
Software Framework for Building Context-Aware Applications using
multiFacet Items

Anca Rarau, Kalman Pusztai, Ioan Salomie

Computer Science Department, Technical University of Cluj-Napoca
{anca.rarau, kalman.pusztai, ioan.salomie}@cs.utcluj.ro

Abstract

While on the move, the surrounding environment of

a mobile application may change quite often. The
mobile applications have to be able to properly react
to the context changes. The common approach to deal
with the application adaptation is based on rules. For
each action one must specify the set of rules that
triggers the action when the context changes. In this
approach the conflictive situations (two or more
contradictory actions being simultaneously performed)
have to be considered explicitly. The goal of this paper
is to present a software framework for building
context-aware applications. The adaptation
mechanism proposed by the framework successfully
manages the conflictive situations without requiring
the explicit description of the situations.

1. Introduction

Nowadays people expect their mobile applications
to always provide useful information or relevant
services within the current context. Location, nearby
resources, social environment, etc may give current
context. While on the move, the surrounding
environment of a mobile application may change quite
often. The mobile applications have to be able to
properly react to the context changes, i.e. the
application has to be context-aware. Therefore while a
context-aware application is being built, the
application has to be trained how to behave in different
contexts.

So far, the development of the context-aware
applications, with few exceptions, has been done in an
ad-hoc manner. The approach taken by ContextToolkit
[5] is worthy of notice as they built a general
architecture designed to support context-aware
applications. The application consists of acquire,
collect, transform, deliver and act-on-context
components. A systematic approach for the

development of the context-aware applications is
described in [1]. They use conditional rules to describe
the behavior of the application in different context.
Cooltown [7] resorts to the web programming model.
Each real world entity has a web presence represented
by a web page. These pages are automatically updated
when new information is collected about the entity that
it represents. In [2] they use reflection in order to
achieve the application adaptation to the context
changes.

 The common approach to deal with the application
adaptation is based on the rules [6, 8, 9]. For each
action one must specify the set of the conditions that
triggers the action when the context changes. In this
approach the conflictive situations, when two or more
contradictory actions are simultaneously performed,
have to be explicitly considered.

The goal of this paper is to present a software
framework for building context-aware applications.
The adaptation mechanism proposed by the framework
successfully manages the conflictive situations without
requiring their explicit description.

The rest of the paper is organized as follows. In
Section 2 we discuss the disadvantages of the classical
if-then rule approach. In Section 3 we present the
multiFacet abstraction. Section 4 presents the proposed
software framework. In Section 5 we shortly discuss
the infrastructure that deals with the context
management. In Section 6 we discuss the performance
issues. Section 7 concludes the paper.

2. Motivation

The common approach for the application
adaptation is the use of either explicit or implicit ‘IF
condition THEN action’ rules. The condition specifies
the state of the context. The action leads to a change in
the state of an entity. Therefore the if-then rule can be
rewritten as follows: ‘IF condition THEN change the
state of the entity’.

The disadvantage of using classical if-then rules is
the lack of implicit support for keeping the state of the
entity. It would be useful to memorize the entity state
when the condition becomes false and to restore the
state next time when the condition is true.
The following set of rules illustrates the situation.

Rule1: IF tom_in_living
 THEN light_setting = tom_light_setting
Rule 2: IF john_in_living
 THEN light_seting = john_light_setting

The rules describe a situation in which the light
level is automatically adjusted based on John’s or
Tom’s preferences whenever they enter the living
room. What happens if Tom while being in the room
changes his light level setting? Is the new level
memorized and used next time Tom enters the room?
As a matter of fact, the set of rules does not
successfully deal with this situation. To overcome this,
the set must include rules that capture the moment
when someone enters or leaves the room. The previous
two rules can be replaced by four rules:

Rule1: IF tom_enter
 THEN light_setting = tom_light_setting
Rule2: IF tom_exit
 THEN tom_light_setting = light_setting
Rule3: IF john_enter
 THEN light_setting = john_light_setting
Rule4: IF john_exit
 THEN john_light_setting = light_setting

What happens if while John is in the room Tom
enters the room? What will be the light level? Again,
the set of rules do not consider this situation. At least
two solutions can be imagined. The luminosity may be
adjusted based to John’s (first person who enters)
preference and it stays like that as long as John is in
the room regardless of Tom (second person) presence
in the room. Another approach is to use priorities in
order to decide upon the light level. E.g. people are
given priorities based on their age and luminosity is
always adjusted based on the preference of the eldest
person in the room. What happens if both John and
Tom are in the room and the luminosity is set
according to John’s wish, but John leaves the room?
The set of rules does not cover this particular situation.
Therefore we have to improve the set by adding some
new rules. Thus the designer of the collection of rules
must take into account every possible situation at
design time.

