
Optimal quorum for a reliable Desktop grid

Ilya Chernov and Natalia Nikitina

Inst. Applied Math Research, Pushkinskaya 11, Petrozavodsk, Russia

Abstract. We consider a reliable desktop grid solving multiple tasks
with answers from a given set. Wrong answer can be obtained with some
small probability p: reliability means that p is small with respect to 1−p.
Penalty is added to the computation cost if a wrong answer is believed
to. We consider the optimization problem of choosing the quorum in case
of finite set of possible answers, countable set, and set with continuously
distributed subset.
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1 Introduction

In the presented work we consider the problem of task scheduling in a Desktop
Grid. The term stands for a distributed computing system with computational
nodes voluntarily donated by an organization (or a group of organizations fol-
lowing the same research goals) in their idle time. The nodes of such system
are desktop PCs, compute servers, cluster nodes, and other computational re-
sources available in a local network and/or the Internet. The BOINC middleware
[1] can be considered a de-facto standard for organizing Desktop Grids. Since
late 1990s, BOINC-based Desktop Grids have proven to serve as an effective,
highly scalable tool for solving computationally intensive problems. But the def-
inition given above implies that computational nodes of a Desktop Grid can
be highly heterogeneous by technical and software characteristics and become
available/unavailable in unpredicted moments. Moreover, the answer returned
by the computing node can be wrong, due to malfunction, errors in transaction,
malicious actions etc. In order to harness the volatile Desktop Grid resources ra-
tionally, special scheduling methods and algorithms should be developed. Much
effort has been paid recently to optimize the calculation process in a Desktop
Grid and improve its reliability. For example, a series of works [3, 4, 6] consider
heuristics for mapping independent tasks onto identical nodes that may leave
Desktop Grid in random moments; the work [5] presents closed-form conditions
of task replication to be reasonable; the authors of [2] and [7] consider hetero-
geneity of computational nodes, etc. The contribution of the presented work is
investigation of the optimal task replication level and the optimal quorum for a
Desktop Grid with high reliability of the answers returned from computational
nodes. Solving a computational problem with high reliability may significantly
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increase the cost of computations, such as the overall time, due to high preci-
sion of calculations. We try to evaluate the expected cost and select the optimal
strategy of task scheduling.

2 The mathematical model

Let us consider a desktop grid computing system that consists of multiple com-
puters and solves numerous similar tasks. Each task has an answer from some
set of possible answers. Without loss of generality we can assume that this set
is a subset of real numbers or integer numbers. The correct answer is obtained
with some probability q. Errors are possible due to malfunction of hardware,
malicious actions, or wrong answers produced by a correct non-deterministic al-
gorithm. Other, wrong answers have the total probability 1 − q; some of them
can have non-zero probability, others are distributed continuously.

Such errors can be made less likely by replication: sending copies of each
task to different computing nodes until a chosen number ν of identical answers
is received. This number is called the quorum. Obviously, for a given quorum
the number of copies is at least ν but can be more, up to N(ν − 1) + 1 for finite
number N of possible answers. However, the average number of copies is finite
even in case of infinite set of answers.

If a wrong answers is taken, this error will later be revealed and can cost
much. The losses can be connected with loosing a rare desired phenomenon, un-
necessary expensive laboratory checks, reputational losses, etc. These penalties
can be huge compared to the average cost of a single task.

Here we assume that q ≈ 1 in the following sense: 1 − q is negligibly small
compared to q. Therefore we can neglect possible cases of choosing between
different wrong answers or any wrong answers seen if the correct one has been
believed.

First we consider the finite set of possible answers. Then we will add some
simple notes about more general case with infinite set of answers, with positive
probabilities and/or continuously distributed.

3 Finite set of answers

Assume that M + 1 possible answers have probabilities pm, p0 = q ≈ 1 (the
correct answer), penalties of different answers are Fm, F0 = 0. If quorum ν is
chosen and the correct answer is accepted, the average number of copies is ν
up to the precision discussed above, the probability to get the correct answer
is q. However, for each wrong answer number m possible durations can be any
between ν (the same wrong answer in a row) and 2ν− 1 (after ν− 1 correct and
ν − 1 wrong answers the final wrong answer was received). The corresponding
probabilities of durations ν + i, i = 0, . . . , ν − 1 are, respectively, equal to(

ν − 1 + i

i

)
pνmq

i ≈
(
ν − 1 + i

ν − 1

)
pνm.
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The first factor chooses i positions of correct answers among ν − 1 first tries,
while the final answer is accepted.

The mean cost is

E(ν) = ν +

M∑
m=1

Fm

ν−1∑
i=0

(
ν − 1 + i

ν − 1

)
pνm.

To simplify this expression, we need the following formula:

ν−1∑
i=0

(
ν − 1 + i

ν − 1

)
=

(
2ν − 1

ν

)
.

