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Abstract

We study one of the simplest causal prediction
algorithms that uses only conditional indepen-
dences estimated from purely observational data.
A specific pattern of four conditional indepen-
dence relations amongst a quadruple of random
variables already implies that one of these vari-
ables causes another one without any confound-
ing. As a consequence, it is possible to predict
what would happen under an intervention on that
variable without actually performing the inter-
vention. Although the method is asymptotically
consistent and works well in settings with only
few (latent) variables, we find that its predic-
tion accuracy can be worse than simple (incon-
sistent) baselines when many (latent) variables
are present. Our findings illustrate that viola-
tions of strong faithfulness become increasingly
likely in the presence of many latent variables,
and this can significantly deterioriate the accu-
racy of constraint-based causal prediction algo-
rithms that assume faithfulness.

1 Introduction

One of the central tasks in causal inference is to predict the
changes resulting from interventions [Pearl, 2000, Spirtes
et al., 2000], where by intervention we mean a perturba-
tion of a system by some external cause. An example of
such a causal prediction task from biology is to predict the
expression of some gene when another gene is knocked
out (i.e., its expression is artificially reduced). This causal
prediction task is more challenging than the “noncausal”
prediction tasks mostly considered in statistics and ma-
chine learning (e.g., estimating the expression of some gene
given a measurement of the expression of another gene, as
in regression). Note that the crucial difference between the
two (i.e., causal and noncausal) prediction tasks reflects the
difference between (passive) observation and (active) in-

tervention. Deriving theory and designing algorithms for
causal prediction is one of the key challenges in the field
of causal inference. A very challenging task in this context
is to predict the effect of interventions from purely obser-
vational data (i.e., measurements from an unperturbed sys-
tem), without any knowledge of the causal structure of the
system. This is the setting that we study in this work.

When the causal structure of the system is known, causal
predictions can be made for instance by parent adjustment,
the back-door criterion, and the front-door criterion [Pearl,
2000]. More generally, Pearl’s do-calculus [Pearl, 2000]
can be employed, for example using the algorithm by Tian
and Pearl [2002]. This allows one to identify all causal ef-
fects from purely observational data given the true causal
structure [Shpitser and Pearl, 2006, Huang and Valtorta,
2006].

However, the causal structure of the system is often not
known. Estimating the full causal structure from data is
typically not possible without making strong assumptions.
However, it is possible under weaker assumptions to es-
timate the Markov equivalence class from purely obser-
vational data, i.e., the set of all causal structures that are
compatible with the observed conditional independences in
the data. This can be done for instance using constraint-
based causal discovery algorithms, like the PC algorithm
[Spirtes et al., 2000] that assumes causal sufficiency, or the
FCI algorithm [Spirtes et al., 2000] that allows for latent
confounders and selection bias. These causal discovery al-
gorithms output a compact representation of all the causal
structures that are compatible with the data, under certain
assumptions.

A brute-force approach to causal prediction would then
consist of enumerating all possible causal graphs in the esti-
mated Markov equivalence class, and estimating the causal
effects for each of these graphs, thereby yielding a set of
causal effects that are compatible with the data. Smarter
approaches [Spirtes et al., 2000, Zhang, 2008, Maathuis
et al., 2010, Maathuis and Colombo, 2015, Hyttinen et al.,
2015] avoid this brute-force enumeration. What all these
approaches have in common is that they separate the prob-



lem into two parts: first, estimate the set of all causal struc-
tures that are compatible with the data, then obtain causal
predictions for all these (classes of) causal structures.

A bottleneck in those approaches is the estimation of the
Markov equivalence class. This is a difficult statistical task,
especially in high-dimensional settings. Constrained-based
causal discovery algorithms typically perform a sequence
of conditional independence tests, and which tests are per-
formed depends on the results of previous tests. There-
fore, statistical errors of conditional independence tests
may propagate when estimating the Markov equivalence
class, leading to wrong predictions, especially when a large
number of these tests have to be performed. By first esti-
mating the Markov equivalence class, we may be attacking
a more difficult problem than necessary, and thereby in-
troduce undesired variance into the causal effect estimates.
Alternative approaches that do not require estimation of
the Markov equivalence class have been proposed [Vander-
Weele and Shpitser, 2011, Entner et al., 2013], but these
rely on partial background knowledge regarding causal re-
lations.

In this work, we investigate a simple alternative method for
predicting causal effects that is sound and consistent (also
in the presence of confounders). The method effectively
avoids estimating the (equivalence class of the) complete
causal structure of all observed variables and focusses on
small subsets of four variables instead. In this way, it mini-
mizes the number of conditional independence tests neces-
sary to reach a nontrivial causal prediction, thereby hope-
fully improving the accuracy of that particular prediction,
as there is less possibility for statistical errors to accumu-
late. The main motivations behind our approach are (i) we
would like to trade completeness for reliability, and (ii) fo-
cussing on a simple algorithm makes it easier to analyse its
statistical properties.

