
Towards Benchmarking Evolution Support in

Model-to-Text Transformation Systems

Bernhard Hoisl Stefan Sobernig

Institute for Information Systems and New Media
Vienna University of Economics and Business (WU Vienna)

{bernhard.hoisl, stefan.sobernig}@wu.ac.at

Abstract

In model-driven development, an evolving metamodel as part of a
changing software system requires the adaptation of interrelated ar-
tifacts, such as, model-to-text (M2T) transformation speci�cations. In
this paper, we propose a de�nition for a standard problem to evalu-
ate the evolution support in M2T transformation systems. The objec-
tive of the standard problem is to allow for benchmarking of multiple
evolution-support techniques for M2T transformations. For this, we se-
lected an existing, real-world software application acting as the basis for
the standard-problem de�nition, describe a metamodel-evolution sce-
nario (migration), and de�ne a measurement plan to benchmark di�er-
ent implementations (thus, making them comparable). The applicabil-
ity of the standard problem de�nition is exempli�ed by benchmarking
an approach of higher-order rewriting M2T generator templates.

1 Introduction

In model-driven development (MDD), the domain-speci�c metamodel is typically created in several iterations and
is therefore not a static artifact. For example, adaptations of domain requirements can trigger the evolution of a
metamodel (see, e.g., [WKS+10, RIP12]). Requirements can change, for instance, due to additional functionality,
a modi�ed legal situation in the corresponding application domain, or the refactoring of software systems (see,
e.g., [HSS14]). In such a metamodel-evolution scenario (see, e.g., [CP10, HSS12]), the interrelated artifacts
shaping the metamodeling ecosystem (e.g., instance models, model transformations) must be adapted to apply
to the evolved metamodel (a.k.a. �coupled evolution� [RIP12]).

In this paper, we take the challenge of coupled evolution for model-to-text (M2T) transformations caused by an
adapted metamodel. There is evidence on M2T transformations targeting source code being the most widespread
platform-integration technique in MDD [Gen10]. This is con�rmed by a recent study on M2T transformations
for UML-based domain-speci�c modeling languages [SHSed]. In particular, we focus on M2T generator tem-
plates [SV06]�as one commonly employed implementation technique for creating platform-speci�c artifacts.
A metamodel evolution entails the adaptation of generator templates de�ned over the original metamodel to
conform to the evolved metamodel (e.g., to re�ect changed metamodel elements).

Metamodel evolution can fall along a spectrum when viewed from the perspective of resulting heterogeneity
between the original and the evolved metamodels [WKK+10]. Forms of syntactic heterogeneity include naming
di�erences and structural variations (e.g., di�erent source-target cardinalities). Semantic heterogeneity results
from di�erences in the interpretation of two metamodels (e.g., in the conditions rendering an instance model
valid). Certain forms of (esp. syntactic) heterogeneity can be detected and/or resolved in an automated and tool-
assisted manner (automated refactoring), others require manual inspection and intervention (manual refactoring).

Researchers have proposed di�erent techniques to handle the coupled evolution problem of M2T generator
templates in terms of automation support for refactorings of M2T generator templates in response to metamodel
evolution. These techniques are higher-order transformations (HOTs [TJF+09, Hoi14]), generic templates, and
adapter models (see, e.g., [HSS13]). For each approach, di�erent (reference) implementations have been made
available targeting di�erent M2T transformation systems. Automation support for evolving M2T generator
templates has a number of bene�ts: the reuse of M2T transformations is facilitated, concepts used in M2T
transformations are matched automatically with their evolved metamodeling concepts, and the evolutionary
process is explicitly documented (see, e.g., [Hoi14]).

Currently, however, we lack understanding of the conceptual strengths and weaknesses of the di�erent tech-
niques and the corresponding implementations regarding the spectrum of metamodel evolution. For example,
the di�erent techniques (HOTs, generic templates, adapter models) rely on certain assumptions on the permitted
metamodel heterogeneities, which are often not stated explicitly. From a researcher's perspective, this hampers
an analytical comparison making it di�cult to answer questions, such as: Given an unanticipated metamodel
evolution, known to involve syntactic heterogeneities only, which of the three techniques is su�cient to port
existing M2T generators without incurring excessive extra (manual) e�ort? For practitioners, the choice of a
technique (implementation) so becomes determined by convenience or by uninformed selection.

To render these techniques and their implementations comparable, we propose a standard problem for assessing
strenghts and weaknesses of competing refactoring techniques for M2T generator templates. In addition, the
proposed standard problem provides assets which serve as a benchmark for the non-functional properties of
evaluated implementations (e.g. time and space e�ciency). Related work has contributed standard problems
and benchmarks, for instance, for language workbenches1 and for model-to-model (M2M) transformation systems
(see, e.g., [LW13, WKK+10, vdBHVP11]). To the best of our knowledge, there exists no such standard-problem
de�nition for the coupled evolution of M2T generator templates.

