Complementing the B-Method with
Model-Based Testing*

Ernesto C. B. de Matos**

Federal Univeristy of Rio Grande do Norte
ernestocid@ppgsc.ufrn.br

Abstract. In this Ph.D project, we propose a Model-Based Testing ap-
proach to complement the B-Method development process. The approach
generates unit test cases that verify the conformance between the initial
abstract model and the actual implementation of the system, checking
if the developed code behaves as specified in the model. The test cases
are generated using classic testing techniques such as Input Space Parti-
tioning and Logical Coverage. The tests generated by the approach are
complete, executable test cases containing test data, preamble calcula-
tion, oracle evaluation and test data concretization. The approach is also
supported by a tool that partially automates the test generation process.

Keywords: Model-Based Testing, B-Method

1 The Problem

Software systems are a big part of our lives. They live in all of our electronic
devices; not only in our computers and smartphones but also in simple things,
like your coffee machine, or in more complex ones, like the metro that you take
every day to go to work.

There are many methods and processes to develop such systems. They usually
involve many activities and, among all these activities, there is a very important
one that is usually called Verification and Validation (V&V). The main goal
of V&V is to evaluate the quality of the system under development. The V&V
process is known to consume a great part of the resources involved during the
development of software systems. According to [16], almost 50% of the time and
money required to develop a system is spent on V&V.

The task of ensuring that a system is safe, robust and error-free is a diffi-
cult one, especially for safety-critical systems that have to comply with several
security standards. There are many methods and techniques that can help with
software V&V. The most widely known are Software Testing techniques. Another

* This paper is about a Ph.D project that is in its final year (forth year). The project
started on February, 2012 and is expected to finish on February, 2016. The work has
been supervised by Prof. Anamaria M. Moreira

** Copyright held by the author.

practice that is especially common in the development of safety-critical systems
is the use of Formal Methods. Formal methods and testing are V&V techniques
that can complement each other. While formal methods provide sound mecha-
nisms to reason about the system at a more abstract level, testing techniques
are still necessary for a more in-depth validation of the system and are often
required by certification standards [I7]. For these reasons, there is an effort from
both formal and testing communities to integrate these disciplines.

The B-Method [I] is a formal method that uses concepts of First Order
Logic, Set Theory and Integer Arithmetic to specify Abstract State Machines
that represent the behavior of system components. The B-Method development
process is presented in Figure[ll Beginning with an informal set of requirements,
which is usually written using natural language, an abstract model is created.
The B-Method’s initial abstract model is called Machine. A machine can be
refined into one or more Refinement modules. A Refinement is derived from a
Machine or another Refinement and the conformance between the two modules
must be proved. Finally, from a Refinement an Implementation module can be
obtained. The Implementation uses an almost algorithmic representation of the
initial model called BO. The B0 representation serves as basis for translation of
the model to programming language code, which can be done either manually
or by code generation tools.

Informal
Requirements

Abstract Test Code
Machine])
Proved Verified Step
Conformance :
Refinement 1 Exefmes
Proved Werified Step ‘.r
Conformance l
Refinement 2 Software Code
Proved Verified Step
Conformance .
Refinement N
Proved Verified Step
Conformance l

| Implementation

@) [» Synthesis

Fig. 1. The B-Method Process.

As depicted in Figure [I] all steps between the abstract machine and the
refinement to BO implementation are verified using static checking and proof
obligations. Nevertheless, even with all the formal verification and proofs, the
B-Method alone is not enough to ensure that a system is error-free. The testing
part presented on Figure [1]is not incorporated in the B-Method’s process origi-
nally, but it is still important and necessary to increase the level of trust in the
developed system. In [22] the authors present some limitations of the B-Method
that should encourage engineers to perform some level of software testing during
system development. Some of these limitations are:

— Non-functional requirements are not addressed by formal methods;

— There are some intrinsic problems related to the activity of modeling. First,
the model is necessarily an abstraction of the reality and has a limited scope.
For example, the formal description takes into account neither the compiler
used nor the operating system and the hardware on which it is executed.
It also makes assumptions about the behavior of any component interacting
with the software;

— The model can be wrong in respect to its informal requirements. In essence,
there is no way to prove that the informal, possibly ill-defined, user needs
are correctly addressed by the formal specification;

— Modeling is performed by a human that is liable to fail;

— Refinement of an abstract specification will always require a certain degree
of human input, admitting possibilities of human errors;

— The formal system underlying the method may be wrong;

— Ultimately, proofs may be faulty.