We first sketch a general approach to causal reasoning, and
then focus on a simple special case with four variables
that leads to nontrivial conclusions. That special case is
closely related to an existing method to detect so-called Y-
structures [Mani et al., 2006]. Our main contributions are
(i) an alternative derivation that offers straightforward ways
to generalize and extend the method, and (ii) an empirical
study of the performance of the algorithm and its building
blocks. We conclude that the method, though simple and
elegant, performs poorly on simulated data. In particular,
violations of strong faithfulness become increasingly prob-
lematic as the number of (latent) variables increases, and
deteriorate causal prediction accuracy so severely that the
method does not even outperform simple noncausal base-
lines already for p = 50 variables in our simulations.

2 Theory

Given a set of random variables1 V , we can express their
direct causal relationships by means of a causal graph,
which has a directed edge X → Y if and only if X ∈ V
is a direct cause of Y ∈ V . A directed path (sequence
of head-to-tail directed edges) corresponds to an indirect
causal relationship, or ancestral relation. We denote the set
of all indirect causes (ancestors) of a variable X ∈ V ac-
cording to causal graph G by AnG(X) (we adopt here the
convention that this includes X itself). For a set of vari-
ables X ⊆ V , we define AnG(X) =

⋃
X∈X AnG(X).

Therefore, X ∈ AnG(Y ) means that X is an (indirect)
cause of some Y ∈ Y according to the causal graph G, and
X 6∈ AnG(Y ) means that X is not an (indirect) cause of
any Y ∈ Y according to the causal graph G. In addition to
directed edges, the causal graph G may contain bidirected
edges to denote confounders, i.e., latent common causes.

From now on, we assume that there is a causally sufficient
set of variables V = O∪̇L, of which we observe only the
variables in O, the variables in L being latent, and that the
causal graph on O∪L is a directed acyclic graph (DAG). In
particular, this means that we assume that there is no causal
feedback and that there are no confounders of the variables
O∪L. Note that when considering only the observed vari-
ables O, the latent variables in L may act as confounders
for variables in O, so we do not assume that the variables
in O are causally sufficient on their own. Furthermore, we
assume that there is no selection bias, i.e., we are not im-
plicitly conditioning on (common effects of) the variables
in O ∪L. Finally, an important assumption is faithfulness,
i.e., each conditional independence X ⊥⊥Y |Z in the joint
distribution of the random variables O ∪ L corresponds to
a d-separation X ⊥⊥G Y |Z in the DAG G. In other words,
conditional independences in the distribution reflect prop-
erties of the causal structure rather than accidental cancel-
lations due to very specific choices of the parameters of the
causal model.

The approach we study here is a straightforward combina-
tion of two ingredients: causal discovery rules by Claassen
and Heskes [2011] and a causal prediction rule by Entner
et al. [2013]. We will begin by describing these causal rea-
soning rules.

2.1 Causal discovery rules

Claassen and Heskes [2011] pointed out a correspon-
dence between what they call minimal conditional
(in)dependences and ancestral relations. We adopt the same
notation for these minimal conditional (in)dependences
here. Claassen and Heskes [2011] define a minimal con-

1We denote sets of variables in boldface.



ditional independence by:

X ⊥⊥Y |W∪[Z] ⇐⇒

{
X ⊥⊥Y |W ∪Z, and
∀Z′ ( Z : X 6⊥⊥Y |W ∪Z′

Similarly, they define a minimal conditional depedendence
by;

X 6⊥⊥Y |W∪[Z] ⇐⇒

{
X 6⊥⊥Y |W ∪Z, and
∀Z′ ( Z : X ⊥⊥Y |W ∪Z′

The square brackets express that the variables in Z are nec-
essary to obtain the (in)dependence, in the context of W .
The minimal conditional (in)dependences relate directly to
ancestral relations in the DAG G, as shown by Claassen
and Heskes [2011]. In particular, they give the following
inference rules:

Lemma 1 For disjoint sets {X}, {Y }, {Z},W ⊆ O:

1. X ⊥⊥Y |W ∪ [Z] =⇒ Z ∈ AnG({X,Y } ∪W )

2. X 6⊥⊥Y |W ∪ [Z] =⇒ Z 6∈ AnG({X,Y } ∪W ).

In addition, the following obvious rules for ancestral rela-
tions in a DAG G hold:

Lemma 2 For X,Y, Z ∈ O:

1. X ∈ AnG(Y ) ∧ Y ∈ AnG(Z) =⇒ X ∈ AnG(Z);

2. X ∈ AnG(Y ) ∧ Y ∈ AnG(X) =⇒ X = Y .

These rules express the transitivity and acyclicity of indi-
rect causal relations.

