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Abstract. Multi-level modeling tools provide inherent support for mod-
eling domain scenarios with multiple classification levels. However, as the
success of domain-specific modeling tools illustrates users increasingly
expect to be able to visualize models using domain-specific languages. It
is relatively straightforward to support this using traditional “two-level”
modeling technologies, but many of the benefits of multi-level model-
ing would be lost. For example, in a multi-level context it is not only
desirable to define concrete syntax that is applicable over more than
just one instantiation level, it should also be possible to customize the
visualization of model elements as they become more specialized over in-
stantiation and inheritance levels. In this paper we present an approach
for multi-level concrete syntax definition which addresses this need by
using aspect-oriented principles to parametrize the visualization associ-
ated with model elements. We also explain how this is implemented in
the Melanee deep modeling tool.
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1 Introduction

Since concrete syntax definition is one of the core foundations of domain-specific,
model-driven development a large number of tools supporting this capability are
available today. Important examples include MetaEdit+ [17] and the Graphical
Modeling Framework [11] for graphical languages, XText [9] and Spoofax [12]
for textual languages and EMF Forms [8] for form-based languages. Other con-
crete syntax formats can also be supported such as table-based and wiki-based
languages. However, these tools are all based on traditional “two-level” model-
ing technology which only supports two classification levels. As a result, they
have no inherent capability to support the definition of concrete syntax that
can “span” (i.e. automatically be applied over) multiple classification levels. In
other words, they can only inherently support the application of a concrete syn-
tax definition to instances at the level immediately below. To apply a concrete
syntax to two or more levels below its definition, complex transformation and
editor generation/deployment steps are needed. This not only complicates the
initial defintion and use of concrete syntaxes, it significantly increase the effort
involved in maintaining and evolving them.



Deep modeling has the potential to address this problem because it inher-
ently supports multiple classification levels. However, some challenges need to
be addressed to support effective level-spanning concrete syntax definition and
application within a deep modeling environment. The most significant is to find
a suitable tradeoff between the need to define common syntax elements that are
suitable across multiple levels whilst providing the flexibility to customize the
common syntax elements as and where needed. In other words, the most signif-
icant challenge is to allow the concrete syntax used to visualize model elements
to reflect the specialization that inherently takes place in the instantiation and
inheritance hierarchies in a deep model.

The Melanee [3] deep modeling environment addresses this problem through
an aspect-oriented approach which essentially allows concrete syntax definitions
to be parametrized. Using this capability it is possible for the concrete syntax
applied to a model element to be customized to reflect the specialization that
naturally takes place in a deep model, significantly reducing the complexity in-
volved in defining, maintaining, and evolving different concrete syntaxes. The
implemented mechanism paves the way towards general concrete-syntax reposi-
tories which can be configured for particular domains and application scenarios
in a simple and straightforward way.

The remainder of this paper is structured as follows: In the next section
(Section 2) the underlying deep modeling approach is introduced. Section 3
then introduces the concept of aspect-oriented concrete syntax definition while
Section 4 presents pragmatic observations made during the use of the approach
in three different domains. The paper closes with conclusions (Section 5).

2 OCA-based Deep Modeling

The most widely implemented deep modeling architecture is the orthogonal clas-
sification architecture shown schematically in Figure 1. Its most obvious differ-
ence to the traditional linear modeling infrastructure of the UML is that there
are two “orthogonal” classification dimensions. One dimension, the linguistic
classification dimension, is represented by the vertical stack of levels labeled
L2 to L0, and the other dimension, the ontological classification dimension, is
represented by the horizontal stack of levels labeled O0 to O2.

The linguistic levels essentially capture the organization of the model infor-
mation from the perspective of how deep modeling is realized in a meta-modeling
framework such as EMF. The top most linguistic level (L2), contains all language
constructs available in the deep modeling language, while the middle level (L1)
contains the user-modeled domain languages and is thus often referred to as the
domain level. The ontological dimension, in turn, consists of “ontological” lev-
els which are stacked horizontally within L1. Each model element at this level is
classified by exactly one model element at level L2, indicated by vertically dashed
classification lines. The lowest level, L0, contains the real-world concepts mod-
eled by L1. The light bulb represents the concept of EmployeeType which captures
the common properties of all employees. The group of stick-men with a wrench
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Fig. 1. The orthogonal classification architecture.

in the upper right instantiates this concept as WebshopAdmin (a particular type
of employee) which is then further instantiated as Bob (a particular instance of
a WebshopAdmin). Classes located in the middle levels (e.g., WebshopAdmin) are
instances of the classes at higher levels and types for the classes at the lower
levels. Hence, they are named “clabjects” which is a concatenation of the terms
“class” and “object”.

