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Abstract—Model-Driven Engineering (MDE) aims at raising
the level of abstraction in software development and therefore
relies on task automation. To foster automation, MDE promotes
the use of specific domain languages (DSLs), essential to express
ideas at the domain level. Furthermore, to ease communication
between computer science and other fields, modelers employ
model examples (i.e., selected metamodel instances) to illustrate
and refine their conceptual ideas. But, if the use of model
examples has shown its efficiency, it is still an ad hoc process
which requires automation.

In this paper, we briefly depict the thorough example-to-
knowledge learning process. Then, we present a framework that
produces, from a metamodel, a representative model example
set with regards to a given coverage definition. To find the
best trade-off between coverage and a necessary minimality
objectives, we use a non-dominated genetic algorithm (NSGA-
II). We illustrated our method by generating a near-optimal set
of models for the peculiar constraint learning task. We evaluated
its efficiency comparing the resulting generated set with the best
one issued from a raw random generation.

Our encouraging preliminary results let us envision a deep
study of the relation between various types of coverage and their
impact on our ability to abstract knowledge from examples.

I. INTRODUCTION

Model-Driven Engineering (MDE) aims at raising the level
of abstraction in software development. It promotes the use
specific domain languages (DSLs) that can help non computer
scientists to model their applications and rely on automa-
tion for development and maintenance tasks, such as model
transformation and code generation, testing, etc. However, in
addition to the definition of DSLs, most of these tasks are
themselves domain-dependent and require specific knowledge
for their automation. In this respect and as acknowledged by
Selic [1], technical issues, especially the lack of automation,
are significant obstacles to the wide adoption of MDE.

Another kind of issue pointed out by Selic is communication
among experts from different fields. To cope with the need
of domain knowledge, many examples-based techniques were
proposed to enhance automation in MDE. Examples are used
either for knowledge elicitation from experts as in [2], or for
learning this knowledge as in [3] and [4]. They are used as a
vehicle to capture domain expertise when explicit knowledge
is not available or difficult to communicate.

We view the learning of knowledge, to automate a MDE
task, from examples as a 3-steps process as depicted in Fig. 1.
The first step consists in generating/selecting automatically a
set of model examples from a partial/complete metamodel.

Then for the second step, depending on the task to automate,
these examples have to be completed/corrected/annotated by
the domain experts. For instance, for model transformation
learning [5], source models are first automatically generated.
Then, a domain expert can produce the corresponding tar-
get models. Similarly, for meta-model well-formedness rule
(WFR) learning [4], the model examples, which are automat-
ically generated, are labeled by the domain expert as valid
or invalid. Model generation automation improvement tackles
technical issues in model validation and model transformation.
Finally, the third step consists in the actual knowledge learning
using the examples defined in the two first step. Here, the task
to automate defines the boundaries of the space of possible
solutions.

In this paper, we focus on the first step of the example-to-
knowledge learning process. Indeed, the quality of the learned
knowledge depends heavily on the quality of the generated/-
completed examples. Obviously, the examples should have a
good coverage to make the learned knowledge more generaliz-
able. In other words, the examples should be representative of
the various situations that the automated task should process.
Of course, the notion of coverage is not absolute and depends
on the task to automate. Thus, different coverage criteria could
be defined. The most obvious coverage is the one considering
the entire modeling space defined by a metamodel. This
coverage is needed for metamodel testing [6].

Fleurey et al. [7] describe possible strategies to cover such
a modeling space. Then, the modeling space to explore can be
reduced depending on the tasks to automate. For instance, in
(WFR) learning, not all the metamodel constructs are likely to
be concerned with well-formedness rules. Cadavid et al. [8]
showed empirically that these rules follow a limited set of
OCL templates. Thus, only the metamodel fragments that are
involved in instance of these templates should be covered by
the model generation. Similarly, for transformation learning,
the metamodel fragments to cover are only those, potentially
concerned by the transformation (see the work of Mottu et
al. [9]). These are three examples of coverage that could be
used separately or together to maximize the representativeness
of the model examples.