Another shortcoming of classical if-then rules is the
inability to deal with conflictive rules. In the following
example both conditions can be true simultaneously.

Rule1: IF tom_in_living
 THEN tv_switch = off
Rule2: IF john_in_living
 THEN tv_switch = on

The conflictive situation occurs when both John
and Tom are in the living room as the actions
requested by the two rules are opposite. A possible
solution is to add a new rule that explicitly considers
the contradiction.

Rule3: IF tom_in_living and john_in_living
 THEN tv_switch = off

This approach becomes more and more intractable
when the number of people increases. For the rule
designer the situation may become unmanageable as
the number of situations that have to be covered by
rules increases. It seems that we need some kind of
mechanism to place all the rules regarding the
tv_switch entity together. This mechanism should be
able either to work with priorities assigned to the
individual rules or to take into account the first rule
whose condition becomes true and neglect the other
rules even if their conditions become true.

We continue illustrating the conflictive rules by the
following example:

Rule1: IF tom_in_office
 THEN music_player_state=play_on
Rule2: IF boss_in_tom’s_office and working_hours
 THEN music_player_state=play_off

Again the two rules can be true at the same time
that leads to some on/off opposite actions. In this case,
the solution does not imply adding a new rule, but
rather assigning priorities to each rule. By assigning
the highest priority to the second rule, the player
device will be quiet during working hours as long as
the boss is in the office regardless of Tom presence.

The above examples clearly show the
disadvantages of the classical if-then rule approach. In
order to overcome these disadvantages all the rules
concerning the same entity must be put together. In
this paper we discuss the multiFacet item abstraction
that introduces a control mechanism for all the rules
regarding an entity.

3. multiFacet item abstraction

The context for an application running on a mobile
device is changing all the time. The application must
adjust to the ever-changing circumstances by exposing
and hiding parts of its functionality. An application
consists of both components that are context sensitive

and components that do not depend on the context. A
context sensitive component can be seen as an item
with many facets, or a multiFacet item. A facet is
aware only of some part of the item functionality. A
facet has a condition that behaves like a switch, in the
sense that if the condition is true the facet is exposed
otherwise the facet is hidden. When a facet is exposed
the associated functionality is available to be used by
another application or user. When a facet is hidden the
associated functionality is not available to be used by
another application or user.

The multiFacet item is notified whenever the
context changes. The multiFacet item reacts by
changing the currently exposed facets. At a given
moment, the functionality of the item as a whole is
given by the sum of the functionality of every exposed
facet. Thus, by the facets exposing and hiding, the
functionality of the item goes dynamically richer or
poorer.

What happens if the conditions associated to the
various facets become true simultaneously? Which of
them will be exposed? All facets? Just a part of them?
In the following paragraph we describe three exposure
strategies.

3.1. Exposure strategy

The strategies for exposure specify not only the
maximum number of facets that can be exposed at a
certain moment, but also which facet(s) is currently
exposed. Actually, the exposing strategies specify the
behavior of the set of rules in the case two or more
rules have their condition true. First option (exclusive
strategy) is to trigger the oldest rule having the
condition true. Second option (priority based exclusive
strategy) is to trigger the highest priority rule having
the condition true. Third option (non-exclusive
strategy) is to trigger any rule whenever its condition
becomes true.
Table 1 summarizes the features of the exposing
strategies.

3.1.1. Exclusive strategy. Exclusive strategy allows at
most one facet to be exposed at a given moment. If,
while the facet is exposed, the conditions for some
other facets become true, these facets will not be
exposed. When the condition of the exposed facet
becomes false, it verifies if there are some other facets
to be exposed (i.e. with true conditions). If there is just
one facet, the facet will be exposed. If there are two or
more facets the one whose condition became true first
will be exposed.