Besides the limitations pointed by Waeselynck and Boulanger, there are other
aspects that could benefit from the use of software testing as a complement to
the formal development process:

— The generation of tests from formal specifications can be particularly useful
in scenarios where formal methods are not strictly followed. Sometimes, due
to time and budget restrictions, formal methods are only used at the be-
ginning of the development process — just for modeling purposes — and the
implementation of the system is done in an informal way. In this scenario,
tests generated from formal specifications could help to verify the coherence
between specification and implementation, checking whether the implemen-
tation is in accordance with the specification or not;

— It is also important to notice that the translation of BO representation to
code lacks formal verification. If done manually, the translation is obviously
informal. The code generation tools for the B-Method are also not formally
verified. So, in the end, the translation to source code cannot be entirely
trusted. The code generated still need to be tested.

Given these limitations, software testing can complement a formal method
like the B-Method, providing mechanisms to identify failures, exploiting possible

defects introduced during refinement and implementation of the model, or during
the maintenance of the code base.

In this Ph.D project, we propose a Model-Based Testing approach to com-
plement the B-Method development process. This approach is tool supported
and partially automates the generation of test cases for a software implementa-
tion based on B-Method’s abstract state machines. The test cases generated by
this approach try to verify the conformance between the initial abstract model
and the produced source code, checking if the behavior specified in the model
is actually present in the software implementation. The tests generated are unit
tests that test each operation in the model individually. They are generated us-
ing classic testing techniques that include input space partitioning and logical
coverage. The test cases generated by the approach are complete, executable test
cases containing test data, preamble calculation, oracle evaluation and test data
concretization.

2 Related Work

Different research groups have then been researching the integration of formal
methods and software testing in different ways. In the current literature, there
are many publications targeting different types of tests (e.g. unit, module and
system testing) using different formal input models (e.g. Z, B, Alloy and VDM),
and with different levels of automation [2/T8[7TII5IT23I6].

Most of the current work in the field, we believe, have a deficiency in one or
more of the following points:

— Their tests focus on finding problems in the model rather than on the re-
spective implementation;

— They use ad hoc testing strategies instead of relying on well-established
criteria from the software testing community;

— They lack on automation and tool support, something essential for the ap-
plicability of the proposed approaches.

In our work, we try to solve the problems listed above. Instead of testing the
model, our focus is on testing the implementation derived from the model. Our
approach generates unit tests that verify the conformance of the implementation
when compared to the model. These tests can increase the trust of the devel-
oper by asserting that the code developed behaves as specified in the model. To
achieve this goal, BETA generates tests using coverage criteria that have been
validated through time by the software testing community, such as Input Space
Partitioning (e.g. Equivalent Classes and Boundary Value Analysis) and Logical
Coverage (e.g. Predicate and Clause coverage). Ultimately, the approach is au-
tomated by a tool that makes it easier to be adopted by engineers that have no
background in formal methods. The tool automates the process from the design
of the test cases to the generation of partial test scripts that, after some small
adaptations, can be executed to test the implementation’s code.

3 Proposed Solution

The proposal of this Ph.D work is a Model-Based Testing approach that comple-
ments the B-Method process, trying to ease some of the problems mentioned in
the previous sections. The approach is called BETAEI and is partially automated
by a tool that has the same name. Figure |2 presents an overview of the BETA
approach and each of the steps of its test generation process.

Logical Coverage Find predicates
: g and clausesto ——» Define festt
cover requirements

Input Space
B Abstract Fartioning | ind — r(t) trealef — ﬁg;_mmn_em
i - partitions for partitions in
Machine LGN Ehetacteatics characteristics test cases

L
S

Generate Test Generate input

Generate l—— < Obtain Oracle «—— TestData +—
. XML Case oSE AL data for test
fiestiSarips (Specifications plalties caess

HTML <+

ClJava
Test Case

Fig. 2. An overview of the BETA approach.

The approach starts with an abstract B machine, and since it generates tests
for each unit of the model individually, the process is repeated for each one of
its operations.