It follows from
ν∑
j=1

(
(2ν − 1)− j

ν − 1

)
=

(
2ν − 1

ν − 1

)
if j = ν− i. To prove this equality, we need two well-known formulae (the Pascal
triangle): (

n

m

)
=

(
n− 1

m− 1

)
+

(
n− 1

m

)
,

(
n

m

)
=

(
n

n−m

)
.

Now consider(
2ν − 1

ν − 1

)
=

(
2ν − 2

ν − 2

)
+

(
2ν − 2

ν − 1

)
=

(
2ν − 2

ν − 1

)
+

(
2ν − 2

ν

)
=

=

(
2ν − 2

ν − 1

)
+

(
2ν − 3

ν − 1

)
+

(
2ν − 3

ν

)
.

Continue to obtain (
2ν − 1

ν − 1

)
=

ν∑
j=1

(
(2ν − 1)− j

ν − 1

)
.

On the final step we applied the obvious equality
(
n
n

)
=
(
n−1
n−1
)
. This completes

the proof.
Now we can rewrite the mean cost as

E(ν) = ν +

(
2ν − 1

ν

) M∑
m=1

Fmp
ν
m. (1)

We want to minimize this cost keeping in mind the fact that penalties Fm are
not known precisely, so that conditions should allow variations of Fm. Let us
consider differences ∆Eν = E(ν + 1)−E(ν) and take the first ν with ∆Eν ≥ 0.
It is easy to check that

∆Eν ≈ 1−
(

2ν − 1

ν

) M∑
m=1

Fmp
ν
m.



4 I. Chernov, N. Nikitina

So we need the smallest ν such that(
2ν − 1

ν

) M∑
m=1

Fmp
ν
m ≤ 1. (2)

It is clear that inequality (2) holds, then each term is less than 1; although
it is possible to choose parameters in such a way that all terms are less than
one while the sum is more. However, if we take ν making each term less than 1,
difference between optimal value is at most 1.

Let us simplify condition (2) in case M = 1 using the asymptotical formulae(
2ν

ν

)
=

22ν√
πν
,

(
2ν − 1

ν

)
=

22ν−1√
πν

.

Note that they are rather precise even for low ν: 10% for ν = 1 and less. Then
the condition (2) can be replaced by the approximate one:

22ν−1√
πν

Fpν ≤ 1.

If F = 2A, p = 2−B (A > 1, B > 2), then

(2−B)ν +A− 1 ≤ 0.5 log2 πν.

The right-hand side is less than 3 for ν < 20 and we can safely neglect it; then

ν ≥ A− 1

B − 2
= − log2(F )− 1

log2(p) + 2
= − ln(F/2)

ln(4p)
,

the smallest ν to be taken. For example, for A = 20, B = 10 we have ν = 3. The
same quorum we get solving the general inequality (2).

4 Infinite set of wrong answers

Assume that beside the correct answer of some probability q ≈ 1 and M wrong
ones with probabilities pm > 0 the set of possible answers contains a subset
S of continuously distributed answers of total probability r. Obviously these
answers are thrown off by any replication because they have zero probabilities
and therefore receiving an answer again is an impossible event. However, wrong
answers with positive probabilities can come a few times and be believed. In this
case the cost is increased on some penalty Fm.

The results here are completely the same as in the previous section, only the
average cost of ν = 1 case is different because estimated value of penalty for an
answer from S must be added to the average cost.

Now let us consider the case of countable (M = ∞) set of answers with
positive probabilities. This assumption may look nice, for example in case when
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answers are integer numbers. However, such case does not allow equal (or at
least comparable) probabilities pm: the series

∞∑
m=1

pm

must converge to some p which is small compared to 1 − p. Provided that pm
are given, the average cost

E(ν) = ν +

∞∑
m=1

(
2ν − 1

ν

)
Fmp

ν
m

can still diverge for some or all ν, depending on behaviour of penalties Fm.
It is clear that polynomial (at most) growth of Fm with respect to m is suffi-
cient for convergence. To prove that, note that a binomial coefficient grows with
polynomial rate: (

n

m

)
≤ 2n, 0 ≤ m ≤ n,

and the sequence pm decreases more quickly that m−1 because it forms a con-
vergent series; therefore sufficiently large ν = ν∗ makes the terms of the series
decrease quickly enough, so the the series converges. Higher ν only reduce the
sum at least (max pm)ν−ν

∗
times, so that the second term in the expression for

E decreases. So, for high enough values of ν the expected cost E grows, almost
lineary. Then it has the unique minimal value being the solution to the optimiza-
tion problem. We have proven that the optimization problem we are studying
always has a solution. It is solved in the similar way as the one for the finite set
of answers, only the cost function may be equal to infinity for some µ. Note that
the solution ν can equal 1 in case of low (or no) penalties. This means that no
replication is necessary.

It is clear that both countable set of possible answers and continuously dis-
tributed set of impossible answers can also be combined.
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