Therefore, in this paper, we report on a �rst step towards de�ning and validating a standard problem for this
particular kind of software evolution in MDD (such as [RRIP14, HSS13]). It is evident that such a standard
problem cannot be formulated without the help and the feedback of the broader research community, including
the AMT committee and the AMT participants. To this end, this paper should act as a stimulus for feedback
and critical discussion. We believe that a �nal de�nition of this standard problem plus benchmark must have
the following characteristics:

• It must be capable of hosting di�erent classes of metamodel heterogeneity to re�ect di�erent metamodel-
evolution settings.

• It should draw on common application-engineering knowledge to minimize the entry barriers for non-experts
in the selected domain while representing a non-trivial evolution scenario.

• It should provide clear guidelines on how to apply the standard problem as well as on how to benchmark
and on how to compare di�erent implementations.

The remainder of the paper is structured as follows. We sketch the objectives of our proposed standard
problem in Section 2. In Section 3, we present details on the de�nition of the standard problem. In particular,
we explain the selected real-world application, the metamodel-evolution scenario as well as base and derived
metrics. We demonstrate the applicability of our standard problem de�nition by benchmarking an example
implementation in Section 4. Afterwards, we discuss our approach in Section 5 and related work in Section 6.
At last, in Section 7, we conclude the paper and point to future work.

2 Objective: Benchmarking

The objective of the standard-problem de�nition is to enable a systematic and primarily quantitative comparison
of one's technique (implementation) with alternative techniques (implementations), that is, benchmarking. The
prede�ned details of the standard-problem de�nition (e.g., model artifacts, base metrics, benchmark score) turn
the evaluation results obtained for one's technique into a benchmark for others. As relates to the content, the
benchmarking aims at four quality dimensions of refactoring M2T transformations by collecting quantitative
data on them (see, e.g., [FP97, LW13]): The a) completeness of the evolved concepts of the generator templates
(i.e. how many concepts can automatically be refactored); the b) correctness of the produced platform-speci�c
artifacts (i.e. source code) from the evolved generator templates; the c) complexity change of the evolved generator
templates (compared to the original ones); and the d) runtime performance of evolving the generator templates.

1http://www.languageworkbenches.net/ (last accessed on 2015-09-16).

http://www.languageworkbenches.net/

To create a benchmark data set, quantitative data is to be collected according to a measurement plan de�ned
using the goal-question-metric (GQM) method (see, e.g., [vSB99]). In GQM, goals are formulated �rst (con-
ceptual level). Then, a set of questions is de�ned to characterize the way the assessment of a speci�c goal is
going to be performed (operational level). At last, metrics2 are speci�ed and associated with every question in
order to answer it in a quantitative way (quantitative level). Table 1 shows our GQM model for quantifying data
according to our benchmark's criteria from the viewpoint of a transformation developer. This way, four questions
are de�ned with corresponding metrics which all contribute to characterize a M2T transformation system under
evolution. The metrics are described in detail in Section 3.3.

Table 1: GQM model for evaluating systems according to our proposed benchmark criteria.

Goal Purpose Quantifying and making comparable
Issue completeness, correctness, complexity, and performance criteria of
Object a software system to support the evolution of M2T generator templates
Viewpoint from the transformation developer's viewpoint.

Question To what extent does a system reduce the need to manually perform refactorings on M2T
generator templates (related to the completeness criterion)?

Metric 1. Number of automatically refactored M2T transformation concepts by using the system.

Question To what extent does a system produce application-speci�c artifacts as intended (related
to the correctness criterion)?

Metric 2. Number of errors in the generated software artifacts (i.e. source code).

Question To what extent does a system reduce the complexity of evolved M2T generator templates
(related to the complexity criterion)?

Metrics 3. Number of called helper operations.
4. Number of calls to helper operations.
5. Transformation size in source lines of code (SLOC).

Question How long does a system need for the process of refactoring M2T transformation templates
(related to the performance criterion)?

Metric 6. Execution time of the M2T-generator-template evolution.

3 A Proposal for a Standard Problem

3.1 Application Selection

To set a standard problem and the basis for benchmarking, the selected application must ful�ll a number of
requirements. First, it must include non-trivial M2T transformation de�nitions (generator templates) in terms of
complexity regarding metamodel-element changes and the SLOC size of M2T transformation templates. Second,
the measurement plan requires that the source-code base is fully available and can be processed automatically
(i.e. metamodels, input models, M2T transformation templates). Third, we require that all artifacts are publicly
available to make the benchmark generally applicable and its results reproducible.3

To �nd a suitable application, we reached out the MDD community, for example, via postings in relevant
Eclipse sub-forums for hints and contacted research and industry peers. One of our colleagues at the Department
of Computer Science at the University of York (Dimitris Kolovos) pointed us to the Pongo project [KW15]. Pongo
describes itself as �a template-based Java POJO generator for MongoDB. Instead of using low-level DBObjects
to interact with your MongoDB database, with Pongo you can de�ne your data/domain model using EMFatic
and then generate strongly-typed Java classes you can then use to work with your database at a more convenient
level of abstraction� [KW15]. As the Pongo project ful�lled our requirements (non-trivial M2T transformation
de�nitions, open-source, publicly available), we adopted it as basis for this �rst standard-problem de�nition.