In model generation, coverage is not the only criterion to
consider. Due to the manual completion by the domain experts
and the learning computation cost, the size of the model
example set to generate should be limited. Thus a minimality



criterion is also important to consider.
Contribution?

As mentioned earlier, the generation of model examples
should be driven by many objectives: one or more types
of coverage and minimality. Coverage and minimality are
generally conflicting criteria and are difficult to combine in
a single objective. In this paper, we propose a framework for
model example set generation in the form of a multi-objective
evolutionary algorithm. Our framework is generic as it can be
applied to any metamodel and one or more coverage criteria
can be selected.

The remainder of the paper is organized as follows. In
Section II, we briefly describe research contributions on the
edge between model generation and example-based automa-
tion in MDE. In Section III, we present our approach. Our
preliminary results are outlined in Section IV and we conclude
in Section V.

II. RELATED WORK

Recent studies have demonstrated the utility of using ex-
ample models through the modeling process [3], [2]. Our
work is related to three main areas: generation of test models,
knowledge elicitation for modeling and knowledge learning
from model examples.

Model generation, which is performed with the intent of
providing tests cases, is the most target area. A plethora of pa-
pers has been published including new paradigms such as test-
driven [10], behavior-driven [11] and story test-driven [12].
With the intent of providing examples to feed a testing
task, automation here is circumscribed into generating models
rather than defining them manually. Wu et al. [13] report
on a systematic literature review about metamodel instance
(i.e., models) generation. They gather a total of 34 studies
from 2002 to 2011, and present four main areas related to
instance generation: compiler testing, model transformation
testing, graph grammar and SAT-based approaches. Wu et
al.found that there is no consensus on algorithms and theo-
retical frameworks used in each area to produce metamodel
instances. Ways and means to generate models are problem-
dependent but the criteria used for selecting model instances
are, for the most part, based on Association-end multiplicities
and Class attribute utilization and refer to Fleurey et al. [7] as
the state-of-the-art in the area. [14] explores strategies based
on multi-formalism knowledge to automate model generation
for model transformation testing.

The second related area is dedicated to using examples
for knowledge elicitation during modeling activities. Here,
automation helps to emphasis interesting part of the task
to automate and to exhibit unexpected corner cases. For
instance, in [15], a metamodel is induced and refactored in
an interactive way using examples to help in communication
and incrementally enhance its accuracy. Fleurey et al.in [7]
characterize models to test metamodels but do not derive
knowledge from them. The focus is on the qualification of
sets as in [16] where the authors aim at characterizing oracles
in model transformation testing. Additionally, Mottu et al. [9]

provide suitable test cases for model transformations based on
the transformation footprint. They improve testing but do not
automate the testing process, nor they derive knowledge from
these cases. In the same fashion, Cadavid et al. in [6] explore
modeling space boundaries using examples.

Finally, many contributions have been proposed recently to
derive knowledge from examples in various Software Engi-
neering fields. In this area, attention is paid to understand the
various situations put to light by the examples, and to abstract
knowledge from them. Examples of such contributions include
WFR learning [4] and model transformation derivation [17]
from examples. Another example is the detection and correc-
tion of design defects [18] using examples.

III. APPROACH

Fig. 1 shows how we envision the example-based knowl-
edge abstraction to automate MDE tasks that are domain-
dependent. Our process includes three steps driven by the task
to automate. The task to automate defines the kind of coverage
that will be considered in the model generation to ensure the
representativeness of the generated example set. During the
second step, the task to automate specifies which information
has to be provided by the expert to complete the generated
examples. Finally, the task to automate demarcates the solution
space to be explored to learn the necessary knowledge in the
last step. In this space, the quality of the candidate solutions
is evaluated by their conformance to the examples, which are
built in the two first steps.

This paper details our contribution to the first step of the
process, i.e., generation of models guided by the selected
coverage types. More concretely, we propose a model gen-
eration framework that allows to select the metamdodel to
instantiate. Any metamodel expressed in ECORE can be used.
The framework also offers an extensible set of coverage types
from which one or more types have to be satisfied during the
generation. The framework takes the form of a multi-objective
evolutionary algorithm. In this context, adding a new coverage
type consists in defining a new objective to evaluate.

