
A Proposal for a Common Representation
Language for MDE Artifacts and Settings

Fábio Paulo Basso⋆

Federal University of Rio de Janeiro, COPPE-PESC, RJ, Brazil
fabiopbasso@cos.ufrj.br, expected defense date: 07/2016

Abstract. Empirical evidences suggest the need for a common repre-
sentation language to be used in the core of a Knowledge Base (KB)
for Model Driven Engineering (MDE). The absence of a common rep-
resentation for MDE Artifacts (components, libraries, metamodels and
model transformations and settings), hampers reuse and collaboration in
inter-organizational contexts. The state-of-art introduces MDE Artifacts
in target software projects with Domain Specific Languages (DSL) for
MDE Settings including integration of MDE Artifacts, embedded with
concepts for Model Transformation Chain (MTC), Model-Driven Integra-
tion (MDI), shared model-based tools though Software as Service (SaaS),
process patterns and others. This research abstract presents a proposal
for a common representation language named RAS++, intersecting ex-
isting metaclasses from DSLs for MDE Settings and adding metaclasses
from the Reusable Asset Specification (RAS) OMG standard. Thus, it is
presented past and ongoing work in the RAS++ in a PHD proposal.

Keywords: Knowledge Base; Model Driven Engineering; Reusable Asset Spec-
ification; Common Representation Language

1 Introduction

Model-Driven Engineering (MDE) still need improvements both in processes and
tools [1, 2]. Last year Mussbacher and others [3] pointed out that research is still
needed to lead MDE engineers to find and integrate appropriate solutions for
specific needs in MDE-based processes. As a long-term goal for the MDE com-
munity, some authors suggested that solutions for MDE should be shared on the
web in a Knowledge Base (KB)/repositories [2], thus allowing the quick discov-
ery and comprehension of appropriate MDE artifacts (model transformations,
tools, metamodels, libraries, files, etc.) [4].

A KB stores physical files from MDE artifacts and abstractions (descriptive
and technical) associated with these artifacts [5]. Descriptive-level information
provide semantics for search and comprehension of the shared information in
repositories [4, 6, 7]. Technical-level information is represented with some Domain
Specific Languages (DSLs), proposed in the literature of the area to represent

⋆ Copyright held by the author.



specificity from MDE Artifacts [8–11] and generalized in this paper as “DSLs for
MDE Settings”. These DSLs are used for integration, orchestration, adaptation
and execution of MDE Artifacts.

A central component of a KB for MDE Artifacts is a “common representa-
tion language”(CRL) [3] that provide description for catalog and search to/from
repositories and also technicalities expressed with DSLs for MDE Settings, such
as Model Typing [12]. Although it is important for the advent of KBs for MDE
to be used in inter-organizational contexts [3, 2], a common representation lan-
guage is missing in the literature of the area. Thus, the requirements for this
CRL should be discussed in details.

We propose a new representation language named RAS++ with concepts rel-
evant for a common representation. RAS++ extends the Reusable Asset Speci-
fication (RAS) [13], an important standard proposed by the OMG to structure
elements for reuse through instruction for integration and classification of MDE
Artifacts in repositories. RAS++ fits to requirements for a CRL that we have
been found in the literature. This work is organized as follows: Section 2 presents
the motivation of this research and a proposal for PhD thesis is presented in Sec-
tion 3. Section 4 introduces the main related works and Section 5 points out the
main features of RAS++. Section 6 discusses the research method and progress
and Section 7 presents the evaluation plan. Section 8 summarizes main conclu-
sions on this research.

2 Motivation

Concepts that circle the MDE adoption are of interest of some companies whose
core business is MDE [14], as illustrates Figure 1. In [15], we reported an effort
to introduce model-based solutions in target contexts (Figure 1, box 3), where
several artifacts for MDE (core assets) have been developed to support specific
needs in target software projects [9]. MDE Artifacts (e.g., model transforma-
tions and tools) are applied in different contexts of target companies [16], thus
reusable in inter-organizational contexts [5]. The reuse of these artifacts requires
a representation language and tool implementation that make the construction
of MDE Settings flexible [17]. This requires the use of representation languages
as the FOMDA DSL [15] illustrated in Figure 1, box 2.