The problem assets are derived from material (domain model, test application) obtained from the Pongo
tutorial (a blogging system) published on the project's website [Kol15]. The domain model of the blogging
system is speci�ed in the EMFatic textual syntax. Figure 1 shows the equivalent Ecore model which de�nes four

2We use the terms �metric� and �measure� interchangeably for the scope of this paper.
3In turn, all software artifacts used in and developed for the standard problem as well as the benchmarking example in this paper

can be obtained from http://nm.wu.ac.at/modsec.

http://nm.wu.ac.at/modsec

EClasses (Blog, Post, Comment, and Author) as well as corresponding attributes and references to represent the
blogging domain.4

Blog

Post

title : EString

body : EString

Comment

from : EString

text : EString

Author

name : EString

email : EString

posts

0..*

authors0..*author 0..1comments0..*
replies

0..*

Figure 1: Ecore model of the blogging system.

The blogging system uses M2T transformations implemented in Epsilon (EGL templates with EOL helper
operations and EGX as coordination language for EGL templates [KRGDP15]) to generate Java source code
from Ecore models. By executing the transformations, six Java �les are generated. These Java classes implement
the domain model (see Figure 1) and de�ne helper methods (e.g., getter and setter) to conveniently work with
the MongoDB database (e.g., for reading and writing data). The Pongo tutorial provides a Java application used
for testing the generated Java classes [Kol15]. If the M2T transformation from the Ecore-based domain model
into Java classes is successful, the test application executes free of errors.

3.2 Metamodel-Evolution Scenario: Language and Platform Migration

Migrating a given, model-driven application from one metamodeling language and metamodeling platform to
another is a frequently observed sample migration scenarion requiring metamodel evolution. Others are appli-
cation improvement or replacement/rewrite scenarios (see [UN10] in more general). The migration scenario is
typically driven by technology obsolescence (e.g., an inter-organizational technology standard being superseded
by another one: UML 1.* to UML 2.* [RHM+14]) or by the desire to lift and shift a model-driven application
to a (new) organizational standard (e.g. legacy metamodels [SWCD12]). This scenario does not involve any
substantial redesign in terms of domain abstractions beyond what is required to �nd equivalent (metamodeling)
concepts in the target language and platform. Unlike other scenarios, this scenario is, therefore, marked by a
high potential of automation and of tight coupling between metamodel transformation and refactoring of related
artifacts (M2T generator templates). We selected this particular scenario to form a standard problem because of
its capability to capture automation potential and because it is a frequently adopted scenario in similar settings
(e.g. MDD tool competitions [RHM+14]).

For the de�nition of the standard problem, we propose an instantiation of this migration scenario for Pongo
and its M2T transformation artifacts.5 The migration is one from porting Pongo to support UML2 class models
besides Ecore models, therefore a migration from the Ecore metamodel to the UML2 metamodel. The underlying
mappings of this migration scenario are speci�ed as M2M transformation operations. To maximize adoptability,
we have chosen the notation of technology-independent mapping diagrams from [GdLK+13]. Mapping diagrams
provide �a high-level design view� [GdLK+13] on transformations, thereby abstracting from concrete transfor-
mation languages. Figure 2 shows the Ecore2UML transformation operations for our benchmark.

Note that the mapping is not exhaustive�it does not cover all details of the source and target metamodels
(Ecore and UML2, respectively). Rather, the mapping re�ects the necessary subset over which the M2T transfor-
mation de�nitions are de�ned (i.e. their model domains). For Pongo, we found that six transformation operations
are required to represent the Ecore2UML metamodel evolution su�ciently to capture all parts of the M2T genera-
tor templates relevant for the refactoring (see Figure 2). These transformation operations form the benchmarking
basis. They re�ect di�erent kinds of syntactical heterogeneity between the Ecore and UML metamodels, in par-
ticular, di�erences according to the source-target-concept cardinality (1:1 and n:1) as well as naming, multiplicity,
containment, and context di�erences of the same metamodeling concept (EReference) [WKK+10].

4Please note that the Ecore model shown in Figure 1 corrects two errors in the original EMFatic textual de�nition [Kol15]: 1) A
missing composite aggregation (comments) pointing from the EClass Post to the EClass Comment has been added and 2) the name of
the attribute body owned by the EClass Comment has been replaced with text (see also [Hoi14]).

5The scenario instantiation was also inspired by the discussion at https://www.eclipse.org/forums/index.php/t/488742/ (last
accessed on 2015-09-16).

https://www.eclipse.org/forums/index.php/t/488742/

Ecore Ecore2UML UML

Element ownership
An owning element is referenced via EClassifier.ePackage

and transformed to NamedElement.namespace.

NamedElement.namespace :

EReference

eType

Namespace : EClass

EClassifier.ePackage :

EReference

Types
Element typing is realized via ETypedElement.eType

and transformed to TypedElement.type.

eType

Type : EClass

ETypedElement.eType :

EReference

TypedElement.type :

EReference

Literals
Enumeration literals are modeled via EEnum.eLiterals

and transformed to Enumeration.ownedLiteral.