Below is an example for the exclusive strategy.
Imagine an intelligent room having a central module
able to detect the occupants of the room and to

accordingly adjust the light and temperature to increase
their comfort. Let John and Tom be the two persons
the room is aware about. The central module can be
designed as an exclusive strategy 2-facet item. One
facet (FJ) knows John’s preferences while the other
one (FT) knows Tom’s light and temperature
preferences. If Tom enters the room first, the 2-facet
item will expose FT so the environmental conditions
will be set according to Tom’s wish. Tom can modify
the environmental conditions and the intelligent room
will store them for later use. If John enters the room
while Tom is in the room the setting does not change
because the exclusive strategy has been chosen at
design time. If Tom leaves the room, FT is hidden and
FJ is exposed so the temperature and light values are
changed to fit John’s wish.

Table 1. Features of the exposing strategies

Strategy No of maximum
exposed facets

What facet is
exposed?

Exclusive 1

Oldest facet having
true condition.

Priority-based
exclusive 1

Highest priority facet
having true condition.
In case there are many
the oldest one is taken.

Non-exclusive all

Any facet having true
condition.

3.1.2. Priority based exclusive strategy. Priority
based exclusive strategy allows at most one facet to be
exposed at a given time, namely the highest priority
facet having the condition true. If, while a facet is
exposed, the condition for another facet becomes true,
the priority of the latter facet is verified. If the priority
is higher than the priority of the currently exposed
facet, then the current facet will be hidden while the
latter facet will be exposed. When the condition of the
exposed facet becomes false, it verifies if there are
some other facets to be exposed (i.e. with true
conditions). If there is just one facet, that facet will be
exposed. If there are more facets the one with the
highest priority is chosen to be exposed. If there is
more then one facet with the highest priority, the one
whose condition became true first will be exposed.

Here is an example for priority based exclusive
strategy. A service that controls how a music player
works can be modeled using a priority based exclusive
strategy 2-facet item. For the sake of simplicity, we
assume that the music player has only the two basic
functions: play on and play off. One facet Ton exposes
and automatically triggers ‘play on’ function when
Tom is in the office. The other facet Toff exposes and
automatically triggers ‘play off’ when during the

working hours the boss is in the office. The conflictive
situation that occurs when both facets should be
exposed is successfully overcome by assigning a
higher priority to Toff.

3.1.3. Non exclusive strategy. Non exclusive strategy
permits any number of facets to be exposed at a given
moment. All facets having true conditions are exposed.

Here is an example for non exclusive strategy.
Sometimes it is useful for the participants to a meeting,
to get a warning before meeting starts. More and more
people carry with them mobile devices on which a
warning service can be easily installed. The warning
service takes the time when the meeting starts from a
scheduler application and produces a sound alarm 10
minutes before starting off the meeting. If the level of
the noise in the environment is high, the level of the
sound alarm also increases. If the level of noise is very
high, a vibration alarm will also be triggered. We have
designed the warning system as a 3-facet non exclusive
strategy item having the following facets:

F1: IF noise_level < high
 THEN set the alarm at normal level
F2: IF noise_level ≥ high
 THEN set the alarm at high level
F3: IF noise_level > very_high
 THEN enhance the alarm by vibration

 In case the level of noise overtakes the high level,
both F2 and F3 facets are exposed. The alarm will be
set at high level and will be enhanced by vibration.

4. Software framework for context-aware
applications

So far, the development of the context-aware
applications mostly has been done in an ad-hoc

manner. A notable exception is ContextToolkit [5]. An
ad-hoc manner comes with an important disadvantage:
the lack of reusability. In order to help the field of the
context-aware systems become mature, it is
compulsory to provide the right tools to the application
developers. A software framework is a mechanism that
promotes the reuse of the architectural design and
code. Consequently, the effort and time involved in the
development of the context-aware applications is
significantly reduced.

CAIntConstant

AbstractFacet

MultifunctionalItem

CustomizableItem

CAIntVariable CAVoidFunction

CAClass

CATypedClass

ExclusiveStrategy

PriorityBasedExclusiveStrategy

NonExclusiveStrategy

AbstractMultiFacetItem

AbstractListener

AbstractFacetCollection

Facet

AbstractStrategy

MultiFacetItem

Listener

Identifier

EnterListenerForMI ExitListenerForMI

Figure 1. UML class diagram of the framework and its instances

In the previous section we gave the rationale for the
need of using the multiFacet item as a mechanism to
coordinate all the rules concerning an entity. Having
the multiFacet abstraction as a starting point, we put
forward a software framework for the development of
context-aware applications. This section describes the
components of the framework as well as the
relationships among them. We also present a collection
of various types of multiFacet items that can be
successfully used for developing context-aware
applications.

