
Iterative Development of Transformation Models

by Using Classifying Terms

Frank Hilken1 Loli Burgueño2 Martin Gogolla1 Antonio Vallecillo2

1University of Bremen, Bremen, Germany
{fhilken|gogolla}@informatik.uni-bremen.de

2University of Málaga, Málaga, Spain
{loli|av}@lcc.uma.es

Abstract

In this paper we propose an iterative process for the correct speci�ca-
tion of model transformations, i.e., for developing correct transforma-
tion models. This permits checking the correctness of a model trans-
formation speci�cation before any implementation is available. The
proposal is based on the use of classifying terms for partitioning the
input space and for simplifying the testing process.

1 Introduction

As model-driven engineering (MDE) is progressively being adopted by industry, model transformations (MT)
are becoming commonplace. Their complexity is also growing, since the problems they need to deal with are
increasingly harder. From simple structural migration, model queries or pattern-based code-generation, they
now have to cope with complex model synthesis, behavioural analysis and stream data processing. This has led,
among other things, to the need of engineering model transformations [7].

In this context, the speci�cation of a model transformation becomes a critical task, in particular for checking
the correctness of its implementations. Please note that correctness is not an absolute property, but needs to
be checked against a contract, or speci�cation, which determines the expected behaviour, the context whether
such a behaviour needs to be guaranteed, as well as some other properties of interest. The speci�cation states
what should be done, but without determining how. The problem, again, is that the speci�cation of a model
transformation can be as complex as the transformation itself.

Here we will make use of the fact that, in essence, a model transformation is an algorithmic speci�cation
(either declarative or operational) of the relationship between two or more models, and more speci�cally, of the
mapping from one model to another [12]. Thus, one way to specify a model transformation is by means of a
transformation model that de�nes such a relation [3].

In this paper we propose an iterative process for the correct speci�cation of model transformations, i.e., for
developing correct transformation models. This is done by testing the relationship speci�ed by the transfor-
mation. We use classifying terms [5] to implement a divide-and-conquer strategy that permits simplifying the
analysis of the mappings established by the model transformation, by focusing on particular input models. This
approach is based on the ideas proposed by equivalence partitioning, a software testing technique that divides
the input data of a software unit into partitions of equivalent data from which test cases can be derived. Once
a problem is detected, the speci�cation is revised to solve it. This process is iterated until the speci�cation is
found free of errors.

One additional bene�t of our approach, and a di�erence with regard to previous proposals, is that it permits
testing the speci�cation without needing an implementation of the model transformation, which is the common
way in which model transformation speci�cations and implementations are tested (by checking one against the
other, i.e., using a particular kind of redundancy testing). In our approach, model transformation speci�cations
can be tested on their own, before any implementation is available.

BibTeXFile

name : String

BibTeXEntry

title : String

Proc

yearE : Integer

yearP : Integer

PersonB

name : String

InProc

booktitle : String

inProc*

author1..*

proc*

editor1..*

entry*

file1

(a) BibTEX Model

PersonD

name : String

Book

title : String

DocBook

Article

title : String

article*

author1..*

article*

bookA1

book*

docBook1

bookE*

editor1..*

(b) DocBook Model

Figure 1: Separate initial models used as the base for the transformation model.

The structure of this paper is as follows: Section 2 presents the case study and describes the generation of test
cases. The iterative process of the transformation model development is presented in Sect. 3. Section 4 compares
our work to related topics of interest. Finally, Section 5 concludes the paper and presents future work.

2 Preliminaries

Here, we develop a transformation model using a test-driven approach. Assisted by a model validator that
completes partial object diagrams to consistent system states, bugs in the model description are identi�ed and
the transformation model is iteratively �xed until it is complete, works as expected and no more bugs can be
detected.