2.2 Causal prediction rule

Under the same assumptions that we made above, Entner
et al. [2013] show that:

Lemma 3 For disjoint sets {X}, {Y }, {Z},W : if
Y 6∈ AnG({X} ∪W ∪ {Z})
X 6∈ AnG(W ∪ {Z})
Z ⊥⊥Y |W ∪ [X]

then W is sufficient for adjustment of X on Y , i.e.,

p(Y |do(X = x)) =

∫
p(Y |X = x,W )p(W ) dW .

Here, p(Y |do(X = x)) denotes the interventional distri-
bution of Y under a perfect intervention onX that setsX to
the value x [Pearl, 2000]. The proof uses the backdoor cri-
terion [Pearl, 2000]. Entner et al. [2013] also provide rules
for inferring no causal effect (i.e., p(Y | do(X = x)) =
p(Y )), but we do not reproduce those here as we are mostly
interested in predicting nontrivial causal effects.

2.3 (Extended) Y-structures

The causal discovery rules by Claassen and Heskes [2011]
allow to derive ancestral relations from conditional inde-
pendence relations, and the causal prediction rule by Ent-
ner et al. [2013] allows to infer a sufficient adjustment set
from a particular combination of ancestral and conditional
independence relations. By combining these rules, suffi-
cient adjustment sets can be found from conditional inde-
pendence relations alone. In this way, we can easily arrive
at causal predictions from purely observational data that
even hold in the presence of confounders.

In our context, one of the simplest combinations of con-
ditional independences that yields nontrivial causal predic-
tions on four variables is the following:

Proposition 1 For a quadruple 〈X,Y, Z, U〉 ∈ O4 of dif-
ferent observed variables, if{

Z ⊥⊥Y | [X]

Z 6⊥⊥U | [X]
(1)

then X ∈ AnG(Y ) and p(Y | do(X)) = p(Y |X).

Proof. From Z 6⊥⊥U | [X] and Lemma 1.2 it follows that
X /∈ AnG({Z,U}), and therefore X /∈ AnG(Z).
From Z ⊥⊥Y | [X] and Lemma 1.1 it follows that X ∈
AnG({Z, Y }). Combining these two results, we conclude
that X ∈ AnG(Y ). By acyclicity, this implies Y /∈
AnG(X). Further, Y ∈ AnG(Z) would lead to X ∈
AnG(Z) by transitivity, which contradicts X /∈ AnG(Z).
Applying Lemma 3 with W = ∅ immediately gives that
p(Y | do(X)) = p(Y |X). �

In this simple context where W = ∅, the causal prediction
rule from Entner et al. [2013] reduces to a special case that
was already known for a long time under the name Local
Causal Discovery (LCD) [Cooper, 1997]. Therefore, we
can also interpret Proposition 1 as a special case of LCD
where the necessary ancestral preconditions are provided
by employing the rules of [Claassen and Heskes, 2011].

The Markov equivalence class of G can be represented
by a Partial Ancestral Graph (PAG) [Zhang, 2008] on the
observed variables O. Each PAG represents a collection
of Maximal Ancestral Graphs (MAGs) [Richardson and
Spirtes, 2002], and each MAG represents infinitely many
DAGs. Each DAG (on some set of variables that contains
all observed variables O, and possibly more variables) rep-
resented by a PAG on O satisfies the same conditional in-
dependence relations on the observed variables O.

Proposition 2 There are two PAGs on {X,Y, Z, U} that
satisfy the relations in (1). They are depicted in Figure 1.

Proof. Z and Y are not adjacent because Z ⊥⊥Y |X . Z
and U are not adjacent because Z ⊥⊥U . We distinguish
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Figure 1: All PAGs compatible with (1). Circles represent
edge marks that can be either a tail or an arrowhead. There-
fore, these two PAGs represent six MAGs.

two cases: U and Y are nonadjacent (“Y-structure”) and
U and Y are adjacent (“Extended Y-structure”). In both
cases, three arrowheads follow from the ancestral relations
Y /∈ AnG(X), X /∈ AnG(U), X /∈ AnG(Z), and one tail
follows from X ∈ AnG(Y ), Note that if there is an edge
between U and Y , then U must be a collider. Indeed, the
path Z · · ·X · · ·U · · ·Y must be blocked when condition-
ing on X . But then the edge between U and Y must have
an arrowhead at Y , otherwiseX would be ancestor of U . It
is easy to check that each of the six MAGs corresponding
with the two PAGs is compatible with the constraints (1).
�

We can obtain symmetry between U and Z by adding an-
other minimal conditional independence test (only satisfied
by the Y-structures):


Z ⊥⊥Y | [X]

U ⊥⊥Y | [X]

Z 6⊥⊥U | [X]

(2)

As we assume faithfulness, all other conditional indepen-
dence relations on {X,Y, Z, U} can now be read off from
the PAGs.