Once an operation is chosen, the approach acts accordingly to the testing
technique selected. If Logical Coverage is the chosen technique, it inspects the
model searching for predicates and clauses to cover. Then, it creates test formulas
that express situations that exercise the conditions/decisions that should be
covered according to one of the supported logical coverage criteria. If Input Space
Partitioning is the chosen technique, it explores the model to find interesting
characteristics about the operation. These characteristics are constraints applied
to the operation under test. After the characteristics are enumerated, they are
used to create test partitions for the input space of the operation under test.
Then, combinatorial criteria are used to select and combine these partitions in
test cases. A test case is also expressed by a logical formula that describes the
test scenario.

To obtain test input data for each of these test scenarios a constraint solver
is used. Once test input data is obtained, the original model may be animated
using these inputs to obtain oracle data (expected test case results). Test inputs

! BETA project’s website: http://www.beta-tool.info

http://www.beta-tool.info

and expected results are then combined into test case specifications that could be
either in XML or HTML format. The test case specifications are used as a guide
to code the concrete test cases. A separate module uses the XML specifications
to generate partial test scripts that help the developer in the coding process.

All the testing criteria used in the approach are presented in [4]. For Input
Space Partitioning, the approach uses Equivalent Classes and Boundary Value
Analysis. To combine the obtained partitions into test cases, the approach cur-
rently supports three algorithms: Each-Choice, Pairwise and All-Combinations.
For Logical Coverage, the approach supports Predicate Coverage, Clause Cov-
erage, Combinatorial Clause Coverage and Active Clause Coverage (this last
criterion is equivalent to Modified Condition/Decision Coverage).

The tool that automates the approach relies on ProB [I0] as a constraint
solver to perform some of the steps in the process. ProB is an animator and
model checker for the B-Method. It allows models to be automatically checked
for inconsistencies such as invariant violations, deadlocks, and others. It can also
be used to write and animate models. ProB can be integrated into other tools
using its command-line interface or its API. BETA uses ProB’s constraint solver
to obtain test case data. It also uses ProB as an animator to obtain oracle data
for the test cases evaluation. It animates the original model using test data to
check what is the expected software behaviour for a particular test case.

4 Preliminary Work

In the current state of our project, we already developed a tool that automates
most of the process presented in Figure [2| The tool has already been tested
through several case studies that evaluated its effectiveness and usability. More
details about the cases studies are found in Section [6l

The tool implements all the coverage criteria mentioned in the previous sec-
tions and is already integrated with ProB to obtain test data and oracle data
for the generated test cases.

We also used ProB’s constraint-based test case generator as part of our strat-
egy to calculate preambles for our test cases. The preambles are used to put the
system in the state where a particular test case needs to be executed. To find
the preambles, BETA defines state goals and uses ProB to find paths that lead
the system to the desired state. We already have a prototype of this feature, but
it is currently not integrated into the official release of the tool because we still
plan to test it more rigorously.

We also implemented a module that partially automates the generation of
executable test scripts [2]. In the initial versions of the tool, it was only capable
of generating test case specifications that guided the engineer in the implementa-
tion of test cases. This new module translates these specifications into executable
Java and C test scripts. These scripts still need some adaptations before they
can be executed, but they already decrease a good amount of the effort necessary
to code the concrete test cases.

Another recent contribution to the project is a strategy for test data con-
cretization. It uses the glue invariant used during the refinement of the model to
find the relation between the abstract data structures used in the higher levels of
abstraction and the concrete data structures used by the implementation. The
strategy is not implemented yet, but we plan to implement a prototype of this
feature soon, so it can be tested and integrated into the official release.

5 Expected Contributions

The main contributions expected by the end of this Ph.D project are the follow-
ing:

— Develop a tool-supported approach to generate unit tests from B-Method’s
abstract state machines. These tests should be able to verify the conformance
of the implementation — which could be derived from the model either man-
ually or by code generation tools — when compared to the original model;

— The developed approach should implement well-defined and well-established
coverage criteria developed and tested through time by the software testing
community. The implemented testing criteria should increase the trust of
the developers in the final product. Also, it would be interesting to imple-
ment criteria that are required by some certification standards like Modified
Condition/Decision Coverage (MC/DC) [§]. The developed tool should also
be flexible enough to allow more testing criteria to be integrated into it in
the future;

— The final approach is expected to be a strategy that could be replicated in
other environments. With some adaptations, the approach could be used to
generate tests from different formal notations other than the B-Method. It
should act as a framework to generate tests these other notations;

— As another contribution of this work, we expect to present a strategy for
the concretization of test data in the B-Method environment. The strategy
will not only be a theory but will also be implemented in the tool to be
automatically executed;

— The approach will also support the generation of executable test scripts and
will implement different oracle strategies for the evaluation of test cases.
The implemented oracle strategies are based on the ones presented in [11].
The tool already implements the generation of partial test scripts, but we
plan to automatically generate test scripts that require as few adaptations
as possible;

— Another contribution will be the automatic calculation of test case pream-
bles. We are already developing a strategy for the calculation of preambles
using constraint solving tools. Once this strategy is implemented, the test
engineer will be able to find, automatically, execution paths that lead the
system to the state in which the test case has to be executed.