Enumeration.ownedLiteral :

EReference

set: ownedLiteral.containment = eLiterals.containment

set: ownedLiteral.upperBound = eLiterals.upperBound

eType

EnumerationLiteral :

EClass

EEnum.eLiterals :

EReference

Structural features
Structural features can be both, attributes and

references/associations.

StructuredClassifier.ownedAttribute :

EReference

set: ownedAttribute.containment = true

set: ownedAttribute.upperBound = *

eType

EClass.eStructuralFeatures :

EReference

EClass.eAllStructuralFeatures :

EReference

Attributes
Attributes are distinguished from associations by lacking

an association reference.

guard: ownedAttribute.select(oa |

 not oa.association.isDefined())

set: ownedAttribute.containment = true

set: ownedAttribute.upperBound = *

eType

EClass.eAttributes :

EReference

EClass.eAllAttributes :

EReference

Associations
Associations are distinguished from attributes by defining

an association reference.

guard: ownedAttribute.select(oa |

 oa.association.isDefined())

set: ownedAttribute.containment = true

set: ownedAttribute.upperBound = *

eType

EClass.eReferences :

EReference

EClass.eAllReferences :

EReference

Property : EClass

Figure 2: Mapping diagram of the Ecore2UML metamodel transformation operations.

In this migration scenario, the M2T transformation templates of Pongo should be refactored to work with
models conforming to the UML metamodel. To test the refactored M2T templates, we converted the Ecore
domain model of the Pongo-based blogging system to a UML class diagram. For this M2M transformation,
we used the Ecore-to-UML conversion functionality provided in the Sample Ecore Model Editor of the Eclipse
Modeling Framework (EMF).

3.3 Base Metrics

For the scope of this paper, a (software/quality) metric �is a term that embraces many activities, all of which
involve some degree of software measurement� [FP97]; it is �a quantitative measure of the degree to which a
system, component, or process possesses a given attribute� [Ins10]. According to the GQM model (see Ta-
ble 1), measurement is performed on Pongo's M2T generator templates. For creating a benchmark data set, the
standard-problem de�nition identi�es the measurement constructs for quantifying the amount of refactorings on
the generator templates applied/required to conform to the evolved (UML) metamodel. We adopted metrics
from related work on model transformations, such as, for ATL (see, e.g., [KGBH10, vAvdB10, Vig09]):

1. Number of automatically refactored concepts: This metric counts every automatically adapted concept (e.g.,
types, expressions) required to render M2T transformations compliant with the evolved metamodel (see,
e.g., [FP97]).

2. Number of errors in generated artifacts: This metric counts the number of defects in the generated platform-
speci�c software artifacts (i.e. source code) produced by the evolved M2T transformations (see, e.g., [FP97]).

3. Number of called helpers: The M2T generator templates of the blogging system use helper operations for their
implementation. This metric counts the number of helper operations (e.g., de�ned in generator templates)
which are used (i.e. called at least once) during M2T transformation (see, e.g., [vAvdB10, Vig09]).

4. Number of calls to helpers: This metric sums up the total number of calls to helper operations during a
M2T transformation (see, e.g., [vAvdB10, Vig09]).

5. Transformation size: This metric counts the SLOC of all M2T transformation de�nitions involved (see,
e.g., [FP97, KGBH10]).

6. Execution time: This metric measures the average runtime of executing the entire evolution process of M2T
generator templates. Used hardware and software details must be provided (see, e.g., [FP97]).

The six metrics directly relate to the four criteria stated in Section 2: completeness, correctness, complexity,
and runtime performance. All six metrics quantify internal attributes of a M2T transformation and can be
measured directly (see, e.g., [FP97, vA10]). Collecting the various metrics can typically be automated, for
example, by leveraging built-in introspection and pro�ling mechanisms o�ered by the metamodeling platforms.

Metric 1. (number of refactored concepts; answering the corresponding question de�ned in Table 1) is an
indicator for completeness: A high number of automatically rewritten concepts performed by a system would
establish evidence for the advantage of fewer manual adaptations. Metric 2. measures the correctness of generated
software artifacts (i.e. the number of errors in the source code). If the evolved source code is identical with the
benchmark version (e.g., checked with a di� tool), zero defects can be assumed. The metrics 3.�5. yield insights
into the adaptation complexity and are also operationalized as a means of control. The numbers of called/calls
to helpers are metrics to check if a potentially high number of automatically rewritten concepts are not based
on extensive use of (newly de�ned) helper operations. Additional helper operations would also increase the
transformation size of the generator templates. It is evaluated whether and how much the transformation size of
the rewritten generator templates di�er when compared with their baseline versions. The last metric 6. quanti�es
the execution time of the adaptation process and provides runtime performance indicators for a speci�c hardware
and software con�guration.

3.4 Derived Metric: Benchmark Score

To ease comparison between a benchmarked technique (implementation) and its benchmark technique (imple-
mentation), we propose a derived metric: a benchmark score (see, e.g., [vdBHVP11]). The benchmark score is
based on computing a weighted aggregate for three of the four criteria introduced in Section 2. We excluded the
performance criterion due to its strong context bias (hardware and software speci�cations).