Corollary 1 Under faithfulness, the only conditional inde-
pendences that hold in an Extended Y-structure are the two
in (1), i.e., Z ⊥⊥Y |X and Z ⊥⊥U . The only conditional
independences that hold in a Y-structure are the three in
(2), i.e., Z ⊥⊥Y |X , Z ⊥⊥U and U ⊥⊥Y |X , and in addi-
tion U ⊥⊥Y | {X,Z} and Y ⊥⊥Z | {U,X}.

Y-structures have been studied before by Mani et al. [2006],
who showed that they can be identified by using a Bayesian
scoring method (even in the presence of latent variables).
[Mani and Cooper, 2004, Mani, 2006] also provide em-
pirical results about the performance of Bayesian scoring
methods for detecting Y-structures. To the best of our
knowledge, Extended Y-structures have not been studied
before.

Algorithm 1 Extended Y-structure search
Input:
O set of observed variables
D i.i.d. sample of p(O)

Output:
L set of Extended Y-structures;

Algorithm:
L ← ∅
for all 〈X,Y, Z, U〉 ∈ O4 do

if #{X,Y, Z, U} = 4 then
if Z 6⊥⊥D Y and Z ⊥⊥D Y |X and Z ⊥⊥D U and
Z 6⊥⊥D U |X then
L ← L ∪ {〈X,Y, Z, U〉}

end if
end if

end for
Predictions:
∀〈X,Y, Z, U〉 ∈ L : p(Y | do(X)) = p(Y |X)

2.4 Algorithms

One of the simplest algorithms that makes nontrivial causal
predictions from purely observational data using the ideas
above is given in Algorithm 1. It is a brute-force search
over all quadruples in O that satisfy the Extended Y-
structure conditional independences in (1). Any condi-
tional independence test can be used when testing for con-
ditional independences of the formX ⊥⊥D Y |Z in the data
D. For each of the quadruples 〈X,Y, Z, U〉 output by
the algorithm, the causal prediction is that p(Y | do(X =
x)) = p(Y |X = x) for all x. In words: the interventional
distribution of Y when setting X to the value x coincides
with the conditional distribution of Y given X = x.

It follows directly from Proposition 1 that Algorithm 1 is
sound. When using consistent conditional independence
tests, it is also consistent: as the number of samples in
D grows, the probability for an erroneous conclusion con-
verges to 0. This directly follows from the consistency of
the independence tests. However, the algorithm is not uni-
formly consistent. In practice, we do not know a priori
how many samples we need to be confident about the cor-
rectness of the result [Robins et al., 2003]. Intuitively, as a
dependence can be arbitrarily weak, we may need an arbi-
trarily high number of data points to be able to distinguish
it from an independence. Furthermore, Cornia and Mooij
[2014] showed that for LCD in a linear-Gaussian setting, it
is impossible to derive a confidence interval on the causal
prediction error without making strong assumptions. Their
result also applies to Algorithm 1, as it makes a similar
causal prediction as LCD does. Summarizing:

Proposition 3 Algorithm 1 is sound and consistent when
using consistent independence tests. However, it is not uni-
formly consistent and it is impossible to derive a confidence



Algorithm 2 Conditional Independence Pattern search
Input:
O set of observed variables
n pattern size
π pattern of conditional independences
D i.i.d. sample of p(O)

Output:
L set of n-tuples in On matching pattern π

Algorithm:
L ← ∅
for all T ∈ On do

if #T = n and π(T ) in D then
L ← L ∪ {T}

end if
end for

interval on the prediction error without making additional
assumptions in the linear-Gaussian setting.

We have spelled out Algorithm 1 for clarity, even though it
is a special case of the more general Algorithm 2 that per-
forms a brute-force search for certain conditional indepen-
dence patterns by testing whether all relations in the pat-
tern simultaneously hold in the data. For example, using
the following pattern for testing an Extended Y-structure in
Algorithm 2 we recover Algorithm 1:

extY(〈X,Y, Z, U〉) = Z ⊥⊥Y | [X] ∧ Z 6⊥⊥U | [X].

In the next section, we will study also the following pat-
terns on quadruples of variables:

Y(〈X,Y, Z, U〉) = extY(〈X,Y, Z, U〉) ∧ U ⊥⊥Y | [X].

Y1(〈X,Y, Z, U〉) = Y(〈X,Y, Z, U〉)
∧ Z 6⊥⊥X ∧X 6⊥⊥Y ∧X 6⊥⊥U ∧ Y 6⊥⊥U
∧X 6⊥⊥U |Y ∧X 6⊥⊥Z |Y ∧ U 6⊥⊥Z |Y
∧X 6⊥⊥Y |U ∧X 6⊥⊥Z |U ∧ Y 6⊥⊥Z |U
∧X 6⊥⊥Y |Z ∧X 6⊥⊥U |Z ∧ U 6⊥⊥Y |Z.