6 Plan for Evaluation and Validation

To validate the approach and the tool, a series of case studies was planned.
Some of these case studies are already finished, but some of them still need to
be performed.

Once the initial version of the approach was designed [20], we performed a
case study to evaluate it [I5]. The goal of this first evaluation was to assess
the quality of the initial approach and determine the improvements that were
necessary. The process of test case generation and evaluation of the test cases
was performed completely by hand. After this first evaluation, the top priority
of the project was defined: we needed a tool to automate the test case generation
process. Performing the steps to generate the test cases by hand was a process
very susceptible to errors and took a considerable amount of time to accomplish.

After the initial prototype of the tool was implemented, it was evaluated
in a second case study [I3]. The target now was a model that was little more
complex than the model used in the first case study. This second case study
revealed some problems in the approach and bugs in the tool. It also helped to
identify interesting features that could improve the tool, such as the generation
of executable test cases and automatic oracle evaluation for the test cases.

Once the improvements were implemented in the initial version of the tool
[14], we took some steps towards more complex models. In the third case study,
a model of the Luzﬂ programming language API was used to assess the second
version of the tool [2T]. But the goal now was not only to assess the tool but also
to perform some analysis of the quality of the generated test cases. The models
of the Lua API were much more complex and challenging for the tool. Once the
test cases were generated, they were subjected to a code coverage analysis. In
this case study, we also tested new features of the tool such as the test script
generator.

To make a more in-depth study of the capabilities of the tool to detect
discrepancies between the models and their respective, automatically generated,
source code, we performed a case study with two code generators. In this case
study, we used the test cases generated by BETA to check if the behavior of
the code generated for several models was in accordance with their respective
abstract models.

The next step proposed by this project is to perform another case study; this
time focusing on the evaluation of the scalability of the tool and the approach.
We plan to organize a case study that analyzes the performance of the BETA
tool. It will measure aspects like the time needed to generate the test cases, the
number of test cases generated, the number of test cases lost due to infeasibility,
among other aspects, for each criterion implemented in the tool. This last case
study will be performed using a large set of input models, that will vary in size
and complexity. We are also planning to make a more in-depth evaluation of
the quality of the generated test cases using mutation testing. We will gener-
ate mutants of implementations derived from B models (either manually or by

2 Lua project’s website: http://www.lua.org/

http://www.lua.org/

code generators) and check if the test cases generated by BETA are capable of
detecting the bugs introduced by these mutants.

7 Current Status

In this paper, we presented a tool-supported approach that aims to complement
the B-Method. This approach tries to solve some of the problems that are inher-
ent to its process, such as the lack of formalization in the code generation step.
This Ph.D project is expected to finish by February, 2016.

As mentioned on sections[3|and[4] most of the approach is currently supported
and automated by a tool. There are two features that have to be finished yet:
the preamble calculation and the test data concretization. For the preamble
calculation, we already have a prototype implemented, but it still has to be tested
through more case studies. The test data concretization strategy is currently just
a tested theory. We still have to implement the strategy so it can be automated
and integrated into the tool.

Besides implementing these two missing features, we are still planning to
perform more case studies, this time focusing on evaluating the scalability of
the approach and the tool. Currently, we are also experimenting with mutation
testing to evaluate the effectiveness of the generated test cases to find bugs.

The final time line planned for this project is the following:

— from May/15 to June/15: we are planning to focus on writing an initial ver-
sion of the thesis that has to be submitted for a first evaluation. We are also
scheduling this time to write papers about the current project achievements;

— from July/15 to August/15: we will focus on the implementation of the
preamble calculation and test data concretization features;

— from September/15 to October/15: we will switch our focus to the case stud-
ies for a final evaluation of the tool;

— from November/15 to January/16: this time is reserved for final adjustments
in the approach and tool and also the writing of the final thesis.