4.1. Framework components

The abstract classes AbstractMultiFacetItem and
AbstractFacet model the essential elements of the
multiFacet abstraction and the relationship between
them. These are superclasses for the main components
of the framework, MultiFacetItem and Facet. These
main components encapsulate the behaviour that is
common for all the multiFacet items. The
ExclusiveStrategy, PriorityBasedExclusiveStrategy and
NonExclusiveStrategy are concrete classes that
implement the three exposure strategies. The selection
of the strategy is done when the item is created and
cannot be modified later. A notification procedure may
be triggered when a facet changes its state from the

exposed to hidden or conversely. The abstract class
AbstractListener is the superclass for all listeners
involved in the notification procedure. In figure 1,
which illustrates the UML class diagram of the
framework and its instances, the classes that belong to
the framework are shaded.

4.2. Types of multiFacet items

By instantiating the framework one can build
various multiFacet items each with its specific
behavior. The instantiation process involves one or
more of the following steps:
1) extend MultiFacetItem and AbstractListener

classes;
2) make a decision about listeners’ availability. The

listeners may be available or not to the application
developer. The listeners should be made
unavailable to the application developer when they
hold predefined bevahiour, which does not have to
be altered.

3) decide upon the notification granularity. The
notification may happen at the item level or the
notification may take place at the facet level. The
granularity is an intrinsic feature of the item type.
Therefore the granularity is not a choice of the
application developer who uses the item, but it is a
decision of the developer who creates the type of
the item by instantiating the framework.

4) decide upon the suitable exposing strategy. For
some item types the strategy is an intrinsic feature
of the item, while for some other items it can be
chosen by the application developer, when the
item is created.

One of our research goals has been to provide
context-awareness at the programming language level.
In order to achieve this goal we took a first step by
developing a framework that provide us with context-
aware identifiers and objects. The second step is to
extend the C# language with context-aware identifiers
and objects. As the focus of this paper is to discuss the
proposed software framework for developing context-
aware applications we will not consider for discussion
the extension of the C# language.

Another research goal has been to discover and
provide ready-made multiFacet items that can be
useful in various context-aware applications. We have
not overlooked the situation in which peculiar
applications need customizable items.

4.2.1 multiFacet identifiers: constant, variable,
function (CAIntConstant, CAIntVariable and
CAVoidFunction classes). In contrast with a common
identifier, a multiFacet identifier holds more than one
value/behavior, each defined for a certain context.

Thus, given a context, the multiFacet identifier exposes
exactly one value/behavior. We could say that given a
context, a multiFacet identifier is similar to a common
identifier. As soon as the context changes the
value/behaviour of the multiFacet identifier also
changes in order to accommodate to the new context.

In order to implement the multiFacet identifier we
used a multiFacet item having the exclusive strategy as
an intrinsic feature.

A multiFacet constant is an identifier having a
name, a type and a collection of values, one value for
each facet. As for any common constant, the value may
not be changed by assignment operation. In the
following example we declare an integer constant
having two facets and two values, 10 and 100, one for
each facet.

CAIntConstant ctxMaxParkingTime;
ctxMaxParkingTime = new CAIntConstant(0);
ctxMaxParkingTime.Attach(dayCondition, 10);
ctxMaxParkingTime.Attach(nightCondition, 100);

The overall value of the constant is given by the
value associated to the current exposed facet. If for the
current context no facet has been defined, then the
overall value takes the default value (0 in the example
above) specified at the creation time.

A multiFacet variable is an identifier having a
name, a type and a collection of values, one for each
facet. The values may be changed by assignment
operation. In the following example we declare an
integer variable having two facets. The initial value for
the case johnCondition is true will be 10, while for the
case tomCondition is true will be 20.

CAIntVariable ctxLightSettings;
ctxLightSettings = new CAIntVariable(0);
ctxLightSettings.Attach(johnCondition, 10);
ctxLightSettings.Attach(tomCondition, 20);

In a certain context, the overall value of the
variable is given by the value associated with the
current exposed facet. If for the current context no
facet has been defined, then the overall value initially
takes the default value (0 in the example above)
specified at the creation time. While a facet is exposed,
the overall value may be changed. Therefore, when the
current exposed facet gets hidden the value assigned
with the facet is updated to the overall value.

For a common function different calls may trigger
different behaviours for various lists of the actual
parameters. For a multiFacet function the behaviour is
specified not only by the set of parameters, but also by
the current context. A multiFacet function behaves
depending of the context, but it has the same signature
in every context. To illustrate a multiFacet function we

define a contextual alarm. During the afternoon the
alarm behaves as a sound alarm, while during the night
the alarm behaves as a light alarm. With a 2-facet
function we can easily implement this alarm, by
linking one function to each facet.