Y2(〈X,Y, Z, U〉) = Y1(〈X,Y, Z, U〉)
∧ U 6⊥⊥Z | {X,Y } ∧ U 6⊥⊥X | {Z, Y }
∧ Z 6⊥⊥X | {U, Y } ∧X 6⊥⊥Y | {U,Z}
∧ U ⊥⊥Y | {X,Z} ∧ Z ⊥⊥Y | {X,U}.

The patterns Y, Y1 and Y2 all test for a Y-structure. Y uses
the minimal number of tests, Y1 also tests for all (asymp-
totically redundant) tests up to conditioning set size 1, and
Y2 adds all (asymptotically redundant) tests up to condi-
tioning set size 2.

3 Experiments

We performed simulation experiments to study the perfor-
mance of Algorithms 1 and 2.

3.1 Simulations

For the simulations, we created random causal DAGs G
with p = |V | variables.2 For i = 1, . . . , p, we chose the
parents pa(i) ⊆ {1, . . . , i − 1} for variable Xi randomly
(using 0,1,2,3 parents with probability 1/8, 1/2, 1/4, 1/8,
respectively). In this way, the random graph is guaranteed
to be a DAG. After generating the random causal graph, we
drew random weights B̃ji ∼ N (0, 1) independently from
a standard normal distribution for constructing linear struc-
tural equations

Xi =
∑

j∈pa(i)

B̃jiXj + ε̃i

with i.i.d. error terms ε̃i ∼ N (0, σ2) having a normal dis-
tribution with standard deviation σ = 0.1. After sampling
all weights in this way, we applied rescaling transforma-
tions to all structural equations (of the form (B̃ji, ε̃i) 7→
(Bji, εi) = (αiB̃ji, αiε̃i)) sequentially for i = 1, . . . , p
such that Var(Xi) = 1 for all i = 1, . . . , p. Without
the rescaling, variances could easily diverge and Var(Xi)
could depend strongly on i, thereby already revealing the
causal order.

We sampledN = 3000 samples from p(X) to simulate the
observational data D. We also simulated perfect interven-
tions on different targets as follows. For each intervention,
we chose its target i uniformly from {1, . . . , p}. Under the
intervention do(Xi = ξi), the structural equation for Xi is
changed into Xi = ξi, while the other structural equations
and the distribution of the noise terms remain invariant un-
der this intervention. We used a constant value ξi = −2
throughout. We then generated one sample from the inter-
vened structural causal model. In this way, we generated
1000 interventional data points, each one corresponding to
an intervention on a particular randomly chosen target vari-
able. We used this interventional data to validate the causal
predictions.

We considered four settings for the number of variables,
p = 10, p = 30, p = 50 and p = 70.

3.2 Independence tests

Because we simulated linear-Gaussian data, for the (con-
ditional) independence tests we simply calculate the (par-
tial) correlations and their p-values by using a Student’s t
distribution for a transformation of the (partial) correlation.
Small p-values indicate strong evidence against the null hy-
pothesis of independence. On the other hand, for large p-
values it is not clear whether there is a weak dependence or
an independence. Nevertheless, following common prac-
tice in the field, we will use large p-values as evidence in

2In our simulations, we used V = O, i.e., all variables are
observed.



favor of independence. We use two thresholds on the p-
value p to distinguish three possible independence test re-
sults:

p < αlo =⇒ dependence,
αlo ≤ p ≤ αhi =⇒ unknown,

p > αhi =⇒ independence.

We used fixed values αlo = 10−4 and αhi = 10−1 through-
out the experiments. When testing for combinations (con-
junctions) of (in)dependences, we use a three-valued (false,
unknown, true) logic when combining conditional indepen-
dence test results with logical operators.

3.3 Discovering conditional independence patterns

We studied the performance of Algorithm (1) and Algo-
rithm (2) with patterns Y, Y1 and Y2 on simulated data.
In addition, we studied the performance of some of their
building blocks: pairwise (in)dependence tests, conditional
(in)dependence tests when conditioning on a single vari-
able, and minimal conditional (in)dependence tests when
conditioning on a single variable. The ground truth is pro-
vided by testing the patterns directly in the causal graph
by using the Bayes Ball algorithm [Shachter, 1998] as an
independence oracle.

We report precision and recall, defined as:

precision =
TP

TP + FP
, recall =

TP

TP + FN + PU

where TP are true positives, FP are false positives, FN
are false negatives and PU are unknowns that are positives
according to ground truth. Here, we are more interested in
high precision than high recall, because being able to pre-
dict with high confidence a few strong causal effects would
already be of great practical interest in applications.