The benchmark score (BS) is computed as follows: BSS = SM1−SM2− 1
3 × (SM3

RIM3
+ SM4

RIM4
+ SM5

RIM5
). BS refers

to the benchmark score of the system under evaluation (S); M{1..5} to the respective data of the metric of either
the reference implementation (RI) or the evaluated system (S). The score is calculated by taking the number
of automatically refactored concepts by a system as basis and subtracting the number of errors in generated
artifacts produced by the system as well as the equally weighted ratios of number of called helper operations,
calls to helper operations, and the size of the M2T transformations to the respective reference �gures.

If missing another technique (implementation) as a point of reference, and to set a worst-case scenario as
a benchmark, the benchmark score can be based on reference �gures for an extreme setting: the completely
manual refactoring of Pongo under the Ecore/UML migration scenario. To arrive at these reference �gures, we
manually implemented the necessary refactorings for the evolution of the blogging M2T transformations to be
UML-compliant (see Section 3.2). The suggested benchmark score then takes these worst-case �gures as the
benchmark data and captures the relative distance of an actually benchmarked technique (implementation) to
these reference data. The theoretical maximum score for the Pongo standard problem is 60, because this is the
total number of template elements in need of refactoring (SM1) found for the Pongo migration scenario (see also
Table 2). Practially, the maximum score will be below its upper bound of 60, because it is unlikely that one
�nds empty M2T transformations (SLOC = 0; metric 5.).

4 Benchmarking Example: Higher-Order Rewriting of M2T Templates

In [HSS13], we present an approach to rewrite M2T generator templates syntactically to reuse them for evolving
metamodels. By considering M2T templates as �rst-class models and by reusing M2M transformation traces,
we developed a rewriting approach based on higher-order model transformations (HOTs) for transformation
modi�cations [TJF+09]. To demonstrate the feasibility of this rewriting technique, we provide a prototype
implementation and an integration example based on the EMF project and the Epsilon language family. Hence,
with our rewriting approach for M2T templates, we provide a solution to deal with structural mismatches between

di�erent metamodels in an evolution scenario. Our current approach supports three syntactical higher-order
rewriting operations (retyping, association retargeting, and property renaming [HSS13]).

We benchmark our approach according to the criteria de�ned in Section 3. For the evolutionary scenario of
migrating from Ecore to UML class models, the example explores the refactoring process of the M2T transfor-
mation de�nitions (to collect data for the metrics 1. and 6.). The rewritten M2T templates are applied on the
evolved UML-based domain model of the blogging system (for metrics 3.�5.) to compare the generated platform-
speci�c software artifacts (i.e. Java classes) with the ones originally created from the Ecore domain model (for
metric 2.) to evaluate the successful transformation according to the benchmark's criteria.

Table 2 shows the data collected for the �rst �ve metrics by conducting the benchmarking example. Metric
1. counts the number of automatically rewritten concept occurrences in the Pongo M2T templates. In essence,
we could automate all rewriting operations. Our benchmarking example did not introduce any defects in the
generated Java source �les (metric 2.) as checked by a di� tool and by executing Pongo's test application
(i.e. the example generated the identical set of Java �les consisting of a total of 282 SLOC). The (3.) number
of called helper operations and the (4.) number of calls to helper operations are identical as for the manual
reference implementation (see Section 3.4). However, our automatic refactorings increased the (5.) size of the
M2T transformation speci�cations to a total of 505 SLOC. With these �gures, our software system arrives at a
benchmark score of 58.975.

As the development of our benchmarking example was in�uenced by our manual implementation, the data
for the corresponding metrics are similar. The increase in the SLOC of the M2T transformations in our example
(7.45% when compared to the manual adaptation; see metric 5. in Table 2) is caused by the formatting instructions
implemented in the model-to-code part of the code/model round-tripping for M2T generator templates. A layout-
preserving round-tripping functionality of our approach may be bene�cial for reducing the transformation size
of the M2T templates.

Table 2: Results of our manual and example implementations for the metrics de�ned as benchmark.

Metric Manual adaptation HOT-based rewriting [HSS13]

1. Number of (automatically) refactored concepts 60 60
2. Number of errors in generated artifacts 0 0
3. Number of called helpers 12 12
4. Number of calls to helpers 305 305
5. Transformation size (SLOC) 470 505

Additionally, Table 3 provides an overview of the average execution times (in milliseconds; ms) of the trans-
formations performed during the example (metric 6.).6 We employed the Epsilon pro�ling mechanism [Kol07]
as well as Java's System.nanoTime() method for measuring the time needed to execute a particular transfor-
mation. We report the arithmetic mean of executing every transformation ten times.7 The actual rewriting of
the M2T transformation models (i.e. executing the rewriting operations) required 2520±32ms; that is ≈59% of
the total execution time of 4263±42ms. The remaining time was needed to load models, perform metamodel
migration (Ecore2UML M2M transformations) and so forth. Overall, the average execution time of the complete
benchmarking example sums up to 6579±68ms (for further discussions on our example, we refer to [Hoi14]).

Table 3: Rounded average execution times of the benchmarking example.