The domain level, L1, consists of three ontological levels O0 to O2 which are
intended to represent the domain concepts/objects. Even though three levels are
shown here, the number of levels available is not limited. The concrete syntax
used in Figure 1 looks similar to the UML but with some modifications to make
it level-agnostic. Ontological classification is shown using horizontal dashed lines
or the UML colon notation as used in object specifications (e.g. Bob). The most
important difference to the UML is the association of numerical values with
clabjects, attributes and attribute values in the form of superscripts after their
names. Depending on whether they are associated with clabjects, attributes
or attribute values they are respectively referred to as “potency”, “durability”
or “mutability”. The potency specifies over how many subsequent ontological
classification levels a clabject can be instantiated and thus influence the contents
of a deep model. In the example EmployeeType has a potency of two stating that it
can be instantiated at the following two levels, here WebshopAdmin with potency
one and Bob with potency zero. The durability displayed next to the name of an
attribute indicates over how many subsequent instantiation steps an attribute
endures. In the example, expertise has a durability of two so all offspring of
EmployeeType over the next two levels have to possess such an attribute, here
WebshopAdmin and Bob. Finally, the mutability displayed next to the value of an
attribute defines over how many levels the value of an attribute can be changed.
The mutability for expertise of EmployeeType is one, hence it can be changed at
the next instance level and is fixed from then on. On level O1 of the example the
expertise for all WebshopAdmins is set to Linux which means that instance Bob has
to have Linux as his expertise.



3 Apsect-oriented Concrete Syntax Definition

Aspect-oriented concrete syntax definition employs concepts from aspect-oriented
programing languages [14], e.g. AspectJ [13]. More specifically it allows concrete
syntax definitions to be parametrized using uniquely-named join-points. Aspects
can then be used to contribute to a join-point to customize the notation used
to visualize a specialized version of the associated model element. An aspect
contains the name of the join-point to which it is applied, a condition deter-
mining when the aspect is applied and an “advice” which is introduced to the
join-point. The advice can be configured to be added before, after or to replace
the join-point. Moreover, multiple aspects can be provided for one join-point.

The meta-model supporting the aspect-oriented definition of graphical con-
crete syntax in Melanee is shown in Figure 2. The model is unique for each
type of concrete syntax format (e.g. graphical, textual, tabular etc.) to best fit
the needs of that particular format. Here, for space reasons, the approach is ex-
plained only in the context of graphical concrete syntax definition, but Melanee
supports the approach for other formats as well. Melanee’s algorithm for visu-
alizing model elements is designed in such a way that it can be configured to
work with any concrete syntax definition model that supports the join-point and
aspect concepts explained below.
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Fig. 2. The graphical concrete syntax definition meta-model.

In Melanee any model element can have multiple AbstractDSLVisualizers at-
tached, defining the concrete syntax in a specific concrete syntax format. The
notation attribute groups visualizers from the same format into “notations” so
that families of symbols can be grouped into a given logical “notation”. The
instanceLevel attribute specifies whether a visualizer is applied only to the in-
stance level or to the level at which the visualizer is defined as well. The Graph-

icalDSLVisualizer shown here defines concrete syntax in a graphical format using
VisualizationDescriptors. This is the base class for all types of elements in a con-
crete syntax definition. It assigns a name to each element of a concrete syntax
definition making each of those potential join-points. To explicitly declare an el-
ement as a join-point a unique name has to be assigned to it. A concrete syntax
definition consist of three types of VisualizationDescriptors: LayoutDescriptor , Lay-

outContentDescriptor and Aspect. A LayoutDescriptor describes the layout which is
applied to layout content (e.g. table layout, flow layout etc.). A LayoutContentDe-

scriptor , which is contained by a LayoutDescriptor , describes the actual displayed
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Fig. 3. Visualizer search traces: (a) not aspect-oriented, (b) aspect-oriented.

shape such as a rectangle, circle, label mappings etc. By nesting these two con-
cepts any concrete syntax can be defined as desired. The language is designed
to be similar to well known languages for describing UIs such as the Standard
Widget Toolkit (SWT), and languages describing concrete syntax for diagrams
such as the Graphical Modeling Framework (GMF).