FOMDA DSL has been used to adapt, orchestrate and execute model trans-
formation components in some software projects, similarly as many other DSLs
for MDE Settings such as: a) Model Transformation Chains (MTCs) [9, 10]; b)
Component models for model transformations (CBD of MTs) [17]; c) Model-
Driven Integration (MDI) for model tool chains [11]; d) Orchestration of MDE
Artifacts on the cloud through Software as Service (SaaS) [18]; e) Integrated
Software Development Process (SDP) with MDE (MDE-SDP) [8], and; f) Pro-
cess patterns for MDE, considering MDE Settings as process components shared
on repositories [16].

So far, the existing tool support accomplished our needs. However, the cur-
rent scenario [5, 19] is more challenging because target companies are also inter-



Fig. 1. Illustration of the Current Scenario for MDE as a Core Business

ested in MDE Artifacts developed around the world, as illustrated in Figure 1
(1). In this scenario, MDE Artifacts will be available in KBs [3] and must be
searched [4], analyzed [6] and integrated [9] with the core assets illustrated in
Figure 1 (2). Thus, the advent of a common representation language to be used
in a KB, as shown in Figure 1 (1), can facilitate the implementation of this inter-
organizational reuse scenario, as motivated by other researches in the area [4,
19, 5].

3 Proposal

Reuse steps: In order to implement this new scenario for reuse, we suggest
that at least three steps shown in Figure 2 must be executed. The first step
“Specification” is to specify MDE Artifacts in RAS++ (model in conformity
with the “CRL”), allowing the storage of data associated with artifacts in a KB
and retrieval in the same format. Then, software engineers/developers download
these artifacts (not yet the physical content, but the information represented
in RAS++ model) by searching the KB and comparing its features in the step
“Acquisition”. In the step “Transformation”, model-to-model transformations to-
gether with a “deployment engine” will adapt an MDE Artifact for a specific
format (model in conformity with a DSL X for MDE Settings). This would allow
to implement the scenario motivated in Figure 1.

Issue: No common representation for MDE Artifacts/Settings. This is a key
point in this research, because the lack of this language makes the reuse of MDE
Artifacts in a global reuse scenario difficult [2, 3]. The literature of the area is rich
with contributions for specific representation languages for MDE Settings. How-
ever, a more abstract and general representation is missing, which could promote
the interchange of the information shareable between these DSLs (e.g., semantic
for model-based operations, model transformation components and metamod-
els). The lack of a common representation language makes the concepts associ-
ated with MDE Artifacts replicated in each DSL for MDE Settings, which is bad
to the advent of a common KB for MDE that must keep a uniformity for the
stored information. This would allow, for example, to simplify the use of FOMDA
DSL (focused in orchestration and adaptation of MT components) [15] together



Fig. 2. A Scenario of Use of Information Associated with MDE Artifacts Through a
Common Representation Language That Connects Repositories With DSLs for MDE
Settings

with other DSLs such as TIL (focused in MDE tool integration) [11]. In other
words, a common representation language could promote the complementarity
of these specific representation languages.

Research Questions: 1) what are the requirements for a common repre-
sentation language? 2) what is common between these DSLs for MDE Settings?
To the best of our knowledge, there is no answer in the literature of the area.
Due to our previous experience with the FOMDA DSL [15], we assumed in [20]
that some of the abstractions from MTCs should be used. The problem is that,
besides DSLs for MTC, several others also allow to integrate MDE Artifacts
in target contexts. Thus, a study that finds the requirements and the common
abstractions would be a great contribution to the research and practice on MDE.

Requirements for a CRL: We have found in the literature some require-
ments for this common representation language. Some representations intro-
duced in DSLs for MDE Settings are considered for adoption in practice [15],
thus relevant for this language [3]. It is also important to consider that this lan-
guage will be used on the core of a KB, which means that it should be flexible
to represent any MDE Artifact such as those stored in the Repository for Model
Driven Development - ReMoDD [4] (examples, data-sets and modeling pearls).
The common language should facilitate the discovery and comparison of MDE
Artifacts [2]. In this sense, another level of information is needed between the
catalog of artifacts [6] and the representation of configurations between models
and transformations [17]. Mohagheghi et al. agrees in this respect, concluding
that establishing a bridge for this gap between technicalities and descriptive in-
formation is a key for success of MDE [1]. Thus, a CRL should be capable to
represent information in descriptive and technical-level, bridging the gap between
data stored in repositories and DSLs for MDE Settings.