The generation process is viewed as a search-based com-
binatorial optimization to find the minimal set of models
that best satisfy one or more coverage types for a selected
metamodel. More concretely, we use a non-sorting genetic
algorithm (NSGA-II [19]) to tackle the theoretical challenge
of optimizing the representativeness of model example sets.
After presenting the main process of evolutionary algorithm,
we precise how we adjusted it to the context of coverage
achievement. A last sub-section will present briefly the second
and third step of the learning process.

A. Non-sorting genetic algorithm

Genetic algorithms (GA) are powerful tools to explore the
search space of an optimization problem. More specifically,
the basic idea of NSGA-II [19] is to make a population of
candidate solutions evolve toward the near-optimal solution
in order to solve a multi-objective optimization problem.
NSGA-II is designed to find a set of optimal solutions, called
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Fig. 1: Example-based knowledge abstraction in MDE

non-dominated solutions, also Pareto set. A non-dominated
solution is the one which provides a suitable compromise
between all objectives without degrading any of them. As
described in Fig. 2, the first step in NSGA-II is to create
randomly a population P0 of N/2 individuals encoded using
a specific representation. Then, a child population Q0, of
the same size, is generated from the population of parents
P0 using genetic operators such as crossover and mutation.
Both populations are merged into an initial population R0 of
size N , which is sorted into dominance fronts according to
the dominance principle. A solution s1 dominates a solution
s2 for a set of objectives {Oi} if ∀i, Oi(s1) > Oi(s2) and
∃j | Oj(s1) > Oj(s2). The first front includes the non-
dominated solutions; the second front contains the solutions
that are dominated only by the solutions of the first front,
and so on and so forth. The fronts are included in the parent
population P1 of the next generation following the dominance
order until the size of N/2 is reached. If this size coincides
with part of a front, the solutions inside this front are sorted, to
complete the the population, according to a crowding distance
which favors diversity in the solutions [19]. This process will
be repeated until a stop criterion is reached, e.g., a number of
iterations.
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Fig. 2: NSGA-II [19]

B. Model example generation

When applying NSGA-II to a particular problem, solution
representation, genetic operators, and objective functions must
be carefully designed to address the problem requirements.
The creation of the initial population has also to be defined.
The next sections present our adaptation of NSGA-II to the
context of model generation.

1) Solution representation and solution creation: As our
goal is to maximize the coverage of a metamodel or some
fragments of it, with a minimal overlap between the selected
models, a solution for our problem refers simply to a set
of models. We view the model example generation as the
selection of the minimal set of models inside a large amount
of randomly generated ones (call it the base of models). Our
first step is to produce the base of models for the considered
metamodel. To this end, we use AtlanMod instantiator 1. This
tool allows to generate models in XMI format from a meta-
model described in ECORE. The expected number of models,
number of objects per model, maximum number of attributes
and references, and maximum depth of the references can
be specified. The generator produces the required number
of correct instances (invalid instances, w.r.t multiplicity con-
straints, identified by the tool are ignored). It is configured
with a uniform distribution, i.e., when a maximum number
is given for attributes/references/depth, any number below the
maximum has the same probability to occur. We repeat the
generation process with different model sizes to produce a
large base of examples (10000 models of 10 to 200 objects in
our evaluation study).

2) Objective functions: The objective functions assess the
ability of a solution to solve the problem under consideration.
To evaluate solutions (i.e., model sets), we consider the cover-
age and minimality objectives. Coverage, as depicted in Fig. 1,
has to be tailored to the task to automate. For illustration
purpose, we consider the metamodel coverage for metamodel
testing (i.e., at large) and the OCL footprint coverage for
well-formedness rule learning. We present, in the following