Aspects for join-points are provided by the Aspect model element which in-
herits the condition attribute from ConditionalDescriptors which are executed when
the condition holds true. Aspects are not only ConditionalDescriptors they are also
subclasses of VisualizationDescriptor so that they can be added to GraphicalDSLVisu-

alizers. The kind attribute defines the application strategy of the advice (content)
of the Aspect. Three kinds are available – before (adding the content before), after
(adding the content after) and around (replacing the content of the join-point).
The current meta-model limits the content of an aspect to be LayoutContentDe-

scriptors. However, this does not limit the expressive power of the model.

Based on the visualizer and aspect-oriented concrete syntax definition ap-
proach a special search algorithm is employed to generate the desired visualiza-
tion for each model element in a deep model. This is based on an algorithm for
two-level models [10]. It was first extended to deep modeling in [2] and since then
steadily refined to the point where it supports deep aspect-oriented visualization.

Figure 3 shows an example of the “Employee” language with concrete syntax
attached to model elements indicated by clouds. The concrete syntax definition
uses the meta-model of Figure 2. The order in which clabjects are visited when
searching for a model element visualization is indicated by dashed arrows anno-
tated with a number. The search algorithm starts searching at the level of the
clabject to visualize. First the clabject itself is visited to determine whether it
has an associated visualizer, if not the clabjects in the inheritance hierarchy of
the clabject are visited. If no visualizer is found at this level the types of the
clabject at the level above are visited. The search continues until a suitable visu-
alizer is found for the clabject. If none is found the pre-defined concrete syntax
is used to render the clabject.



The example in Figure 3(a) shows the “aspect-unaware” search trace of the
algorithm for Bob and Online Marketing Employee. Bob has no visualizer attached,
so the algorithm visits WebshopAdmin, the type of Bob, which has a visualizer
attached. The algorithm stops, returning the stick man icon with a small wrench
in the upper right. To find a suitable visualizer for Online Marketing Employee its
supertype (Employee) is visited which contains a visualizer. However, because its
instanceLevel attribute is set to true (indicated by the dashed cloud) the algorithm
continues searching the type level. The direct type, BusinessEmployeeType, has no
visualizer but its supertype (EmployeeType) has. Hence, the search terminates
and returns the group-of-stickmen icon to visualize Online Marketing Employee.

Figure 3(b) shows the same example but using aspect-oriented concrete syn-
tax definition. Only one visualizer is defined at EmployeeType defining the join-
points (dashed rectangles) JA, JB and JC . Variations are modeled through aspects
of kind around along the classification hierarchy, here at TechnicalEmployeeType

and Employee. This focus on modeling variations only reduces the number of
fully specified Visualizer from four in Figure 3(a) (EmployeeType, BusinessEmploy-

eeType, Employee, WebshopAdmin) to one in Figure 3(b) (EmployeeType). The main
difference between the two search algorithm versions is that discovered aspects
are collected on the way to a model element with an aspect-less visualizer and
then merged into the visualizer. The trace for OnlineMarketingEmployee is identical
to the aspect-unaware version as no aspects are defined along its classification
hierarchy. For Bob the search ends at EmployeeType and merges the collected
aspects JA, JB and JC into this visualizer.

Comparing the “aspect-unaware” and “aspect-aware” approaches shows that
the search algorithm traverses more model elements when applying the aspect-
aware variant of the algorithm. Additionally, the aspect aware version involves
additional computational overhead for merging aspects into join-points, leading
to a potential performance issue. The impact of this overhead has to be empir-
ically determined by analyzing numerous practical examples. In the following
section pragmatic observations about the approach are made.

4 Examples

Because of the novelty of the aspect-oriented concrete syntax definition approach
only three languages using this features have been published to date. The first
describes executable behavior of robots [5], the second a language for model-
ing executed environments in a game [1] and the third a distributed extension
scenario in the domain of business process modeling and analysis [4].

The model shown in Figure 4 is part of a deep robot behavior modeling and
execution framework in [5]. The excerpt focuses on the behavior modeling part of
the model. At the highest level, O0, the goal is to provide a generic language for
modeling robot behavior. This is then used to create a robot behavior modeling
language for a specific type of robot at O1, here humanoid robots. One of the
goals is to make the concrete syntax as configurable as possible to reflect the type
of modeled behavior. For example, the Move action should show the coordinates
alongside a small walking pictogram, while the Gesture action should show a



textual description of the gesture to do alongside a corresponding pictogram. To
achieve this the concrete syntax definitions at the O0 level offer join-points (JA,
JB, JC) which are used by the robot behavior language at O1 for concrete syntax
customization. The language is then used at level O2 to model robot behavior.
The behavior modeled in this example first instructs the robot to walk, then
detect a ball and finally make an agree or disagree gesture.
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Fig. 4. Robot behavior modeling language after [5].