2.1 Running Example

The two initial models, the transformation is developed for, are simple bibliography managers shown in Fig. 1.
One resembles the information of BibTEX �les and the other resembles the DocBook format. At the top of the
structure is the BibTeXFile or the DocBook with entries for proceedings and inproceedings that will be mapped
to books and articles, respectively. Additionally, authors and editors are saved.

Di�erences in the models exist in the structure how the information is saved and the capabilities saved infor-
mation. For instance, the BibTEX model saves the year of the event (yearE) and the year of publication (yearP)
for proceedings, which are not present in the DocBook model. Therefore, the transformation model will not be
able to cover all attributes of the models.

2.2 Characteristics of Classifying Terms

Classifying terms [5] are an instrument to explore model properties. They are employed in the model validation
and veri�cation process when one has a UML and OCL model given, and one has in addition a so-called
con�guration that speci�es a �nite search space connecting the models elements, basically classes, associations,
attributes, and datatypes, with �nite sets of possible populations. As an important validation task, the developer
might want to see all object models that satisfy the UML and OCL class model and that �t to the con�guration.
Classifying terms give the developer an explicit option to formulate their understanding of two object models
being di�erent. Thus when the developer scrolls through all object models matching the UML class model, the
OCL invariants and the con�guration, they will only encounter models with di�erent characteristics with respect
to the classifying term.

The technical realization works as follows. The developer speci�es a closed OCL query term, i.e., a term
without free variables, that can be evaluated in an object model and that returns a characteristic value. This
term is called `classifying term'. Each newly constructed object model has to show a di�erent characteristic value
for the classifying term. The classifying term determines an equivalence relationship on all object models. Two
object models with the same characteristic value belong into the same equivalence class. Our approach decides
to choose only one representative from each equivalence class.

The de�nition of the classifying terms corresponds to the mapping that the developer has in mind about the
transformation, and how it should map source models of each source equivalence class into target models of the
corresponding target class. In this sense, the source and target classifying terms should be `in correspondence'.
Our approach can also help checking such expected mappings.

2.3 Test Case Generation with Classifying Terms

In order to e�ciently test our transformation model, we create test cases using classifying terms. This technique
results in test cases covering developer chosen equivalence classes that are determined by the classifying terms.
As a result, exactly one test case is automatically generated for each equivalence class. They have a much broader
coverage than only few manual tests. Depending on a clever choice for the classifying terms, the advantages are
faster test execution, due to a smaller test suite, as well as a higher error detection rate per test case that cover
many, if not all, errors already.

We de�ned three classifying terms for the source metamodel and three for the target metamodel of our
running example. They infer eight equivalence classes in each one. The source classifying terms focus on
di�erent characteristics of the input models of the transformation. First, we want to have input models in which
proceedings have di�erent conference event and publication years, and other in which they coincide. Second, we
want to have some sample input models in which two editors of proceedings invite the other to have a paper
there; respectively, we also want to have input models in which this �manus-manum-lavat� situation does not
happen. Finally, we want to have some source models with proceedings edited by one of the authors of the
papers in the proceedings, and other input models with no �self-edited� proceedings:

[yearE_EQ_yearP]
Proc.allInstances->forAll(yearE=yearP)

[noManusManumLavat]
not Person.allInstances->exists(p1,p2 | p1<>p2 and p1.proc->exists(prc1 |

p2.proc->exists(prc2 | prc1<>prc2 and InProc.allInstances->select(booktitle=prc1.title)->
exists(pap2 | pap2.author->includes(p2) and InProc.allInstances->

select(booktitle=prc2.title)->exists(pap1 | pap1.author->includes(p1))))))

[noSelfEditedPaper]
not Proc.allInstances->exists(prc | InProc.allInstances->exists(pap |

pap.booktitle=prc.title and prc.editor->intersection(pap.author)->notEmpty))

The classifying terms for the target models identify properties of interest in the target space, such as self-edited
books, or books which are authored by a single person. They are not shown here for space reasons.