CAFunction ctxAlarm;
ctxAlarm = new CAFunction(

 new VoidDelegate(NoAlarm));
ctxAlarm.Attach(afternoonCondition,
 new VoidDelegate(Sound));
ctxAlarm.Attach(nightCondition,
 new VoidDelegate(Light));

void NoAlarm(int p_Time, int p_Strength) { … }
void Sound(int p_Time, int p_Strength) { … }
void Light(int p_Time, int p_Strength) { … }

At a given moment, the overall behavior is given
by the function linked to the current exposed facet. If
for the current context no facet has been defined, then
the overall behavior is given by a default function
(NoAlarm in the example above) specified at the
creation time.

4.2.2. multiFacet objects (CATypedClass and
CAClass classes). Does it make any sense to create
multiFacet objects? In order to answer this question we
put forward the case of an object having a data
member that takes different values in different
contexts. This object is responsible for adjusting the
subtitles on a screen. If the user is less than 1 meter
away from the screen the font size is set to SMALL. If
the user is somewhere between 1 meter and 3 meters
the font size increases at MEDIUM, while if the
distance between the user and the screen is greater than
3 meters but smaller than 5 meters the font size is
LARGE. It seems useful to have the object knowing
the three font sizes. The object also has a method
called change() that actually modifies the font size.
The method is automatically triggered when the
distance to the screen changes. Moreover the method
generates a sound warning when the user is less than
1 meter close to the screen. Both the member data and
the method depend on the context. The context-aware
application developer might easily implement this
scenario if a three-facet object was made available.

The 3-facet object responsible with the subtitle
adjustment will be an instance of CATypedClass,
having objects of type FontSize and
SpecializedFontSize on the facets.

We have implemented the multiFacet object as a
container of objects, an object for each facet. Given a
context, the overall behavior of the multiFacet object is
given by the behavior of the object linked to the
current exposed facet.

We have implemented two categories of multiFacet
objects: strongly typed and weakly typed. The former
means that all the objects attached to the facets have to

be of a certain type. The latter means that no type
checking is done when an object is linked to a facet.
A default object is mandatory to be specified at the
multiFacet object creation. The default object is
twofold:
- the set of the default object methods actually gives

the set of the multiFacet object methods i.e. it
defines the multiFacet object interface

- if for the current context no facet has been
defined, the overall behaviour of the multiFacet
object is given by the default object

In order to determine the actual method called on a
multiFacet item we use a lookup algorithm.

The lookup algorithm for strongly typed objects:
1. check if the default object has the called method.

Yes: go to step 2. No: raise an exception.
2. call the method on the object linked to the current

exposed facet

The lookup algorithm for weakly typed objects:
1. check if the default object has the called method.

Yes: go to step 2. No: raise an exception.
2. check if the object linked to the current exposed

facet has the called method. Yes: call the method.
No: go to step 3

3. call the method on the default object.

A weakly typed multiFacet object is an instance of
CAClass library class while a strongly typed
multiFacet object is an instance of CATypedClass.

SpecializedFontSize underone =
 new SpecializedFontSize(SMALL, form);
FontSize undertwo = new FontSize(MEDIUM, form);
FontSize underThree = new FontSize(LARGE, form);
CATypedClass subtitle =
 new CATypedClass(typeof(FontSize),
 new FontSize(form));
subtitle.Attach(oneMeterCondition, underone);
subtitle.Attach(underThreeMetersCondition, underthree);
subtitle.Attach(underFiveMetersCondition, underfive);

If the user is around 1 meter away from the screen
underone gives the subtitle object behavior. If there are
more than 1m but less than 3 meters between the user
and the screen then subtitle object behaves as
underthree. If the distance is between 3 meters and
5 meters underfive specifies the overall behaviour of
subtitle. Otherwise the subtitle behaves as the default
object.

The following examples illustrate how to use
various multiFacet identifiers and objects.