The results are reported in Table 1 for p = 10 and p = 50
variables. First, note that the recall of the conditional and
pairwise independence test is at 1 − αhi as it should be.
Also, note that the precision of the conditional and pair-
wise dependence tests are very close to 1, reflecting that it
is easy to recognize a strong (conditional) dependence as
such. The elementary tests are not perfect, but precision
and recall are within a reasonable range. However, when
combining two elementary tests into a minimal test, preci-
sion may drop significantly. When combining two minimal
tests into an extended Y-structure test, the precision drops
even further. On the other hand, when adding another min-
imal conditional independence test to test for a Y-structure,
precision increases. Adding more tests (patterns Y1 and
Y2) does not make much of a difference. To put every-
thing into perspective, the precisions should be compared
with the baseline of random guessing (indicated in angular
brackets). The pattern search algorithm outperforms ran-
dom guessing considerably, achieving precisions that are a
few orders of magnitude higher.
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Figure 2: Precision of causal discovery X ∈ An(Y ) on
simulated data. The baseline is random guessing.

We conclude that for the task of detecting (Extended) Y-
structures, the pattern search algorithm performs much bet-
ter than random guessing. Furthermore, we observed that
errors of elementary tests combine in unexpected ways into
errors of compound tests. Sometimes the probability of an
error of a compound test is much higher than the proba-
bility of error of its constituent tests, in other cases errors
seem to cancel out and combining multiple tests results in
“error correction”. The reasons for this behavior of the pre-
cision are unclear. Recall has a more consistent behavior:
the more tests are combined, the lower the recall.

3.4 Discovery of indirect causal relations

The evaluation measure used in the previous subsection is
rather strict: the precision reflects how accurately a specific
pattern can be detected from observational data. When we
are only interested in using the (Extended) Y-structure pat-
terns as a causal discovery method, i.e., as a way to detect
whether X ∈ AnG(Y ) (X is an indirect cause of Y ), the
picture changes considerably. For this task, we define the
“positives” to be the 〈X,Y 〉 pairs that are contained in a
quadruple 〈X,Y, Z, U〉 that satisfies the pattern of interest.
The results are reported in Table 2 for p = 10 and p = 50.
In both cases, the pattern search algorithms still outperform
the baseline of random guessing, but not as much as for the
task considered in the previous subsection. Precision again
decreases as the number of variables increases. Figure 2
illustrates how the precisions depend on p, the number of
(latent) variables.

We conclude that according to this performance measure,
the simple causal discovery algorithm that searches for
(Extended) Y-structures can outperform random guessing
when used to find (indirect) causal relations. Detecting
Y-structures works significantly better than detecting Ex-
tended Y-structures in this setting. However, precision de-
creases as the number of (latent) variables increases.



Table 1: Evaluation of Algorithm 2 for different patterns. Aggregates over 100 random models are shown. The second
column gives the number of n-tuples of variables that are considered in the brute-force search, with n the number of
variables that the pattern depends on. (a) p = 10 variables; (b) p = 50 variables. TP = true positives, FP = false positives,
TN = true negatives, FN = false negatives, PU = unknowns that are positive according to ground truth, NU = unknowns
that are negative according to ground truth. The baseline for precision is random guessing.

(a)

Pattern Total # TP FP TN FN PU NU Recall Precision (baseline)
X ⊥⊥Y 4500 886 47 3423 0 94 50 0.90 0.95 (0.22)
X 6⊥⊥Y 4500 3423 0 886 47 50 94 0.97 1.00 (0.78)
X ⊥⊥Y |Z 36000 8917 1416 23476 0 936 1255 0.91 0.86 (0.27)
X 6⊥⊥Y |Z 36000 23476 0 8917 1416 1255 936 0.90 1.00 (0.73)
X ⊥⊥Y | [Z] 36000 2515 1037 30082 49 344 1973 0.86 0.71 (0.08)
X 6⊥⊥Y | [Z] 36000 698 111 34112 53 144 882 0.78 0.86 (0.025)
extY 504000 180 154 500716 11 99 2840 0.62 0.54 (0.0006)
Y 504000 130 48 500797 14 146 2865 0.45 0.73 (0.0006)
Y1 504000 46 28 500815 56 188 2867 0.16 0.62 (0.0006)
Y2 504000 44 24 500815 56 190 2871 0.15 0.65 (0.0006)

(b)