3 Developing a Transformation Model Assisted by Completions

The process of the transformation model development is outlined in Fig. 2. A �rst revision is manually created
based on the speci�cation of the transformation. Using the test cases generated by classifying terms, a veri�cation
tool simulates the transformation by completing the transformation model. The results are checked against the
speci�cation and errors are �xed by re�ning the model until the transformation complies with the speci�cation.

Check for faults
using completion

Bug free?

Fix faults by refining
Transformation Model

Manually create initial
Transformation Model

yes
no

Figure 2: Overview of the iterative development process.

3.1 Initial Transformation Model

We gave the metamodels to an experienced developer with knowledge in OCL and the description in natural
language of the transformation model. Basically, each BibTeXFile should have a direct correspondence with
a DocBook; each Proc with a Book; each InProc with an Article, and each PersonB with a PersonD. More-
over, all the relationships between the source objects are kept in the target model but there exists a new one
between a book and an article when the corresponding InProc has as booktitle the corresponding Proc. With
this, the developer provided the following four constraints (one for every pair of objects) as the transformation
speci�cation.

context TM inv BibTeX2DocBook:
BibTeXFile.allInstances->forAll(file | DocBook.allInstances->exists(dB |

file.entry->selectByType(Proc)->forAll(proc | dB.book->one(b | proc.title = b.title))))

context TM inv Proc2Book:
Proc.allInstances->forAll(proc | Book.allInstances->exists(book | proc.title = book.title and

proc.editor->forAll(editorP | book.editor->exists(editorB | editorP.name = editorB.name and
book.article->forAll(art | InProc.allInstances->one(inP | inP.booktitle = art.title))))))

context TM inv InProc2Article:
InProc.allInstances->forAll(inP | Article.allInstances->exists(art | inP.title = art.title and
art.bookA.title = inP.booktitle and inP.author->forAll(authP |

art.author->exists(authA | authP.name = authA.name))))

context TM inv PersonB2PersonD:
PersonB.allInstances->size() = PersonD.allInstances->size() and
PersonB.allInstances->forAll(p | PersonD.allInstances->exists(pd | p.name = pd.name))

3.2 Contradictory Constraints

Given the transformation model and test cases obtained using the classifying terms previously de�ned in Sect. 2.3,
the model validator could not create a valid system state from any of the test cases. There is no possible model
that ful�ls all the conditions. The reason is a fault in the constraint Proc2Book. At the end of it, Proceeding
titles are compared to Article titles, which are di�erent layers of information and thus contradictory. This
contradiction can be revealed using the counterproof that the model validator provides when such contradiction
occurs. The constraint Proc2Book looks as follows after the modi�cation1.

context TM inv Proc2Book:
Proc.allInstances->forAll(proc | Book.allInstances->exists(book | proc.title = book.title and

proc.editor->forAll(editorP | book.editor->exists(editorB | editorP.name = editorB.name and
book.article->forAll(art | InProc.allInstances->one(inP | inP.title = art.title))))))

3.3 Checking the Relation Established by the Transformation

Now the model validator is able to complete the source object diagrams according to the speci�cation given in
the transformation model. Figure 3 shows inside the square the third source object diagram obtained with the
classifying terms and, outside the square, the completion the model validator generated.

Figure 3: Completion for the third BibTeX model.

Several problems can be easily detected. First of all, there is no one-to-one correspondence between the source
and target objects: the target contains more objects than it should. This does not match with the expected
behaviour of the transformation, which should establish a one-to-one relation between the source and target
model elements. We can make use of the fact that at the speci�cation level, the relationship established by the
transformation can be read and traversed in both ways, i.e., the transformation model is direction-neutral. Then,
we manually created the expected target object diagram (left-hand side of Fig. 4) and completed it. The result
after the completion is shown in the right-hand side of Fig. 4, where we can see that the source model obtained
is not the third object diagram obtained applying the classifying terms (the objects inside the square in Fig. 3),
which means that the transformation model, as it is, does not establish the expected relationship between the
source and target model elements. This problem is solved by adding object equality to the constraints to limit
the number of objects generated when completing the object diagrams.