Transformation Average execution time (in ms)

M2T generator templates to M2T transformation models 1266±45
Rewriting M2T transformation models 4263±42
Rewritten M2T transformation models to M2T generator templates 1051±23

Total 6579±68

6Execution times are measured on the following hardware and with the following software speci�cations: Intel Core i5-3320M
CPU 2.6 GHz, 12 GB RAM, 64-bit Ubuntu 13.04, Eclipse 4.2.

7The value after ± shows the standard deviation (σ) from the arithmetic mean (x̄).

5 Discussion

The proposed standard problem is meant to evaluate evolving software systems which build on M2T generator
templates. Note that, although we adopted a particular MDD technology stack (i.e. EMF, Epsilon) along selecting
the application (Pongo), the fundamentals of the standard-problem de�nition do not rely on any of these tools.
Critical artifacts such as metrics and metamodel transformations (Ecore2UML) are technology-agnostic. We
demonstrated that the standard problem and benchmarking setup can host HOTs (as in our example) and a
speci�c M2M transformation language (ETL [KRGDP15]). Likewise, it could use another support technique for
coupled evolutions (e.g. adapter models) and an alternative model-transformation language (e.g. ATL).

However, any observations based on these metrics are speci�c to a given technique, implementation, and
technology stack. Therefore, details of the benchmarking setup (e.g., the reference data on manual refactorings)
must be calibrated for a targeted technology stack. Hence, to compare multiple approaches via the benchmark
score�although de�ned in a generic manner�, each implementation must be based on the same or closely
comparable MDD technologies.

Currently, one barrier to portability is that a technique (implementation) under evaluation must be able to
handle the evolution of EGL-based M2T generator templates (as the dedicated Epsilon dialect to specify M2T
transformations). Nevertheless, the standard-problem asset package is open for contributions of idempotent M2T
transformation de�nitions expressed in alternative M2T languages (e.g., Acceleo/MOFM2T).

As for the metamodel-evolution scenario supported (migration), our benchmarking setup targets the well
known and frequently adopted two metamodels: Ecore and UML. However, the design of our standard problem
can be extended to include similar metamodel evolutions commonly considered (e.g., activity models from UML
1.* to UML 2.* in [RHM+14]). In addition, selected parts (e.g., base and derived metrics) can be reused and
adapted to other evolution scenarios (e.g., replacement/rewrite, application improvement [UN10]).

Our benchmarking setup employs certain metrics in order to quantify characteristics of a M2T transformation
system, thereby neglecting other quality aspects (e.g., ease of use, stability etc.). As our metrics are adopted from
related work (see, e.g., [KGBH10, vAvdB10, Vig09]), we rely on the authors' demonstration that the metrics are
acceptable for their intended use (in the context of model transformations). It is neither the goal of this paper
to validate the adopted metrics for their representation condition, nor for their theoretical or empirical validity
regarding a given attribute (for a discussion on validating software metrics, see, e.g., [MSW13]).

6 Related Work

In [LW13, WL13], the authors present benchmarks for types of model evolution systems. In particular, [LW13]
proposes a benchmark for model versioning systems that support collaborative model-based development (e.g.,
for con�ict detection when merging changes into a consolidated model version). The benchmark enables the
automatic evaluation of con�ict detection components. In contrast, [WL13] addresses the case of matching
heterogeneous models that do not have a common predecessor. The proposed benchmark consists of real-world
metamodels and manually de�ned expected correspondences that allow to evaluate automatically the quality of
the output of model matching systems. Both benchmarks have in common that they employ a subset of the same
evaluation criteria as we do (completeness, correctness, performance). However, the focus of the benchmarks is
not on evaluating the evolution of M2T transformations but on model versioning and matching systems.

The authors of [WKK+10] present a feature-based classi�cation of heterogeneities between object-oriented
metamodels. This provided the basis for establishing benchmark examples that allow the evaluation of existing
approaches with respect to their ability to resolve such heterogeneities. In our work, we reuse the classi�cation
from [WKK+10] to categorize structural heterogeneities between the Ecore and UML metamodels. The di�erent
benchmark examples share similarities with the Ecore2UML evolution scenario presented in this paper. However,
the assessment of these examples are not guided by quanti�able measurements and, thus, the evaluation of a
system largely depends on the interpretation of the respective evaluator. Nevertheless, the authors of [WKK+10]
provide a source for extending our de�nition of a standard problem to cover additional heterogeneity aspects. In
this sense, their work can be seen as complementary.

In [vdBHVP11], the authors present a method for assessing the quality of model comparison systems as well as
a data set to be used for controlled evaluation experiments. Together with the results obtained by assessing two
software systems, the authors constitute a benchmark for model comparison systems. Although sharing some
evaluation criteria (completeness, correctness, performance), the metrics focus on model di�erences on the level
of model elements (e.g., deleted, added elements)�represented in an instance model of a dedicated di�erence
metamodel. Benchmarking the evolution of M2T generator templates is not covered in [vdBHVP11].

The authors of [vABKFP11] investigate the factors that have an impact on the execution performance of
model transformations. In particular, the performance of three model transformation languages are analyzed
(ATL, QVT operational mappings, QVT relations). In our work, we adopt two of the metrics (number of called
helpers, number of calls to helpers) proposed by the same author in an earlier publication [vAvdB10]. Although
van Amstel et al. focus speci�cally on evaluating performance criteria for the ATL and QVT M2M transformation
languages, some of their proposed metrics can be generalized (as we did for this paper). However, their objective
is not to design a benchmark for model transformation systems.