//the usage of ctxMaxParkingTime constant
if(parkingTime > ctxMaxParkingTime) { … }

//assign a value to ctxLightSettings variable
ctxLightSettings.Assign(25);

//the use of ctxLightSettings variable
int settings = ctxLightSettings + 3;

//call ctxAlarm function with two parameters
ctxAlarm.Call(10, 20);

//call GetString method on subtitle object
subtitle.InvokeMethod(“GetString”);

Our intention was to provide a way of using
multiFacet identifiers and objects as close as possible
to the way common identifiers and objects are used.
Sometimes the gap between the usage of the
multiFacet and common identifiers / objects could not
be filled entirely. One case we came across was the
assignment operator for a multiFacet identifier. We
have developed the framework in C# which does not
support the overloading of the assignment operator.
Therefore we had to come with another solution for
assigning a value to a multiFacet variable, i.e. Assign
method for assigning values to the multiFacet
variables. We used the InvokeMethod for calling a
method on a multiFacet object.

From the programmer point of view, the
description of the reaction to the context changes is
done only once at the declaration or creation time.
Later in the code the identifiers and objects expose and
hide their facets automatically, without any explicit
action done by the application developer. When the
time comes for the multiFacet identifiers and objects to
be used, they will be ready with the right facet
exposed.

Notification

Besides knowing the context in which a multiFacet
item runs it is also important to know the moment
when the item ‘enters’ or ‘leaves’ the context. In order
to catch these moments two listeners are attached to
every facet. One listener catches the moment when the
item enters a context, i.e. when the facet is being
exposed. The other listener catches the moment when
the item leaves the context, i.e. the facet is being
hidden. These listeners may or may not be available to
the application developer.

For multiFacet identifiers and objects, we have
forbidden the application developer to modify the
predefined behavior of the listeners. Though in some

situations the application developer has to be able to
insert code to be executed on the expose or hide events
provided that the code is not able to modify the
predefined behaviour of the listeners. Therefore we
provide a notification mechanism accessible to the
developer. There are two notifiers, one for exposing
the facet and the other for hiding the facet. A notifier is
a function that returns void and takes no parameter.
The notifier is called post event in the following sense:
on exposing a facet, first the facet is exposed then the
notifier code is called. On hiding a facet, first the facet
is hidden then the notifier code is called.

We will consider again the light settings scenario.
It would be nice to be able not only to adjust the light
according to the people preferences, but also to display
the preferences and the people name. For this we resort
to the notification mechanism. EnterShowLightSettings
and ExitShowLightSettings are the two notifiers called
when a facet is being exposed and hidden respectively.

CAIntVariable ctxLightSettings;
Change inNotify =

 new Change(EnterShowLightSettings);
Change outNotify =
 new Change(ExitShowLightSettings);
ctxLightSettings =
 new CAIntVariable(inNotify, outNotify);
ctxLightSettings.Attach("john", johnCondition);
ctxLightSettings.Attach("tom", tomCondition);

public void EnterShowLightSettings()
{

// display who is in the room:
// display the light settings

}

public void ExitShowLightSettings()
{

//display ‘none’ to indicate that none is
//in the room
//display the default light settings

}

4.2.3. Multifunctional item (MultifunctionalItem
class). In this paragraph another instance of the
framework, called multifunctional item, is presented.
For this item a facet can be seen as a gate to a set of
services. If the facet is exposed then the gate is opened
that makes the services to be available. If the facet is
hidden then the gate is closed subsequently the
services are unavailable.

We suppose that there is a mechanism for uniquely
identifying each service.

Let = { sS 1, s2, …, sn } be the set of services provided
be the multifunctional item and let = { FF 1, F2, …,
Fm } be the set of its facets.

Property 1
Each facet has a non-empty collection of services

∀ Fi ∃ = { siS i1, si2, … }

where , i ∈ {1, ...,m} and ≠ SSi ⊆ iS φ

Property 2
Every service is exposed on at least one facet.

∀ sk F∃ i so that sk∈ iS
where k∈{1, …,n} and i ∈ {1, …,m}

Property 3
The same service may be exposed on two or more
facets.

∃ sk so that sk ∈ and siS k ∈ jS
where k ∈ {1, …,n} and i, j ∈ {1, …,m} i≠j

Property 4
Two facets may not expose the same set of services.

∃/ Fi, Fj so that = iS jS
where i, j ∈{1,...,m} and i≠j

Notification
The listener mechanism of the multifunctional

items is similar to the mechanism used by the
multiFacet identifiers. But unlike identifiers, which call
the same listener Listener both for exposing and hiding
a facet, multifunctional items need two listeners.
EnterListenerForMI is triggered when a facet is
exposed, while hide facet event calls
ExitListenerForMI. These listeners perform an extra
step before calling the notifiers. They update the
collection of the current exposed services. The
notifiers are defined at the item level, bot at the facet
level. The developer has the freedom to choose the
exposing strategy.