4 Related Work

Knowledge Bases/Repositories. The ReMoDD [4], for example, makes use
of only searches about some proposals published in some conferences such as
MODELS, ECMFA, etc. Most information that should be explicit is available
in documents, papers and tutorials, which requires long time to find and ana-
lyze adequate options. Other contributions are specific to represent properties
of model transformations. Lúcio et al. provided standard taxonomy and meta-
model to classify model transformations [6]. The search and retrieval of of model
transformations from repositories based on source code annotations is proposed
by Criado et al., providing rich query mechanisms based on OCL and integra-
tion with the GitHub [7]. Another recent contribution for reuse repository is
the MDE Forge, allowing the storage of MDE Artifacts such as DSLs, model
transformations and MTCs, allowing the automatic recommendation on the de-
sign of new MTCs and acquisitions through SaaS [5]. These approaches provide
ways to classify MDE Artifacts in repositories, but the underlying representa-
tion language is not based on a standard specification. Differently, in RAS++
we are representing the information associated with MDE Artifacts following an
OMG standard (RAS), which enables the interchange of information between
component repositories and clients. This is an important feature for a CRL to
implement the introduced scenario for “MDE as Core Business”.

Assets.We can mention some extensions for RAS that represent information
associated with software components [21–23]. These works propose to specify
data related with components for application integration and service oriented
architecture [21], feedback from users [22], component software license [23] and
standard taxonomies. These extensions can also be applied to summarize in-
formation of some technical solutions for MDE. However, they are limited to
represent technical information associated with MDE settings as the ones repre-
sented with RAS++.

Technicalities. Our current contribution analyzes abstractions needed in a
common representation language, while our previous contributions in FOMDA
DSL [15] analyzed requirements to support the execution and adaptation of MDE
settings. Similarly to the FOMDA DSL, others are essential to introduce MDE in
target contexts such as transML [10], MTC Flow [9], Bento DSL [17], TIL [11],
, SPEM extensions [8] and process patterns [16]. However, they are limited to
be used in the core of a KB due to its specificity and lack of rich structured
descriptive data. Thus, RAS++ is complementary, more abstract and general.

Related work do not scales well in this new scenario for inter-organizational
reuse. This way, RAS++ will present considerable contributions to enable its
implementation.

5 Main Features In RAS++

In [20] we proposed RAS++, a new metamodel with concepts considered com-
mon to represent MDE Settings. In the following we discuss the main features
in RAS++.



This metamodel is based on the Reusable Asset Specification (RAS)
OMG standard [13]. An asset is: anything that provides reuse and value
through reference (links), cataloged with standardized taxonomies, described by
a set of properties and owning zero or more specifications about artifacts [24].
Assets are specifications that provide semantics for artifacts, usually represented
in XML (MANIFEST file) with data associated with any sort of artifact that
can be stored in reuse repositories. Through concepts related to semantics for
reuse, assets are used to describe software components [23], application and do-
main models and, more recently, tools that help in the execution of software
engineering tasks in the context of MDE [18]. Reusable assets (RAS) [13] can
be stored in existing reuse repositories and retrieved in the same format, pro-
viding structures to support the reuse of MDE Settings and tasks to instruct
the integration of these settings in target contexts. Thus, concepts introduced in
asset specification languages such as RAS and Asset Management Specification
(AMS) [24] are important for a common representation language.

Selective extension from the UML. Each metaclass in RAS++ extends
at least the “Element” metaclass from a short version of the UML metamodel.
This means that RAS++ supports the same light-height extensibility mecha-
nism from the UML 2 (see an example in [25]), besides a standard heavy-height
mechanism supported in RAS.

RAS++ intersects concepts from specific representation languages,
some presented in [10, 17, 11, 18, 8, 16] for MTCs, MDI, SaaS, etc. These DSLs
are designed to manage model transformations in a higher-level of abstraction
than the model transformations rules implemented with ATL, QVT, ETL, etc.
DSLs such as transML [10], MTC Flow [9], TIL [11] and FOMDA DSL [15] have
been reported as important to introduce MDE in target contexts. Therefore,
some concepts introduced in these proposals such as tasks/components, arti-
facts/parameters, metamodels and connectors/bindings are also of interest for a
common representation language.