Pattern Total # TP FP TN FN PU NU Recall Precision (baseline)
X ⊥⊥Y 122500 35576 3341 75778 1 3826 3978 0.90 0.91 (0.32)
X 6⊥⊥Y 122500 75778 1 35576 3341 3978 3826 0.91 1.00 (0.68)
X ⊥⊥Y |Z 5880000 1705034 367019 3305326 91 190724 311806 0.90 0.82 (0.32)
X 6⊥⊥Y |Z 5880000 3305326 91 1705034 367019 311806 190724 0.83 1.00 (0.68)
X ⊥⊥Y | [Z] 5880000 108107 190968 5051117 7647 20179 501982 0.80 0.36 (0.023)
X 6⊥⊥Y | [Z] 5880000 81052 33617 5383597 26773 23603 331358 0.62 0.71 (0.022)
extY 552720000 54600 228284 546108050 22868 28476 6277722 0.52 0.19 (0.00019)
Y 552720000 45320 51884 546247144 24017 35765 6315870 0.43 0.47 (0.00019)
Y1 552720000 15376 20000 546261276 38173 51553 6333622 0.15 0.43 (0.00019)
Y2 552720000 13538 14268 546262038 38209 53355 6338592 0.13 0.49 (0.00019)

Table 2: Evaluation of Algorithm 2 with different patterns for the task of predicting whether X ∈ AnG(Y ). Aggregates
over 100 random models are shown. (a) p = 10 variables; (b) p = 50 variables. The baseline for precision is random
guessing.

(a)

Test pattern Total # TP FP TN FN Recall Precision (baseline)
extY 9000 50 32 6920 1998 0.024 0.61 (0.23)
Y 9000 27 2 6950 2021 0.013 0.93 (0.23)
Y1 9000 13 2 6950 2035 0.0063 0.87 (0.23)
Y2 9000 11 2 6950 2037 0.0054 0.85 (0.23)

(b)

Test pattern Total # TP FP TN FN Recall Precision (baseline)
extY 245000 6627 22189 200191 15993 0.29 0.23 (0.09)
Y 245000 2486 2348 220032 20134 0.11 0.51 (0.09)
Y1 245000 1155 981 221399 21465 0.051 0.54 (0.09)
Y2 245000 1062 728 221652 21558 0.047 0.59 (0.09)



3.5 Causal predictions

The evaluation measure used in the previous subsection is
a natural one when simulating data, but when using real
data, it is often not known whether a variable is an indirect
cause of another. Instead, interventional data may be avail-
able. In that context, we may be more interested in how
accurately we predict the effects of interventions. When
detecting an (Extended) Y-structure pattern for a quadruple
〈X,Y, Z, U〉, we can conclude that p(Y | do(X = x)) =
p(Y |X = x). Using linear regression of Y on X we es-
timate E(Y |X = x) and use this as our prediction for the
value of Y under the intervention X = x. In our setting, a
natural measure for the causal prediction error of Y under
an intervention do(X = x) is

|E(Y |X = x)− E(Y | do(X = x))| .

We report the average error (`1 error) over all (X,Y ) pairs
in patterns found by the algorithm, all simulated interven-
tions and all models. In addition, we report the correspond-
ing root-mean-square error (`2 error).

For comparison, we also report results of two simple base-
lines. The first baseline predicts p(Y | do(X = x)) =
p(Y ) for all pairs X 6= Y (i.e., complete absence of causal
effects). The second baseline predicts p(Y | do(X =
x)) = p(Y |X = x) for all pairs X 6= Y (i.e., no differ-
ence between correlation and causation). Note that these
baselines are provably inconsistent.

The results for these evaluation measures are reported in
Table 3, for p = 10 and p = 50. Figure 3 shows how
the `1 error depends on p, the number of (latent) variables.
For p = 10 variables, most methods outperform the sim-
ple baselines. Unfortunately, that does not hold for p = 50
variables: in that case the simple baseline that always pre-
dicts that nothing will change due to an intervention out-
performs all causal prediction methods. The reason is that
even though the pattern search algorithm obtains a low er-
ror on the true positives (as expected), this is compensated
by an error that is considerably higher than average on the
false positives.

4 Conclusions and Discussion

We have studied a simple causal discovery and predic-
tion method that focusses on quadruples of variables and
only makes a prediction when it detects a certain pattern of
conditional independences amongst those variables. The
method is sound and consistent, and works well if the
number of variables is not too large. However, like most
constraint-based methods that rely only on conditional in-
dependences and the faithfulness assumption, it is not uni-
formly consistent [Robins et al., 2003]. Our empirical ob-
servations show that the accuracy of causal predictions de-
teriorates as more (latent) variables are present. This man-
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Figure 3: Causal prediction error (“`1 error”) on simulated
data. Baseline 1 always predicts p(Y | do(X)) = p(Y ),
baseline 2 always predicts p(Y | do(X)) = p(Y |X).

ifests itself quite clearly already in rather low-dimensional
settings (50 variables, 3000 observations), where the sim-
ple causal prediction method does not even outperform
naı̈ve (inconsistent) baselines in terms of prediction error
in our simulations.