In order to create a useful instance of a software
framework the instance usage must be carefully
considered. Several master students built a number of
applications, which among other items also contain
multifunctional items. Reviewing the way they used
the items it helped us to better understand their usage.
We have reached the conclusion that often the
exposing and hiding notifiers are identical. This clearly
shows that what really matter is not to catch the
‘moment’ when a facet turns on/off, but the ‘moment’
when the collection of current exposed services is
updated. Therefore the constructor for the
multifunctional item allows specifying an updating
notifier in addition to the exposing and hiding notifiers
and strategy.

public MultifunctionalItem(AbstractStrategy p_Strategy) ;
public MultifunctionalItem(AbstractStrategy p_Strategy,
 Change p_Enter, Change p_Exit);
public MultifunctionalItem(AbstractStrategy p_Strategy,
 Change p_Enter, Change p_Exit,
 Change p_ UpdateExposedServices);

There are two options for attaching services to a
facet: either a whole collection at once or individual
services. We provide APIs to support both options. For
the first option, the call not only attaches the services
to the facet, but also creates the facet having the
context condition provided as first parameter. In case
the facet already exists, the call fails.

public int Attach(ILogicalCondition p_Condition,
 AbstractServiceCollection p_Services);
public int Attach(ILogicalCondition p_Condition,
 AbstractServiceCollection p_Services, int p_Priority);
public int Attach(string p_Description,
 ILogicalCondition p_Condition,
 AbstractServiceCollection p_Services);
public int Attach(string p_Description,
 ILogicalCondition p_Condition,
 AbstractServiceCollection p_Services,
 int m_Priority);

For the second option, attaching individual
services, the approach is opposite. The API call does
not have the power to create facets, therefore an
individual service may be attached only to an existing
facet.

public int Attach(ILogicalCondition p_Condition,
 AbstractService p_Service);

For the items we have presented, the application
developer cannot directly access the listeners, but she
may access the notifiers. The notifiers are weaker than
listeners in the sense that they cannot change the
predefined behavior triggered when a facet turns
on/off, but they can add new behaviour to the
predefined behaviour.

A service is currently exposed (consequently can
be called by the user or other application) if there is at
least one currently exposed facet and the service has
been attached to that facet. What happens when the
facet is being hidden while the service is still in use?
The proper behaviour depends at a great extent on the
service itself. The solution involves both the
framework and the service developer. The service
provides a callback that contains customized behavior
for stopping an in use service. The callback is called
when the facet is being exposed or hidden.

4.2.4. Customizable item (CustomizableItem class).
Some context-aware situations can be dealt with only
if the developer holds full control over the multiFacet
item. The developer has to be in charge for choosing
the exposing strategy while creating the item.
Moreover, the developer may design the listeners from
the scratch. The listeners having finer granularity may
be specified at the facet level, not at the item level.
Thus, the API for creating a facet specifies a context
condition, an object that will be available when the
facet is exposed and two listeners.

public int Attach(ILogicalCondition p_Condition,
 Object p_Value,
 AbstractListener p_EnterListener,
 AbstractListener p_ExitListener);

4.2.5. Summary. The exposing strategy is preset and
cannot be changed for the multiFacet identifiers and
objects, but it is the developer’s choice for both the
multifunctional and customizable items. However once
the decision on the strategy is made it cannot be
changed later. The granularity of the listeners /
notificators is either coarse (at the item level) for
identificators, objects and multifunctional items or fine
(at the facet level) for customizable items.
Table 2 illustrates the relationship between the types of
items, the exposing strategies, the notification
granularity and the availability of the listeners.

5. Infrastructure

The context-aware applications require an
infrastructure able to collect and process context
related information. The infrastructure disseminates
the context information to the subscribing applications
while dealing with scalability, security and privacy [4].
The decoupling of application from the context
management relieves the application developer from
having to know about a specific context format [3].

The applications build with the proposed software
framework need a support infrastructure that notifies
the multiFacet items when the context changes.
Actually, an item gets notified only if one of its context
conditions changes. If this is the case, the item is
signaled about the modified context condition and the
new truth-value. Having the condition, the item
identifies the facet and having the truth-value the item
knows if the facet is to be exposed or hidden. An
application may consist of context-aware as well as
non-context-aware components. Various context-aware
components may have facets whose conditions are
identical. It would be ineffective to check the same
condition more than once. We use a publisher-
subscriber architecture for building the dissemination
mechanism of the messages about context changes.
Both the publisher and the subscriber are multiFacet
items. The subscribers are those items that have to be
notified when the context changes.

