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Abstract. The widespread application of precision agriculture has triggered the 
expansion of tools for data collection and geo referencing of productivity, soil 
and crop properties. The correct data fusion of soil and crop parameters is a 
complex problem due to the abundance of inter-correlated parameters which 
necessitates the use of computational intelligence techniques. This paper 
proposes the combination of common statistical approaches with Self 
Organizing Clustering for delineating management zones (MZ). By this, the 
management of the field related to the application of inputs is becoming more 
accurate since the relations of the soil and crop parameters are indicated in a 
more precise way.  

Keywords: Self-Organizing Maps, k-means, satellite remote sensing, proximal 
soil sensing, clustering  

1   Introduction 

Precision agriculture is oriented to field management taking into account its spatio-
temporal variability. Its extensive use has enabled the development of tools which are 
capable of collecting data about soil and crop status, productivity and geolocation of 
these properties. The quantity of generated data demands the use of information 
technology in order to derive decisions concerning the management of production 
based on crop variability. The most widely used approach to manage the variability 
of fields concerns the use of MZ. Each zone is treated with the suitable level of 
inputs (soil tillage, seed rate, fertilizer rate, crop protection). The term of ‘MZ’ in a 
field represents a sub-region inside the field that exhibits a relatively homogeneous 
grouping of yield-limiting factors, concerning the treatment regime of using single 
rate for this zone. The MZ are defined based on soil and yield measurements, 
probably over a period of years (Fraisse et al., 2001). Soil information can be 
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effectively utilized to create ‘stable’ MZ which remain unaltered per field. The 
proper selection of parameters is regarded as a complicated task owning to the great 
amount of inter-correlated parameters. This leads to a nonlinear problem which can 
be tackled with nonlinear statistical methods and computational intelligence 
approaches. An improved characterization of internal variation of soil properties 
gives the ability to delineate MZ which reflect in a better way their true variation. 
Traditional soil sampling and laboratory analysis is currently not cost effective. 
Researches that have been recently conducted; have utilized various sensors for 
single soil chemical and physical attributes measurements aiming not only to 
decrease expenses but also to improve MZ delineation. Nevertheless, the soil-water-
crop system is regarded as difficult to be characterized properly by using single 
property sensors (Adamchuk et al., 2004). Studies that have been lab-based, have 
demonstrated that the spectra of soil reflectance that originate from visible and near 
infra-red (vis-NIR) ranges can give direct and proxy estimations of various yield-
limiting factors (Kuang et al., 2012) This success triggered the research into mobile 
vis-NIR sensors which would be capable of collecting soil reflectance data in situ 
(Shibusawa et al., 2001, Christy, 2008; Mouazen et al., 2005). These sensors are able 
to provide data of high resolution on soil. Prediction models have been formed by 
associating reflectance spectra with soil samples tested in laboratory which were 
obtained from the survey. These prediction models can provide local prediction maps 
of specific soil properties (Kuang & Mouazen, 2011). Remote sensing of vegetation 
has been used in Yatsenko et al. (2003) in order to estimate chlorophyll concentration 
from spectral data. Multi-sensor fusion is an approach that attempts to minimize the 
uncertainty of an estimated variable through combining data from sensors that 
provide observations from the entity or the phenomenon that is characterized by the 
mentioned variable (Boginski et al., 2012).  

Data fusion of soil and crop data can be utilized for defining MZ (Taylor et al., 
2003), because the data are gathered into clusters owning to similar affects between 
soil and crop data production mechanisms. The clusters can also formulate a starting 
point to discover the reasons that bring up yield variability (Reyniers, 2003). 

 In this study, the k-means algorithm is compared with the Self Organizing Map 
for delineating MZ. Further, a hybrid SOM algorithm is presented which forms 
clusters in combination with k-means. The hybrid SOM algorithm and k-means are 
compared in terms of cluster separation and MZ formation based on data fusion of 
Normalized Difference Vegetation Index (NDVI) and soil parameters. 

2   Materials and methods 

Normalized different vegetation index (NDVI) was utilized in order to the 
calculate crop cover and it was based on images taken by satellite which were taken 
two times: the first on the 2nd May and the second on the 3rd June of 2013. These 
satellite images were produced by Disaster Monitoring Constellation II (DMCII) for 
the Horns End field in the UK.  

