agent relationships. SPs exist in a complex and collaborative

environment which is influenced by a multitude of human and non-human (system)

actors. These actors are intentional in nature and can be considered to be executors

and influencers of the PEs. Considering actors as having intentionality permits the use

of agent-oriented modeling notions (such as [12]), and allows the assignment of goals

and soft-goals to these actors. Actor-assigned goals provide motivation for choosing

one particular DevOps configuration over another; with the alternative configuration

selection being done through the use of goal satisfaction evaluation methods. For

example, a particular set of PE placements (and, by extension, a DevOps configura-

tion) would be preferred in a situation where rapid deployment is an actor objective as

opposed to a situation where a more structured release based deployment is required.

The agent-centric framework will have similar constructs to that of the process-

centric framework. For example, agents too have boundaries of influence however

these may or may not align with process-centric boundaries. Agent could have their

tasks or goals move within or beyond their boundaries of influence; methods needs to

be devised that allow the determination of these boundaries and the common attrib-

utes of elements that reside within an actor boundary. Similar to the boundary con-

struct, the relationships and artifacts constructs exist in the agent-centric framework

as well, albeit with some conceptual differences from those in the process-centric

framework. At present we are studying how both these modeling frameworks can be

aligned with each other.

130 Z. Babar

4 Methodology

Design science research has been gaining wide acceptance in Information Systems.

The guidelines-based approach introduced in [18] will be used in this PhD project for

the development and validation of design artifacts.

 Design as an artifact: A modeling language (with the model being a set of con-

structs) is being developed for representing SP adaptability along with methods

that allow for alternative selection based on enterprise goals. These design artifacts

will be developed through a study of published case studies sourced from various

academic papers. Software tools will provide the design instantiation.

 Problem relevance: Enterprises (large and small) are forced to continuously adapt

and reconfigure their software processes in order to deliver products and services

through short-cycle software releases so as to keep pace with evolving customer

expectations. A conceptual framework is required that supports such enterprise re-

quirements while considering system-, process, and social-level factors.

 Design evaluation: Analytical evaluation techniques will be used for ongoing

refinement of the artifact(s) during its development process. Industry partners will

be approached to understand their situational needs and constraints and the pro-

posed design artifact will be tested and refined against these real-world situations.

 Research contributions: Current techniques for software modeling and design

would be advanced by addressing practices such as continuous software engineer-

ing and linking software process design and adaptation considerations with organi-

zational stakeholder interests and enterprise-level business goals.

 Research rigor: The need and acceptance of variability at a software product,

software process and enterprise level is well understood and accepted. The pro-

posed design artifacts extend these foundational areas and will be validated

through theoretical and empirical evaluation methods.

 Design as a search process: The design search process will start from process-

based considerations and be gradually expanded to include enterprise-level con-

cerns. The effects of and on SP configurations by social agents and software prod-

uct design would be considered as the design artifacts are developed.

 Research communication: The research is primarily targeted towards an enter-

prise modeling and information systems engineering audience and venues of com-

munication will be chosen accordingly. The results will be published in scholarly

literature on an on-going basis at the completion of each research stage.

5 Conclusions and Thesis Progress

In this paper we introduced the problem of software process adaptability and pro-

posed a requirements-based approach for evaluating and analyzing this area. The

constructs for SP adaptability are presently being understood to define their behavior

and characteristics. We aim to form an initial description and definition of these con-

structs in the third year of our PhD studies, along with their representation as a meta-

Modeling Software Process Configurations for Enterprise Adaptability 131

model and modeling notation. In our fourth year of studies, we aim to seek out indus-

try partners for ongoing refinement and validation of the proposed solution.

Acknowledgements

I would like to recognize my PhD supervisor, Prof. Eric Yu, for his ongoing support

as I progress through the doctoral program and establish a research career for myself.

6 References

1. Wilkinson, M.: Designing an “adaptive” enterprise architecture. BT Technology Journal,

24(4), pp. 81–92. (2006)

2. Erich, F., Amrit, C., Daneva, M.: A mapping study on cooperation between information

system development and operations. In Product-Focused Software Process Improvement,

pp. 277–280. Springer (2014)

3. Bang, S. K., Chung, S., Choh, Y., Dupuis, M.: A grounded theory analysis of modern web

applications: knowledge, skills, and abilities for DevOps. In Proceedings of the 2nd annual

conference on Research in information technology, pp. 61–62. ACM (2013)

4. Lwakatare, L. E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In Agile Processes, in

Software Engineering, and Extreme Programming, pp. 212–217. Springer (2015)

5. Bosch, J. (Ed.): Continuous Software Engineering. Springer (2014)

6. Pedreira, O., Piattini, M., Luaces, M. R., Brisaboa, N. R.: A systematic review of software

process tailoring. ACM SIGSOFT Software Engineering Notes, 32(3), pp. 1–6. (2007)

7. Zahran, S.: Software process improvement: practical guidelines for business success. Ad-

dison-Wesley Longman Ltd. (1998)

8. Chrissis, M. B., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and

Product Improvement. Addison-Wesley Longman Publishing Co., Inc. (2003)

9. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product

lines. In Software Architecture, 2001. Proceedings. Working IEEE/IFIP Conference on,

pp. 45–54, IEEE (2001)

10. Rombach, D.: Integrated software process and product lines. In Unifying the Software

Process Spectrum, pp. 83–90, Springer Berlin-Heidelberg (2006)

11. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art Re-

view. Journal for Universal Computer Science, 16(3), pp. 424–478. (2010)

12. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements Engi-

neering. MIT Press (2011)

13. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.,: Fundamentals of Business Process

Management, Ch.2. Springer-Verlag, Berlin-Heidelberg (2013)

14. Lapouchnian, A., Yu, E., Sturm, A.: Re-designing process architectures towards a frame-

work of design dimensions. In Research Challenges in Information Science (RCIS), 2015

IEEE 9th International Conference on, pp. 205–210. IEEE. Chicago (2015)

15. Kruchten, P., Nord, R. L., Ozkaya, I.: Technical debt: from metaphor to theory and prac-

tice. IEEE Software, 29(6), pp. 18–21. (2012)

16. Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps Deployment Choices using Process

Architecture Design Dimensions. In PoEM. Springer. (2015). Accepted.

17. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and configuration

management of business processes. In BPM, pp. 246–261. Springer (2007)

18. Hevner, A.R., March, S.T., Park, J., and Ram, S.: Design Science in Information Systems

Research, MIS Quarterly, 28(1), pp. 75–105. (2004)

132 Z. Babar