1https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.
atlanmod.instantiator

https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator
https://github.com/atlanmod/mondo-atlzoo-benchmark/tree/master/fr.inria.atlanmod.instantiator


paragraphs, the implementations of both coverage evaluation
strategies as well as minimality.
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Coverage at large: Metamodel testing implies exploring
the entire metamodel. Fleurey et al. [7] is considered as the
state-of-the-art in partitioning metamodel in order to distillate
interesting structures from its features and rate coverage upon
these. Based on Ostrand et al. [20] category-partitioning
method, the authors decompose the static structure of a meta-
model in three hierarchical levels:

• an object fragment is the association of a possible value
(or a range of values) to an attribute (or a reference) in
the metamodel. To this end, each attribute or reference is
partitioned, beforehand, into a set of (ranges of) values.
For example, an integer-type attribute P of a class C is
partitioned into three categories: {P=0, P=1, P>1}. For a
given metamodel, an object fragment is defined for each
category of the partition of each attribute/reference, e.g.,
of(P, 0).

• a model fragment contains one or more object fragments.
We considered two strategies to define the model frag-
ments. For the AllRanges strategy, a model fragment is
defined for each object fragment, e.g., mf((P, 0)). For
the AllPartitions strategy, we define a model fragment
for each attribute/reference as a set of object fragments of
the corresponding partition, e.g., mf((P, 0), (P, 1), (P,>
1)).

• a metamodel fragment partition MFP is the set of all
model fragments defined on the metamodel.

For a given model instance mi, a model fragment mfj is
covered by mi if all the object fragments in mfj appear in mi

(covering(mfj ,mi) = true). Starting from this, it is possible
to derive the set of model fragments covered MFC(ms) by
a set of models ms (a solution in our problem). Then, our
coverage objective function is defined as the proportion of
model fragments covered by the candidate solution ms over
the metamodel fragment partition MFP. Formally:

coverage(ms) =
|MFC(ms)|
|MFP |

OCL footprint: the second coverage evaluation we im-
plemented is based on the intent to focus on parts of the

metamodel potentially affected by OCL constraints - i.e., OCL
footprint. Cadavid et al.in [21] perform an empirical study on
the conjunct use of MOF and OCL. They collected from an
important set of metamodels (from industry, academia and the
Object Management Group2) a list of the most used OCL well-
formedness constraints. They observed that all the metamodels
tend to have a small core subset of concepts, which are
constrained by most of the rules. However, the most interesting
conclusion, from our perspective, is that there is a limited set
of well-formedness rule patterns (22) that are the most used by
metamodelers. Instances of these patterns are used separately
or composed to define well-formedness rules in the form of
OCL constraints. We use this as a base to evaluate the OCL
footprint on a metamodel.

For that purpose, we identify all instances of each OCL
pattern in the considered metamodel. For each instance, we
identify the involved classes and features. The identified
elements of the metamodel determine the parts that have to be
covered by the model example sets. In other words, rather than
defining the model fragments and the metamodel fragment
partition from the whole metamodel, we consider only the
elements involved in the constraint-patterns instances. Fig. 3
illustrates the idea of considering only the pattern instances.
The coverage calculation of a set of models ms follows the
formula as for the coverage at large.

Minimality: As our goal is to find the minimal set of
models with the maximum coverage, we aims at having sets
with dissimilar models. More concretely, to ensure minimality,
we use the dissimilarity criterion as defined in [6]. The
dissimilarity of a set ms is calculated as 1− sim(ms) where
sim(ms) is the normalized similarity between models in ms.

3) Genetic operators: As illustrated in Fig. 4, crossover
operator uses the single cut-point crossover. Each parent
solution (set of models) is divided into two parts according
to a randomly picked cut point. Then the parts of the parent
solutions are exchanged to form two new model sets.

Mutation operator selects randomly a model in a model set
and replaces it by a new model randomly selected in the model
base.
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Fig. 4: Crossover and mutation adapted to coverage evaluation

C. Following step: Completion For illustrative purpose

Once the near-optimal example set constituted, experts may
add missing information to complete the examples. As said
before, in the case of WFR learning, example models have

2http://www.omg.org



to be discriminated by an expert who will annotate them as
conform (or not conform) to his application domain. Labeled
examples will allow the learning process of WFR.

For the case of model transformation learning, the source
model examples, which are generated by our evolutionary
algorithm, will be completed with their corresponding target
models.