The processing workflow chain for crop NDVI is based on post-processed L1R or 
L1T (ortho-rectified imagery). In-band reflectance calibration was performed to 
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obtain surface reflectance using ArcGIS. NDVI was calculated using the equation: 
NDVI = (NIR-R)/(NIR+R), where NIR and R is the is reflectance in the near-infrared 
and red bands, respectively. NDVI data were resampled to a 5mX5m grid resulting in 
8798 values. A combine harvester mounted sensor was responsible for collecting 
yield data.  

The yield was interpolated at the same 5mX5m grid as the NDVI, resulting in 
8798 values. After the harvest of 2013, a spectral reflectance study utilizing the on-
line vis-NIR sensor platform (Mouazen, 2006) was conducted. It comprised of an 
AgroSpec mobile, vis-NIR spectrophotometer of fibre type (Tec5 Technology for 
Spectroscopy, Germany) that covered a 305-2200 nm. 60 soil samples were gathered 
from the  low side bottom of the trench that was opened by the subsoiler to 
demonstrate lab-tested levels of specific yield-limiting properties i.e. pH, phosphorus 
(P), potassium (K), calcium (Ca), Magnesium (Mg), organic carbon (OC), moisture 
content (MC), cation exchange capacity (CEC ), total nitrogen (TN). Partial least 
squares (PLS) regression analysis was applied to soil reflectance spectra and 
chemical analysis values aiming to develop soil property prediction models. In order 
to provide point predictions, every model was fed to the on-line survey data. The 
creation of suitable variograms was enabled by geostatistical analysis of the 
prediction results. These variograms were used to give the prediction maps through 
interpolation by kriging. Yield data which were collected during previous harvesting 
periods in 2011 and 2012 was subjected to interpolation by Inverse Distance 
Weighting (IDW) aiming to deliver a further map layer which was capable of 
indicating past field fertility variation. All interpolated map layers, which were 
produced from the data that were collected from yield-limiting soil properties, were 
fused with interpolated maps of NDVI which indicated crop cover and historical 
yield data from years 2011 and 2012. MZ delineation by using k-means and Self 
Organizing Maps were performed. 

3   Results 

3.1   Data Fusion by Clustering with k- means 

The point coordinates and property values of soil parameters, NDVI and historical 
yields were inserted in a spreadsheet matrix for every experimental field and then 
imported into Matlab software. Clustering was achieved by using the k-means 
clustering algorithm (Hartigan and Wong, 1979), which utilizes the unscaled, squared 
Euclidean distances, so as to calculate the distance., A normalization process was 
followed in order to avoid that a property with large values will prevail over the 
clustering. Normalization consisted of mean centering, followed by division with the 
standard deviation of the samples. This normalization was performed in order to have 
zero mean data which are scaled between -1 and 1. The clustering procedure enables 
the data fusion from numerous properties. It delineates similarity areas by putting 
them in the same class. Firstly, the best number of classes was determined by 
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utilizing the gap criterion (Tibshirani et al., 2001). As regards Horn’s End, the 
clusters were two and this was calculated by utilizing the “evalclusters” command in 
Matlab 2013b. This result corresponds to normalized attributes, where mean is 
centered and standard deviation equals to unity. In the case of non-normalized 
features the gap criterion is maximized for 8 clusters. The values of the GAP 
criterion referring to different numbers of clusters are shown in Fig.2. The result is 
the same when utilizing the NDVI with historic yields and soil parameters of  the 
years 2011 and 2012 and when using only historic yields with soil parameters. Each 
input spreadsheet point was given an integer to show membership of a class. The 
acquired clusters by repeating the k-means algorithm between 2 and 7 clusters 
brought up the results that are demonstrated in Figure 1. 
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Fig. 2. GAP values for Horn’s End 