7 Conclusion and Future Work

In this paper, we report on the foundations of a standard-problem de�nition for systematically comparing cou-
pled evolution in M2T transformation systems. The standard problem provides a basis for the analytical and
quantitative comparison (benchmarking) of di�erent techniques (implementations) in support co-evolving M2T
generator templates: HOTs, generic templates, and adapter models. Benchmarking re�ects completeness, cor-
rectness, complexity, and performance of M2T transformation adaptations in terms of a benchmark score. To
validate the approach tentatively, we benchmarked our approach of higher-order rewriting M2T templates.

As next steps, and based on the feedback of the AMT community, we will extend the standard problem to
include more challenging kinds of metamodel heterogeneity [WKK+10]. For this, we will also assess additional
metrics for inclusion (e.g., similarity of relations [KGBH10]). We believe that the Ecore2UML migration scenario
underlying the problem de�nition is a promising candidate of a future standard problem (similar to the one
successfully de�ned for software product lines [LHB01]). It bene�ts from simplicity and understandability while
relying on critical building blocks for a whole MDD ecosystem. However, this paper presents only a �rst step
towards the de�nition of a comprehensive standard problem.

References

[CP10] W. Cazzola and D. Poletti. DSL evolution through composition. In Proc. 7th Worksh. Re�ection,
AOP and Meta-Data for Softw. Evol., pages 6:1�6:6. ACM, 2010.

[FP97] N. E. Fenton and S. L. P�eeger. Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Company, 2nd edition, 1997.

[GdLK+13] E. Guerra, J. de Lara, D. Kolovos, R. Paige, and O. dos Santos. Engineering model transformations
with transML. Softw. Syst. Model., 12(3):555�577, 2013.

[Gen10] Generative Software. Umfrage zu Verbreitung und Einsatz modellgetriebener Softwareentwick-
lung. Survey Report, Generative Software GmbH and FZI Forschungszentrum Informatik, 2010.
Available at: http://www.mdsd-umfrage.de/mdsd-report-2010.pdf.

[Hoi14] B. Hoisl. Integration and Test of MOF/UML-based Domain-speci�c Modeling Languages. PhD
thesis, WU Vienna University of Economics and Business, November 2014.

[HSS12] B. Hoisl, M. Strembeck, and S. Sobernig. Towards a systematic integration of MOF/UML-based
domain-speci�c modeling languages. In Proc. 16th IASTED Int. Conf. Softw. Eng. and Appl.,
pages 337�344. ACTA Press, 2012.

[HSS13] B. Hoisl, S. Sobernig, and M. Strembeck. Higher-order rewriting of model-to-text templates for
integrating domain-speci�c modeling languages. In Proc. 1st Int. Conf. Model-Driven Eng. and
Softw. Dev., pages 49�61. SciTePress, 2013.

[HSS14] B. Hoisl, S. Sobernig, and M. Strembeck. Natural-language scenario descriptions for testing core
language models of domain-speci�c languages. In Proc. 2nd Int. Conf. Model-Driven Eng. and
Softw. Dev., pages 356�367. SciTePress, 2014.

[Ins10] Institute of Electrical and Electronics Engineers (IEEE). Systems and software engineering � vo-
cabulary. Available at: http://standards.ieee.org/findstds/standard/24765-2010.html, 2010.
ISO/IEC/IEEE 24765:2010.

[KGBH10] L. Kapová, T. Goldschmidt, S. Becker, and J. Henss. Evaluating maintainability with code metrics
for model-to-model transformations. In Research into Practice � Reality and Gaps, volume 6093
of LNCS, pages 151�166. Springer, 2010.

[Kol07] D. S. Kolovos. An overview of the Epsilon pro�ling tools. Technical Report version 1.3,
The University of York, July 2007. Available at: https://www.eclipse.org/epsilon/doc/
EpsilonProfilingTools.pdf.

http://www.mdsd-umfrage.de/mdsd-report-2010.pdf
http://standards.ieee.org/findstds/standard/24765-2010.html
https://www.eclipse.org/epsilon/doc/EpsilonProfilingTools.pdf
https://www.eclipse.org/epsilon/doc/EpsilonProfilingTools.pdf

[Kol15] D. Kolovos. Pongo: 5 minute tutorial. Available at: https://code.google.com/p/pongo/wiki/
5MinuteTutorial, 2015.

[KRGDP15] D. Kolovos, L. Rose, A. García-Domínguez, and R. Paige. The Epsilon book. Available at:
http://www.eclipse.org/epsilon/doc/book/, 2015.

[KW15] D. Kolovos and J. R. Williams. Pongo: Java POJO generator for MongoDB. Available at: https:
//code.google.com/p/pongo/, 2015.

[LHB01] R. E. Lopez-Herrejon and D. S. Batory. A standard problem for evaluating product-line method-
ologies. In Proc. 3rd Int. Conf. Genera. Compon.-Based Softw. Eng., pages 10�24. Springer, 2001.