RAS++ increments existing works with structure for rich descrip-
tive data connected with technicalities. After the study in [20], we noticed
that other level of information is needed in between the catalog and instruction
promoted by assets and the representation of technicalities of MDE Artifacts
used by aforementioned DSLs. In this regard, Mohagheghi et al. concluded in
2009 that establishing a bridge for this gap between data used by technicians
(e.g., MTCs) and by non-experts (e.g., description) is a key for the success of
MDE [1]. In order to implement the scenario illustrated in Figure 2, bridging this
gap is a need. Today, the existing DSLs are limited to connect rich descriptive
information with technical data. For example, the use of catalog information
associated with MDE Artifacts, as allowed in model transformation intents [6]
(providing standard taxonomy for correct classification of model transformations
in a KB), and in a MTC approach (e.g., Bento DSL [17]), is not enough to ensure
that an MDE Artifact A (e.g., a DSL to design web front ends) is properly com-
pared with another MDE Artifact B (e.g., a competing DSL). Recent surveys
claimed that this is a problem because industry needs to compare features from



Fig. 3. Research methodology and progress

DSLs to decide the one that best fits for specific needs [2]. Thus, connecting rich
descriptive data with technicalities of MDE Artifacts is also a requirement for a
common representation language.

Research focus: In the current version of RAS++, we bridged this gap
presented by Mohagheghi et al. [1], by introducing concepts that connect rich
and structured descriptive data with technicalities from MDE Settings. This
way, a study focused on concepts needed in a common representation language
is proposed.

Expected contributions:A new representation language implemented with
two prototypes, one to design assets and an other to transform assets into target
DSLs. The result will allow to implement the scenario illustrated in Figure 2 with
well accepted and common concepts for MDE Settings and with increments to
the state-of-art in asset specifications.

6 Research Method and Progress

Figure 3 shows the research methodology and progress. Underlined text indicates
a concluded activity, dashed text indicates ongoing activities and the other activ-
ities are to be started. To a follow-up of our progress, a grade of our contributions
is presented in the right-part of Figure 3.

– Identify the problem and define the objectives of the solution.
I started my PhD course with a previous industrial experience. I exposed
some problems that hampered the introduction of MDE in target contexts
to my research collaborators, who encouraged me to go ahead in research
topic.



• Formulate the problem to solve. In some classes for software reuse
solutions for issues such as the lack of a KB and a common representa-
tion language were surveyed. These studies resulted in two types of work:
1) those representing technicalities for MDE Settings and; 2) in an ana-
lytical comparison of asset representation languages, which complement
the MTCs implemented with the FOMDA DSL. Based on these studies,
we developed a preliminary version of RAS++ and a tool prototype,
allowing to publish new works in conferences (ICSR and SEKE) [25, 26].

• Report experiences on accomplishments and challenges for the
scenario illustrated in Figure 1. In parallel to RAS++, it was impor-
tant to report benefits, limitations and drawbacks from our experiences
in conferences (GPCE and ICEIS) [15, 27, 28].

• Find similar reports in the literature. Since 2013, the literature
of the area on issues for the MDE adoption have been investigated. We
found recent in surveys, experiences and reports common positions on
issues that makes hard the reuse of MDE Artifacts considering a global
scenario (inter-organizational). Thus, we have found only in recent publi-
cations the basis that supports our claims for the discussed issues, which
suggests that this is a new and relevant research topic.

• Literature review.
∗ Analyze DSLs for MTC. We looked for the state-of-art for MTCs
to compare it with our experiences in [15]. In addition, it was pre-
sented new contributions to the FOMDA DSL in conferences (SAC
and INDIN) [29–31]. We found common concepts and representa-
tions in related works. Moreover, we have found that the state-of-art
is limited to accomplish the three steps (Specification, Acquisition
and Transformation) illustrated in Figure 2.

∗ Analyze RAS and AMS. We found in RAS the possibility to
implement Step 1 (Specification). In the IRI conference [20] we pre-
sented the result of our extension for RAS, with the new meta-classes
that give support for the technicalities found as common for MTCs.
A new contribution focuses in the modeling descriptive information
in assets represented with RAS and AMS.

∗ Analyze DSLs for MDE Settings. This is a quasi-systematic
literature review on MDE Settings. We also have found common
concepts proposed in these DSLs non related directly with MTCs. A
future work will present the result of our analysis with a classification
used to define the relevant representations added to RAS++.

– Design and development of the solution. The RAS++ metamodel is
constructed based on recent issues reported on the literature of the area.
Literature review and experiences suggest that we are on the right way to
bridge the gap between technical and descriptive information in a common
representation that enable the implementation of the introduced reuse sce-
nario. Ongoing works: 1) in order to create a database for evaluation through
prototypes, many assets have been represented with the RAS++ and; 2) we
are specifying OCL invariants associated with the RAS++ metamodel.