 Table 2. Types of items and their features

Item type Exposing strategy Notification
granularity

Listener
availability

multiFacet identifier

Exclusive

Item level

No

multiFacet object

Exclusive

Item level

No

Multifunctional item

Exclusive, Priority based
exclusive, Non exclusive

Item level

No

Customizable item

Exclusive, Priority based
exclusive, Non exclusive

Facet level

Yes

While a multiFacet item subscribes to the publisher
links are created between item facets and publisher
facets. A link connects a facet from the item to the
facet of the publisher having the same context
condition.

In the current version of our infrastructure the
publisher is the dissemination point for the messages
about the context changes. When the context changes
the publisher reacts by requesting each facet to re-
evaluate its truth-value. If the truth-value for a facet F
of the publisher has been modified the fact is
propagated to every item having a link to F. Thus a
context condition is checked just once no matter how
many items use it.

6. Experiments

Both context-aware components (i.e. multiFacet
items) and non-context-aware components can be
found in a context-aware application. The latter come
with the overhead of the updating the current facet(s)

of the items. We measured this overhead using a HP
iPAQ rx3700 at 400MHz and 152MB. We made the
measurements for three cases: (1) the context-aware
components are 1-facet items, (2) the context-aware
components are 2-facet items, (3) the context-aware
components are 4-facet items. For each case we varied
the number of items up to 30 and consider a repository
of 30 context messages. The measurements, illustrated
in figure 2, show an overhead of around 19ms for the
case the collection of the context-aware components
contains only one multiFacet item. The overhead goes
up to 68ms for the case the collection of context-aware
components contains 30 multiFacet items each with 4
facets.

7. Conclusions

As the context-aware systems become more
mature, the ad-hoc developing of these systems need to
be replaced by systematic approaches. In this paper we
presented a reusable approach for creating context-
aware applications. The multiFacet abstraction and the
software framework build upon the abstraction provide
support for the development of the applications able to
adapt to the context. The adaptation mechanism
proposed by the framework works out the conflictive
situations without requiring the explicit description of
these situations. Thus, simplifying the task of creating
context-aware applications. Those parts of the
application that are context-sensitive will be modeled
as multiFacet items. We introduced various types of
items each with specific behavior.

8. References

[1] G. Biegel, V. Cahill, A Framework for Developing
Mobile, Context-aware Applications, 2nd IEEE Conference
on Pervasive Computing and Communications, Orlando, FL,
March 14-17

[2] L. Capra, W. Emmerich, C. Mascolo, CARISMA:
Context-Aware Reflective mIddleware System for Mobile
Applications, IEEE Transactions on Software Engineering,
Vol. 29, No. 10, October 2003, pp. 929-945

[3] G. Chen, D. Kotz, A Survey of Context-Aware Mobile
Computing Research, Technical Report: TR2000-381,
Dartmouth College, 2000

Figure 2. The overhead introduced by the multiFacet

items

[4] G. Chen, D. Kotz, Context Aggregation and
Dissemination in Ubiquitous Computing Systems, 4th IEEE
Int. Workshop on Mobile Computing Systems and
Applications, 2002

[5] A.K. Dey, Providing Architectural Support for Building
Context-Aware Applications, PhD thesis, College of
Computing, Georgia Institute of Technology, December
2000

[6] T. Gu, K. Pung, D.Q. Zhang, A service-oriented
middleware for building context-aware services, Journal of
Network and Computer Applications, Volume 28, Issue 1,
January 2005, pp.1-18

[7] T. Kindberg, J. Barton, J. Morgan, G. Becker, D.
Caswell, P. Debaty, G. Gopal, M. Frid, V. Krishnan, H.
Morris, J. Schettino, B. Serra, People, Places, Things: Web
Presence for Real World, IEEE Workshop on Mobile
Computing Systems and Applications, Monterey CA,
December 2000

[8] B.N. Schilit, N. Adams, R. Want, Context-Aware
Computing Applications, Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, December 1994,
pp. 85-90.

[9] S.S. Yau, F. Karim, An Adaptive Middleware for
Context-Sensitive Communications for Real-time
Applications in Ubiquitous Computing Environments, Real-
Time Systems, Volume 26, Issue 1, January 2004, pp. 29-61