To realize the language without aspect-oriented concrete syntax definition
features it would be necessary to define a complete visualizer for each model
element at level O1 (e.g. Move, XOR) even though the concrete syntax at level O1

is only a slight variation of the one defined at O0. This unnecessary replication
of visualizers would significantly increase the accidental complexity involved in
developing, maintaining and evolving deep models [6, 7]. A change made to the
general language at level O0 would need to be synchronized with all visualizer
definitions at level O1. Aspect-oriented concrete syntax definitions avoid this
problem by making it possible to specify a generic concrete syntax definition
on level O0 that can be customized at level O1. At level O1 the variations are
modeled only and changes to the generic syntax at level O0 are automatically
promoted to instances without any manual effort. This reduces the number of
manual changes to the concrete syntax definitions that have to be made after a
change and thus reduces the overall complexity involved.
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Fig. 5. Game modeling language after [1].

In contrast to the previous example where the customization takes place
along the classification hierarchy, in Figure 5 aspect-orientation is used to model
concrete syntax variations in an inheritance hierarchy. The example shows a
model for a game environment with a focus on how the inheritance hierarchy is
used to determine the concrete syntax of Weapons in an aspect-oriented style. At
the center of each Weapon symbol is an icon indicating the type of weapon (e.g.
Shuriken). The character at the top right of the symbol indicates the weapon kind
(A: AttackWeapon; D: DefenseWeapon) and the text at the bottom gives the name
and details of the weapon such as regeneration information. The only common
part of all weapon visualizations is the information at the bottom. The weapon
kind and type change per subclass. To optimize the concrete syntax definition,
only the weapon details at the bottom are defined in the visualizer associated
with Weapon along with two join-points — one for weapon type (JT ) and one
for weapon kind (JK). The weapon kind is associated with the AttackWeapon and
DefenseWeapon subclasses since it is fixed for all of their subclasses. On the other
hand, the weapon types which change for each weapon are defined locally at
Telekinesis, Rocket, etc. The lowest level O2 shows an instance of a modeled game
environment which can be executed. Again the aspect-oriented concrete syntax
definition reduces the number of elements involved in concrete syntax definition
as only variations are modeled instead of the whole concrete syntax.

In the examples presented so far, aspect-oriented concrete syntax definition
is used to reduce accidental complexity. Figure 6, however, shows a scenario
that cannot be supported without this mechanism. It contains three packages
created by independent parties and distributed over the internet — 1. BPMN:



providing a business process modeling language, 2. MDPE : supporting model-
driven performance analysis and 3. Security : supporting business process security
modeling.
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Fig. 6. Distributed business process modeling language after [4].

The BPMN language was defined with modeling language and concrete syntax
extension in mind. To enable the latter, join-points JA and JB are defined in the
concrete syntax definition of Task. These two are used by the LatencyTask and
SecurityTask subclasses from the MDPE and Security packages linked to the BPMN

package. They introduce new language constructs into the BPMN language and
extend the concrete syntax. The rectangle at O1 contains a detailed view of one
Task which is an instance of Task, LatencyTask and SecurityTask for demonstration
purposes. In a real model, however, this would be shown as one model element
with multiple classifications. The four rendering options for this model instance,
which it is possible to switch between on-the-fly, are shown at the bottom of
Figure 6. This example shows how distributed deep models can enhance each
others concrete syntax definitions in a decoupled style by using aspect-oriented
concrete syntax definition. Even though the example only shows a linking depth
of one, chains of linked models which contribute towards one concrete syntax
can be envisaged.

5 Conclusion

Deep modeling technologies not only facilitate the definition of models that span
more than one class/instance level they also allow domain-specific (i.e. user-
defined) modeling languages to be used to represent them. These user-defined
modeling languages often use concrete syntax definitions which span multiple
classification levels, multiple inheritance levels or even multiple models. In this
paper we have shown the potential of aspect-oriented concrete syntax definitions
to reduce accidental complexity, positively impact model development, evolution
and maintenance, and support new modeling scenarios. The three published lan-
guages and one running example described in this paper demonstrate the po-



tential advantages of the approach which is fully implemented in the Melanee
tool. The authors are not aware of any other deep modeling tool supporting
aspect-aware, concrete syntax definition. Besides Melanee, two other deep mod-
eling tools explicitly support the definition of user-defined concrete syntax —
MetaDepth [16], a textual tool, and DPF [15], a graphical tool. Both provide
concepts for concrete syntax definition but do not support aspect-orientation.
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