3.2   Data Fusion by Clustering with Self-Organizing Maps 

The delineation of MZ by utilizing self-organizing maps (SOM) was achieved by 
using Matlab (Mathworks, Natick, MA, USA). The U-matrix was developed first 
before delineating MZ by applying the K-means algorithm on the U-matrix, resulting 
in MZ (Recknagel et al., 2006). The U-matrix represents the matrix of distances 
separating neighbors in the grid of SOM. The effectiveness of the U-matrix lays in its 
ability to visualize the neurons density in the data space by visual inspection of the 
distances between the clusters that neurons make in the weight space.  In order to 
create maps of MZ, the sample data were supposed to belong to the group of neurons 
that are activated when these data are presented to SOM. The cluster formation 
seems to be clearer due to the fact that the SOM forms Voronoi polygons grouping 
similar vectors. Moreover, it gives a better view of the data microstructure letting the 
k-means to deal with higher level correlations of the data that is related to persistent 
phenomena which affect the data behavior. At this point, the clusters can be analyzed 
by U-matrix and dendrograms, as is shown in Figure 3.  
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Fig. 3. The structure of the SOM clusters is shown in the dendrogram where for Horn’s End –
2013 two major clusters are shown.   

 
The k-means algorithm which is applied on top of the SOM clusters (Fig.4) 

demonstrates smoother interpolation of results as compared to the corresponding 
results produced with k-means clustering only which depend on the amount of 
Voronoi regions corresponding to the SOM neurons, forming the centroids of these 
regions. For example a 3x3 SOM with 9 Voronoi regions (polygons) results in the 
MZ maps shown in Fig.4. 
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In order to examine the goodness of separation between clusters resulting from the 

hybrid SOM and k-means clustering, the normalized mean plots for different 
variables can be examined. As can be seen from Figures 5 and 6, the normalized 
means exhibit a consistent trend for clusters with low yield in 2013 in both k-means 
and hybrid K-means and SOM clustering. However, in the case of the hybrid 
clustering, the normalized means of the soil parameters are well separated for all 
three clusters while in the case of k-means the topology of the means is distorted. 
This confirms the superiority of hybrid clustering regarding the separation between 
different classes compared to the corresponding K-means clustering.  
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Fig. 5. Normalized means of K-mean Clusters 
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Fig. 6. Normalized Means of hybridSOM clusters (K-Means performed on SOM grid of 
neurons) 
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It is evident from the normalized means of the hybrid SOM clusters in Figure 6 
that the low yield corresponds to high values of soil parameters. This can be 
explained from water logging problems in the corresponding areas of the field (left 
side of the field in Figure 4). The other two clusters demonstrate the inverse behavior 
where consistently lower values of soil parameter mean value relate to higher yields 
in 2013. This explains that although the soil fertility is high, the water logging 
problem prevents obtaining a good yield, whereas a lower level of soil fertility could 
result in a better yield when the soil is well-drained. A similar behavior can be 
observed concerning the NDVI, which seems to be highly correlated with the yield in 
all three clusters. The behavior of the yield is also consistent with yields of 2011and 
2012. 

4   Discussion 

The cluster centers of the hybrid SOM and k-means algorithm show better 
separation of clusters when compared with the standard k- means algorithm. The 
cluster formation is clearer since the SOM forms Voronoi polygons grouping similar 
vectors and thus obtains a better view of the microstructure of the data allowing the 
k-means to deal with higher level correlations of the data related to persistent 
phenomena affecting the behavior of the data. 

5   Conclusions  

In this paper, the combination of common statistical approaches with Self 
Organizing Clustering for delineating MZ is presented. By this way, the management 
of the field related to the application of inputs is becoming more accurate since the 
relations of the soil and crop parameters are indicated in a more precise way. The soil 
parameters have been predicted based on proximal soil sensing utilizing high 
resolution spectral measurements and satellite based NDVI sensing. The obtained 
data layers have been fused and the point vectors have been subjected to clustering. 
The k-means algorithm is compared with the Self Organizing Map for delineating 
MZ. Further, a hybrid SOM algorithm is presented which forms clusters in 
combination with k-means. The hybrid SOM algorithm and k-means are compared in 
terms of cluster separation and MZ formation based on data fusion of Normalized 
Difference Vegetation Index (NDVI) and soil parameters. The cluster centers of the 
hybrid SOM and k-means algorithm show better separation of clusters when 
compared with the standard k- means algorithm. 
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