[LW13] P. Langer and M. Wimmer. A benchmark for con�ict detection components of model versioning
systems. Softwaretechnik-Trends, 33(2), 2013.

[MSW13] A. Meneely, B. Smith, and L. Williams. Validating software metrics: A spectrum of philosophies.
ACM T. Softw. Eng. Meth., 21(4):24:1�24:28, February 2013.

[RHM+14] L. M. Rose, M. Herrmannsdoerfer, S. Mazanek, P. V. Gorp, S. Buchwald, T. Horn, E. Kalnina,
A. Koch, K. Lano, B. Schätz, and M. Wimmer. Graph and model transformation tools for model
migration. Softw. Syst. Model., 13(1):323�359, 2014.

[RIP12] D. D. Ruscio, L. Iovino, and A. Pierantonio. Coupled evolution in model-driven engineering. IEEE
Softw., 29(6):78�84, 2012.

[RRIP14] J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio. Dealing with the coupled evolution of
metamodels and model-to-text transformations. In Proc. Worksh. Models and Evol., volume 1331,
pages 22�31. CEUR Worksh. Proc., 2014.

[SHSed] S. Sobernig, B. Hoisl, and M. Strembeck. Extracting reusable design decisions in UML-based
domain-speci�c languages: A multi-method study. Submitted.

[SV06] T. Stahl and M. Völter. Model-Driven Software Development. John Wiley & Sons, 2006.
[SWCD12] G. M. Selim, S. Wang, J. R. Cordy, and J. Dingel. Model transformations for migrating legacy

models: An industrial case study. In Proc. 8th Europ. Conf. Model. Found. Appl., volume 7349 of
LNCS, pages 90�101. Springer, 2012.

[TJF+09] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the use of higher-order model
transformations. In Model Driven Archit. � Found. and Appl., volume 5562 of LNCS, pages 18�33.
Springer, 2009.

[UN10] W. H. Ulrich and P. H. Newcomb. Information Systems Transformation: Architecture-Driven
Modernization Case Studies. Morgan & Kaufmann Publishers, 2010.

[vA10] M. van Amstel. The right tool for the right job: Assessing model transformation quality. In Proc.
34th Annu. IEEE Comput. Softw. and Appl. Conf. Worksh., pages 69�74, July 2010.

[vABKFP11] M. van Amstel, S. Bosems, I. Kurtev, and L. Ferreira Pires. Performance in model transformations:
Experiments with ATL and QVT. In Theory and Practice of Model Tran., volume 6707 of LNCS,
pages 198�212. Springer, 2011.

[vAvdB10] M. van Amstel and M. van den Brand. Quality assessment of ATL model transformations using
metrics. In Proc. 2nd Int. Worksh. Model Tran. with ATL, volume 711, pages 19�33. CEUR
Worksh. Proc., 2010.

[vdBHVP11] M. van den Brand, A. Hofkamp, T. Verhoe�, and Z. Proti¢. Assessing the quality of model-
comparison tools: A method and a benchmark data set. In Proc. 2nd Int. Worksh. Model Com-
parison in Practice, pages 2�11. ACM, 2011.

[Vig09] A. Vignaga. Metrics for measuring ATL model transformations. Technical Report TR_DCC-
20090430-006, Universidad de Chile, April 2009. Available at: http://swp.dcc.uchile.cl/TR/
2009/TR_DCC-20090430-006.pdf.

[vSB99] R. van Solingen and E. Berghout. The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development. McGraw-Hill, 1999.

[WKK+10] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and W. Schwinger. Towards
an expressivity benchmark for mappings based on a systematic classi�cation of heterogeneities. In
Proc. 1st Int. Worksh. Model-Driven Interoperability, pages 32�41. ACM, 2010.

[WKS+10] M. Wimmer, A. Kusel, J. Schönböck, W. Retschitzegger, W. Schwinger, and G. Kappel. On using
inplace transformations for model co-evolution. In Proc. 2nd Int. Worksh. Model Tran. with ATL,
volume 711, pages 65�78. CEUR Worksh. Proc., 2010.

[WL13] M. Wimmer and P. Langer. A benchmark for model matching systems: The heterogeneous meta-
model case. Softwaretechnik-Trends, 33(2), 2013.

https://code.google.com/p/pongo/wiki/5MinuteTutorial
https://code.google.com/p/pongo/wiki/5MinuteTutorial
http://www.eclipse.org/epsilon/doc/book/
https://code.google.com/p/pongo/
https://code.google.com/p/pongo/
http://swp.dcc.uchile.cl/TR/2009/TR_DCC-20090430-006.pdf
http://swp.dcc.uchile.cl/TR/2009/TR_DCC-20090430-006.pdf

	Introduction
	Objective: Benchmarking
	A Proposal for a Standard Problem
	Application Selection
	Metamodel-Evolution Scenario: Language and Platform Migration
	Base Metrics
	Derived Metric: Benchmark Score

	Benchmarking Example: Higher-Order Rewriting of M2T Templates
	Discussion
	Related Work
	Conclusion and Future Work