– Implementation/Demonstration. In order to validate RAS++ meta-
model, we developed two prototypes: a) An EMF-based designer tool
used to specify the assets, important for Step 1 (Specification); b) Eclipse-
based “RAS++ Deploy” plug-in that aims at transforming RAS++
models into some of specific DSLs. These prototypes are continually being
improved to support new meta-classes introduced in RAS++ metamodel and
are discussed in [25, 26, 20].

7 Evaluation Plan

The evaluation plan considers the verification of the meta-classes introduced in
RAS++ and evaluating the transformation from RAS++ assets to some of the
existing DSLs for MDE Settings:

– Web survey with specialists. This study aims at understand some meta-
classes proposed on the literature (e.g., metamodel, artifacts, workflow ele-
ments, filters, etc), evaluating what do people consider relevant to include
in a common representation language for MDE Settings. Accordingly, we
planned a web survey with questionnaire to find qualitative and quantita-
tive data that highlight to the relevance of some concepts introduced in
existing DSLs. Thus, this study will clarify which concepts should or should
not be part of RAS++;

– Evaluation through prototype. This is a practical evaluation, based on
implementations for the step 3 (Transformation). This practical evaluation
will allows to transform MDE assets represented with RAS++ in target
DSLs for MDE Settings.

– MDArte (Government case study). The last evaluation will be carried
out in a real scenario for “MDE as Core Business”, where a team from the
company MDArte [14] will experiment the tool support developed in this
proposal. MDArte company provides MDE services for some software devel-
opment teams from the Brazilian government.

8 Conclusion

This work presented a proposal for a common representation language for MDE
Settings named RAS++. In order to enable the implementation of a new sce-
nario which needs the introduction of MDE Artifacts through Knowledge Bases
(KBs), it was surveyed the literature to find similarities and differences between
proposals that aim at represent MDE Settings. Therefore, this work highlights to
main contributions from a PhD thesis proposal that add in RAS++ the support
for syntax and semantics, associated with MDE Artifacts, in structures for reuse
promoted by asset specifications.



References

1. Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M., Gilani, W.: Mde
adoption in industry: Challenges and success criteria. In Chaudron, M.R., ed.:
Models in Software Engineering. Volume 5421 of Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg (2009) 54–59

2. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial
adoption of model-driven engineering: Are the tools really the problem? In: Pro-
ceedings of the 16th International Conference on Model Driven Engineering Lan-
guages and Systems. MODELS’13 (2013) 1–17

3. Mussbacher, G., Amyot, D., Breu, R., Bruel, J.M., Cheng, B.H., Collet, P., Combe-
male, B., France, R.B., Heldal, R., Hill, J., Kienzle, J., Schöttle, M., Steimann, F.,
Stikkolorum, D., Whittle, J.: The relevance of model-driven engineering thirty
years from now. In: Model-Driven Engineering Languages and Systems. (2014)
183–200

4. France, R., Bieman, J., Cheng, B.: Repository for model driven development (re-
modd). In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). 4364 LNCS (2007)
311–317

5. Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Collaborative repositories in
model-driven engineering [software technology]. Software, IEEE 32(3) (May 2015)
28–34

6. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G.M., Syriani,
E., Wimmer, M.: Model transformation intents and their properties. Software &
Systems Modeling (2014) 1–38

7. Criado, J., Mart́ınez, S., Iribarne, L., Cabot, J.: Enabling the reuse of stored
model transformations through annotations. In: International Conference on Model
Transformations. (July 2015) 1–15

8. Polgár, B., Ráth, I., Szatmari, Z., Horvath, A., Majzik, I.: Model-based integration,
execution and certification of development tool-chains. In: 2th Workshop on Model-
Driven Tool & Process Integration (MDTPI). (2009) 35–46

9. Yie, A., Casallas, R., Deridder, D., Wagelaar, D.: Realizing model transformation
chain interoperability. Software & Systems Modeling 11(1) (2012) 55–75

10. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: transml:
A family of languages to model model transformations. In: 13th International
Conference on Model Driven Engineering Languages and Systems. MODELS 2010
(2010) 106–120

11. Biehl, M., El-Khoury, J., Loiret, F., Törngren, M.: On the modeling and generation
of service-oriented tool chains. Software & Systems Modeling 13(2) (2014) 461–480

12. Vignaga, A., Jouault, F., Bastarrica, M.C., Brunelière, H.: Typing artifacts in
megamodeling. Software & Systems Modeling 12(1) (2013) 105–119