1The changes made in the speci�cation are highlighted with a gray background.

(a) Expected DocBook model for
the third BibTeX model.

(b) Completion for the DocBook model.

Figure 4: Proof of non-bidirectionality.

Another observable problem is that the names were supposed to be unique � i.e., a DocBook should not have
two Books with the same name and a Book should not have two Articles with the same name � but they are
not. In the constraints the one operation, which is intended for the uniqueness, is placed inside the body of an
exists operation, which leads to the situations shown in Fig. 3. In the object diagram there are two DocBooks
but only one of them respects the uniqueness (docBook2). As there exists one DocBook object ful�lling the
constraint, the overall system state is valid. In order to achieve the desired behaviour, the exists expressions
need to be replaced by one expressions. After the two changes the constraints look like the following.

context TM inv BibTeX2DocBook:
BibTeXFile.allInstances->size() = DocBook.allInstances->size() and
BibTeXFile.allInstances->forAll(file | DocBook.allInstances->one(dB |

file.entry->selectByType(Proc)->forAll(proc | dB.book->one(b | proc.title = b.title))))

context TM inv Proc2Book:
Proc.allInstances->size() = Book.allInstances->size() and
Proc.allInstances->forAll(proc | Book.allInstances->one(book | proc.title = book.title and

proc.editor->size() = book.editor->size() and
proc.editor->forAll(editorP | book.editor->one(editorB | editorP.name = editorB.name and

book.article->forAll(art | InProc.allInstances->one(inP | inP.title = art.title))))))

context TM inv InProc2Article:
InProc.allInstances->size() = Article.allInstances->size() and
InProc.allInstances->forAll(inP | Article.allInstances->one(art | inP.title = art.title and

inP.author->size() = art.author->size() and art.bookA.title = inP.booktitle and
inP.author->forAll(authP | art.author->one(authA | authP.name = authA.name))))

context TM inv PersonB2PersonD:
PersonB.allInstances->size() = PersonD.allInstances->size() and
PersonB.allInstances->forAll(p | PersonD.allInstances->one(pd | p.name = pd.name))

4 Related Work

In the �eld of Model-Driven Engineering, model transformations are key elements and even the simplest ones
may contain faults as pointed in [11]. Therefore, their testing, validation and veri�cation have been subject of
investigations. In this work, we see model transformations as transformation models and, as a software artifact,
there exists the need of checking their correctness as well.

Several lines of work consider the testing of model transformation implementations. Some of them are dynamic
approaches that execute the model transformations given an input model or a set of them. References [9] and [13]
present a contribution for debugging model transformations. The work in [1] analyses the trace model in order
to �nd errors. Also, Tracts [12] are a static black-box approach that establishes contracts between the source
and target metamodels which de�ne the transformation speci�cation. They have been combined with classifying
terms in [5] for automatically constructing relevant source model test cases. In addition to Tracts, other static
approaches have been proposed [8] that allow the speci�cation of contracts in a visual manner, and the work
in [4] that looks at the di�erences between the actual output model generated by the transformation and the
expected output model.

Reference [2] proposes a dynamic testing technique de�ning equivalence classes for the source models in a
similar manner as it is done with classifying terms. Nevertheless, their proposal is less expressive as they do

not consider the use of OCL, less �exible and lacks full automation. Reference [6] presents a mechanism for
generating test cases by analysing the OCL expressions in the source metamodel in order to partition the input
model space. This is a systematic approach similar to ours, but focusing on the original source model constraints.
Our proposal allows the developer partitioning the source (and target) model space independently from these
constraints, in a more �exible manner.

Finally, the work in [10] proved the correctness of speci�cations by making use of algebras. Our approach can
be seen as a �rst step and as an easier and cheaper way that does not require for the developer to have any extra
knowledge or create any other software artifact.