IV. VALIDATION

Assessing our entire methodology would require a cross-
comparison between metamodels from different ranges and
different coverage kinds. To give a first look at the efficiency
of our approach, we compared it to a random model set
generation for two different metamodels using the OCL-
footprint coverage. In this section, we present the setup of
our validation procedure and then the first results obtained.

A. Setup

As we are using a fixed model base to select the representa-
tive model sets, we have to ensure the diversity of the models
in our base. Therefore, we run the Instantiator to produce
10.000 models with different structural characteristics. During
the generation, we varied the expected size of models from 10
to 200 objects (with steps of 10), and we picked randomly the
numbers of attributes and references in a range of 0 to 14. The
depth of reference chains is picked between 0 and 10. We took
those numbers from common knowledge about the statistical
structure of metamodels and its correlation with the practical
use. These parameters can be changed in our framework. In
the end, the 10.000 models generated are stored in the base
from which the initial population of solutions is created and
from which the models are randomly picked for the mutation
operator.

We implemented two different coverage evaluations de-
pending on the nature of the problem: partitioning the whole
metamodel; and using the knowledge-based partitioning (OCL
footprint) following the OCL patterns identified in [21].

Results of the comparison between a random generation and
our approach are shown in Table I. Random generation builds
random populations from models picked in the model base.
To have a fair comparison, the random generation produces
50 × 800 model sets, which corresponds to the number of
model sets explored by our approach (800 generations of 50
model sets each). The size of the set is randomly given for each
iteration of the random generation and for the initial population
in NSGA-II algorithm.

ATL2.0 Feature Diagram

Random NSGA-II Random NSGA-II

Dissimilarity 99% 99% 63% 95%

Coverage 78% 93% 100% 100%

TABLE I: Comparison between random generation and
NSGA-II algorithm (in WFR learning)

To assess our process, we executed the two algorithms
on two different metamodels: a small metamodel, Feature
Diagram which contains 5 classes and 8 features; and ATL2.0,
a metamodel of more considerable size with 84 classes and
146 features.

B. Results

Following our concern of having a fair comparison, we ran
the random generation and our algorithm several times and
recorded for each run the best solution for each algorithm.
Then, we considered, for comparison, the best recorded so-
lution for random and the worst recorded solution for our
algorithm.

As described in Table I, our algorithm produces a solution
that dominates the random solution for the two considered
objectives. For ATL2.0, which is the largest metamodel, the
dissimilarity quickly reaches a maximum of 99% in both
algorithms whereas the coverage is by far better for our
algorithm (93% compared to 78% for random execution). In
the case of the Feature Diagram, the smallest metamodel, we
observed the opposite. Both algorithms have a full coverage
(100%). This is easy to explain considering the size of the
metamodel and thus, the small size of metamodel fragment
partition to cover. However, this good coverage was obtained
in random at the cost of a low dissimilarity 63%, which was
not the case for our algorithm with a dissimilarity of 95%.

We could conclude that these preliminary results are very
encouraging for the effectiveness of our approach in generating
minimal and representative sets of model examples. They
strengthen our motivation in pursuing the investigation of the
other steps of the example-to-knowledge learning process.

V. CONCLUSION

In this paper, we presented an approach to automatically
generate example models for a given metamodel in order
to abstract knowledge from them. We model the example
generation as multi-objective optimization problem, and we
solve it using an evolutionary algorithm NSGA-II. To evaluate
our approach, we compared its results to those produced by a
random generation. Our empirical observations show that we
produce better solutions for the two considered metamodels.

An important perspective of this work consists in automat-
ing/characterizing the process of learning knowledge from
examples in MDE. The framework we presented in this
paper allows, from a metamodel, to produce a representative
model example set with regards to a given coverage definition.
Examples need then to be completed by an expert to have a
fully-fledged set of examples that can be used to learn the
knowledge necessary to automate a task in MDE. Future work
includes first the study of the relation between various types
of coverage and our ability to learn knowledge from examples.
Then, we can explore the learning of various tasks in MDE.
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