Even though in our simulations the distribution on all vari-
ables V = O ∪ L is faithful to the DAG, when only look-
ing at a small subset of variables Q = {X,Y, Z, U}, the
marginal distribution on Q can become close-to-unfaithful
to its PAG on Q. One explanation for this might be that the
more (latent) paths between the variables in Q there are,
the higher the probability that these paths will cancel each
other in some way when the edge weights are chosen ran-
domly. This may then lead to near-faithfulness violations
on Q, and hence to to false-positive detections of the (Ex-
tended) Y-structure algorithms. However, the problem is
not necessarily related to cancellation of paths, as we ob-
serve qualitatively similar behavior when we restrict all the
edge weights to be positive (not reported here).

Note that the observed bad prediction performance occurs
even though individual tests have relatively low probability
of making an error in our simulation setting, and we only
combine a few of these individual tests. In other words,
there are strong dependences between test results that can-
not be ignored. Adding more tests and thereby restricting
the pattern to Y-structures helped to improve performance.
On the other hand, adding more “redundant” tests did not
significantly change accuracy. Thus, the original idea that
minimizing the number of conditional independence tests
would maximize accuracy turns out to be overly simplistic.

Problems with the faithfulness assumption have been
pointed out before. Robins et al. [2003] showed that it is
possible to create a sequence of faithful distributions that
comes arbitrarily close to an unfaithful distribution. One
possible way out would be to make a stronger assumption,
like strong faithfulness [Zhang and Spirtes, 2003] for the
linear-Gaussian case, requiring that nonzero partial corre-



Table 3: Evaluation of how well certain patterns found by Algorithm 2 predict the effect on Y of an intervention on X .
Averages over 100 random models are shown. The errors are decomposed into two components: the error on the true
positives (TP) and the error on the false positives (FP). Two simple noncausal baselines have been used for comparison.
(a) p = 10 variables; (b) p = 50 variables.

(a)

`1 error `2 error
Method all only TP only FP all only TP only FP
extY 0.86 0.29 1.08 1.31 0.49 1.52
Y 0.37 0.21 0.57 0.66 0.37 0.89
Y1 0.59 0.32 0.74 0.88 0.47 1.04
Y2 0.59 0.32 0.79 0.90 0.47 1.12
p(Y |do(X)) = p(Y ) 1.07 - - 1.31 - -
p(Y |do(X)) = p(Y |X) 1.18 - - 1.74 - -

(b)

`1 error `2 error
Method all only TP only FP all only TP only FP
extY 1.27 0.27 1.30 1.70 0.44 1.72
Y 0.92 0.25 1.03 1.36 0.41 1.45
Y1 0.94 0.33 1.05 1.36 0.48 1.46
Y2 0.88 0.33 1.00 1.30 0.48 1.41
p(Y |do(X)) = p(Y ) 0.85 - - 1.09 - -
p(Y |do(X)) = p(Y |X) 1.15 - - 1.59 - -

lations are bounded away from zero, and in that way obtain
uniform consistency. However, Uhler et al. [2013] show
that the Lebesgue measure of distributions that do not sat-
isfy strong faithfulness can be surprisingly large, and may
grow quickly with the number of variables p. Their bounds
are not directly applicable to our setting, as we are only
interested in very specific conditional independence tests,
and they only derived lower bounds for specific classes of
DAGs that do not include the ones we used in our sim-
ulations. Nevertheless, using the techniques described in
[Uhler et al., 2013], it may be possible to derive asymptotic
results for the setting that we are interested in here. In our
experiments we observed that by creating random linear-
Gaussian causal models with a reasonably large number of
variables, enough violations of strong faithfulness occur for
prediction accuracy to suffer greatly.

We conclude that faithfulness violations can be very prob-
lematic for causal inference, even when individual inde-
pendence tests have a low probability of error and we only
combine a few of them to draw causal conclusions. The
severity of this effect surprised us: one would probably
need enormous amounts of observations for strong faith-
fulness to hold. Indeed, already for p = 50 variables,
N = 3000 observations is not enough to outperform in-
consistent noncausal baselines. In addition, we observed
that prediction accuracy deteriorates as p becomes larger.

A related pattern search amongst quadruples of variables
was proposed recently by Tsamardinos et al. [2012]. They
search for a pattern amongst quadruples of variables that
allows one to conclude that two of the four variables are

dependent. To make this more interesting, they consider
the situation that one has two datasets, each containing
observations regarding only 3 out of 4 variables, and the
two variables that are predicted to be dependent have not
been simultaneously observed within a single dataset. In-
terestingly, that particular pattern search performs very
well, also on high-dimensional real-world data, as reported
by Tsamardinos et al. [2012]. This raises the question
why certain patterns apparently lead to reliable predictions,
whereas for other (superficially similar) patterns, the pre-
dictions turn out to be unreliable in high dimensions be-
cause of faithfulness violations. We leave this question for
future research.
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