5 Conclusion and Future Work

In this paper we have presented an iterative approach for the correct development of transformation models.
These models provide the speci�cations of model transformations, and with our proposal they can be checked
before any implementation is available, and independently from any of them.

There are several lines of work that we plan to address next. In the �rst place, we would like to validate our
proposal with more transformations, in order to gain a better understanding of its advantages and limitations;
identify di�erent contexts of use in which our approach works well and other in which the results are not
satisfactory (and why), and build a repository of thoroughly tested and validated transformation models that
can be reused by the community. Second, we plan to improve the tool support to further automate all tests,
so human intervention is kept to the minimum. Finally, we need to de�ne a systematic approach of de�ning
classifying term and transformation model testing using the preliminary ideas outlined in this paper.

Acknowledgment We thank the reviewers for the many constructive ideas and detailed feedback. This work
was partially funded by the German Research Foundation (DFG) under grant GO 454/19-1 and by the Spanish
Research Projects TIN2011-23795 and TIN2014-52034-R.

References

[1] V. Aranega, J.-M. Mottu, A. Etien, and J.-L. Dekeyser. Traceability mechanism for error localization in
model transformation. In Proc. of ICSOFT'09, 2009.

[2] B. Baudry, T. Dinh-Trong, J. Mottu, D. Simmonds, R. France, S. Ghosh, F. Fleurey, and Y. Le Traon.
Model transformation testing challenges. In ECMDA Workshop on Integration of MDD and Model Driven
Testing, 2006.

[3] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow. Model transformations? trans-
formation models! In Proc. of MODELS'06, volume 4199 of LNCS, pages 440�453. Springer, 2006.

[4] A. García-Domínguez, D. S. Kolovos, L. M. Rose, R. F. Paige, and I. Medina-Bulo. EUnit: A Unit Testing
Framework for Model Management Tasks. In Proc of MODELS'11, LNCS, pages 395�409. Springer, 2011.

[5] M. Gogolla, A. Vallecillo, L. Burgueño, and F. Hilken. Employing classifying terms for testing model
transformations. In Proc. of MODELS'15, LNCS. Springer, 2015.

[6] C. A. González and J. Cabot. Test Data Generation for Model Transformations Combining Partition and
Constraint Analysis. In Proc. of ICMT'14, volume 8568 of LNCS, pages 25�41. Springer, 2014.

[7] E. Guerra, J. de Lara, D. Kolovos, R. Paige, and O. dos Santos. Engineering model transformations with
transML. Software & Systems Modeling, 12(3):555�577, 2013.

[8] E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
W. Schwinger. Automated veri�cation of model transformations based on visual contracts. Autom. Softw.
Eng., 20(1):5�46, 2013.

[9] M. Hibberd, M. Lawley, and K. Raymond. Forensic debugging of model transformations. In Proc. of
MODELS'07, volume 4735 of LNCS, pages 589�604. Springer, 2007.

[10] F. Orejas and M. Wirsing. On the speci�cation and veri�cation of model transformations. In Semantics and
Algebraic Speci�cation, Essays Dedicated to Peter D. Mosses on the Occasion of his 60th Birthday, volume
5700 of LNCS, pages 140�161. Springer, 2009.

[11] J. Sánchez Cuadrado, E. Guerra, and J. de Lara. Quick �xing ATL model transformations. In Proc. of
MODELS'15, LNCS. Springer, 2015.

[12] A. Vallecillo, M. Gogolla, L. Burgueño, M. Wimmer, and L. Hamann. Formal speci�cation and testing of
model transformations. In Formal Methods for Model-Driven Engineering (SFM). Springer, 2012.

[13] M. Wimmer, G. Kappel, J. Schönböck, A. Kusel, W. Retschitzegger, and W. Schwinger. A Petri Net based
debugging environment for QVT Relations. In Proc. of ASE'09, 2009.