13. RAS: Reusable asset specification. av. at <http://www.omg.org/spec/ras/>. at
june, (2014)

14. Monteiro, R., Assumpcao Pinel, R., Zimbrao, G., Moreira de Souza, J.: The
mdarte experience: Organizational aspects acquired from a successful partnership
between government and academia using model-driven development. In: Interna-
tional Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD). (May 2014) 575–586

15. Basso, F.P., Pillat, R.M., Oliveira, T.C., Becker, L.B.: Supporting large scale model
transformation reuse. In: 12th International Conference on Generative Program-
ming: Concepts & Experiences. GPCE’13 (2013) 169–178



16. Hebig, R., Giese, H., Stallmann, F., , Seibel, A.: On the complex nature of mde
evolution. In: Proceedings of Model Driven Engineering Languages and Systems.
MODELS 2013 (2013) 436–453

17. Cuadrado, J.S., Guerra, E., de Lara, J.: A component model for model transforma-
tions. IEEE Transactions on Software Engineering 40(11) (Nov 2014) 1042–1060

18. Zhang, W., Moller-Pedersen, B.: Modeling of tool integration resources with oslc
support. In: 2nd International Conference on Model-Driven Engineering and Soft-
ware Development (MODELSWARD). (Jan 2014) 99–110

19. Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J.M., Gray, J.:
Globalizing modeling languages. IEEE Computer, Institute of Electrical and Elec-
tronics Engineers 47(6) (June 2014) 68–71

20. Basso, F.P., Werner, C.M.L., Oliveira, T.C.: Towards facilities to introduce solu-
tions for mde in development environments with reusable assets. In: International
Conference on Information Reuse and Integration. IRI’14 (2014) 195–202

21. Park, S., Park, S., Sugumaran, V.: Extending reusable asset specification to im-
prove software reuse. In: Proceedings of the 2007 ACM symposium on Applied
computing. SAC ’07 (2007) 1473–1478

22. Hadji, H.B., Su-Kyoung, K., Ho-Jin, C.: A representation model for reusable assets
to support user context. In: IEEE International Symposium on Service-Oriented
System Engineering, SOSE ’08. (2008) 91–96

23. Hong-min, R., Zhi-ying, Y., Jing-zhou, Z.: Design and implementation of ras-
based open source software repository. In: Sixth International Conference on Fuzzy
Systems and Knowledge Discovery, 2009. FSKD ’09. Volume 2. (2009) 219–223

24. AMS: Asset Management Specification. Av. At <http://open-services.net/wiki
/asset-management/oslc-asset-management-2.0-specification/>. At June, (2014)

25. Basso, F.P., Werner, C.M.L., Pillat, R.M., Oliveira, T.C.: A common representation
for reuse assistants. In: 13th International Conference on Software Reuse. ICSR’13
(2013) 283–288

26. Basso, F.P., Werner, C.M.L., Pillat, R.M., Oliveira, T.C.: How do you execute reuse
tasks among tools? a ras based approach to interoperate reuse assistants. In: 25th
International Conference on Software Engineering and Knowledge Engineering.
(2013) 721–726

27. Basso, F.P., Pillat, R.M., Rooz-Frantz, F., Frantz, R.Z.: Study on combining model-
driven engineering and scrum to produce web information systems. In: 16th Inter-
national Conference on Enterprise Information Systems. ICEIS’14 (2014) 137–144

28. Basso, F.P., Pillat, R.M., Frantz, R.Z., Rooz-Frantz, F.: Assisted tasks to generate
pre-prototypes for web information systems. In: 16th International Conference on
Enterprise Information Systems. ICEIS’14 (2014) 14–25

29. Basso, F.P., Pillat, R.M., Oliveira, T.C., Fabro, M.D.D.: Generative adaptation of
model transformation assets: Experiences, lessons and drawbacks. In: 29th Sym-
posium On Applied Computing. SAC’14 (2014) 1027–1034

30. Basso, F.P., Oliveira, T.C., Farias, K.: Extending junit 4 with java annotations
and reflection to test variant model transformation assets. In: 29th Symposium On
Applied Computing. SAC’14 (2014) 1601–1608

31. Paulon, A., Frohlich, A., Becker, L., Basso, F.: Wireless sensor network UML profile
to support model-driven development. In: 12th IEEE International Conference on
Industrial Informatics, At Porto Alegre, RS, Brazil. INDIN 2014 (2014) 227–232