References

1. J. R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA, 1996.

2. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux,
N. Vacelet, and M. Utting. BZ-TT: A tool-set for test generation from Z and
B using constraint logic programming. Proc. of Formal Approaches to Testing of
Software, FATES 2002 (workshop of CONCUR’02), pages 105-120, 2002.

3. N. Amla and P. Ammann. Using Z specifications in category partition testing.
In Computer Assurance, 1992. COMPASS ’92. ’Systems Integrity, Software Safety
and Process Security: Building the System Right.’, Proceedings of the Seventh An-
nual Conference on, pages 3—10, 1992.

4. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, New York, NY, first edition, 2010.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Burton and H. York. Automated Testing from Z Specifications. Technical report,
York, 2000. Report: University of York.

. J. Dick and A. Faivre. Automating the generation and sequencing of test cases

from model-based specifications. In J. C. P. Woodcock and P. G. Larsen, editors,
FME ’93: Industrial-Strength Formal Methods, volume 670 of Lecture Notes in
Computer Science, pages 268—284. Springer Berlin Heidelberg, 1993.

A. Gupta and R. Bhatia. Testing functional requirements using B model specifi-
cations. SIGSOFT Softw. Eng. Notes, 35(2):1-7, 2010.

K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson. A Practical
Tutorial on Modified Condition/Decision Coverage. Technical report, 2001.

M. Huaikou and L. Ling. A Test Class Framework for Generating Test Cases from
7 Specifications. Engineering of Complexr Computer Systems, IEEE International
Conference on, page 0164, 2000.

M. Leuschel and M. Butler. ProB: A Model Checker for B. In FME 2003: For-
mal Methods, volume 2805 of Lecture Notes in Computer Science, pages 855-874.
Springer Berlin / Heidelberg, Berlin, 2003.

N. Li and J. Offutt. An empirical analysis of test oracle strategies for model-
based testing. In IEEE Seventh International Conference on Software Testing,
Verification and Validation, ICST 201/, pages 363372, 2014.

D. Marinov and S. Khurshid. TestEra: A Novel Framework for Automated Testing
of Java Programs. International Conference on Automated Software Engineering,
0:22, 2001.

E. C. B. Matos and A. M. Moreira. BETA: A B Based Testing Approach. In
R. Gheyi and D. Naumann, editors, Formal Methods: Foundations and Applica-
tions, volume 7498 of Lecture Notes in Computer Science, pages 51-66. Springer
Berlin Heidelberg, 2012.

E. C. B. Matos and A. M. Moreira. BETA: a tool for test case generation based
on B specifications. CBSoft Tools, 2013.

E. C. B. Matos, A. M. Moreira, F. Souza, and R. de S. Coelho. Generating test
cases from B specifications: An industrial case study. Proceedings of 22nd IFIP
International Conference on Testing Software and Systems, 2010.

G. J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., Hoboken,
New Jersey, third edition, 2011.

J. Rushby. Verified software: Theories, tools, experiments. chapter Automated
Test Generation and Verified Software, pages 161-172. Springer-Verlag, Berlin,
Heidelberg, 2008.

M. Satpathy, M. Butler, M. Leuschel, and S. Ramesh. Automatic testing from
formal specifications. TAP’07: Proceedings of the 1st international conference on
tests and proofs, pages 95-113, 2007.

H. Singh, M. Conrad, S. Sadeghipour, H. Singh, M. Conrad, and S. Sadeghipour.
Test Case Design Based on Z and the Classification-Tree Method. First IEEE
International Conference on Formal Engineering Methods, pages 81-90, 1997.

F. M. Souza. Geragao de casos de teste a partir de especificagées b. Master’s thesis,
Natal, 2009.

J. B. Souza Neto and A. M. Moreira. Um estudo sobre geragdo de testes com
BETA: Avaliagao e aperfeigoamento. volume 2, pages 50-55, 2014.

H. Waeselynck and J. L. Boulanger. The role of testing in the B formal development
process. In Proceedings of Sixzth International Symposium on Software Reliability
Engineering, pages 58-67, 1995.

	Lecture Notes in Computer Science
	The Problem
	Related Work
	Proposed Solution
	Preliminary Work
	Expected Contributions
	Plan for Evaluation and Validation
	Current Status

