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Abstract. In the past few decades, the field of ecology has grown from a
collection of disparate researchers who collected data on their local phe-
nomenon by hand, to large ecosystems-oriented projects partially fueled
by automated sensor networks and a diversity of models and experiments.
These modern projects rely on sharing and integrating data to answer
questions of increasing scale and complexity. Interpreting and sharing the
big data sets generated by these projects relies on information about how
the data was collected and what the data is about, typically stored as
metadata. Metadata ensures that the data can be interpreted and shared
accurately and efficiently. Traditional paper-based metadata collection
methods are slow, error-prone, and non-standardized, making data shar-
ing difficult and inefficient. Semantic technologies offer opportunities for
better data management in ecology, but also may pose a challenging
learning curve to already busy researchers. This paper presents a mo-
bile application for recording semantic metadata about sensor network
deployments and experimental settings in real time, in the field, and
without expecting prior knowledge of semantics from the users. This
application enables more efficient and less error-prone in-situ metadata
collection, and generates structured and shareable metadata.

1 Introduction

Over the past few decades, the field of ecology has expanded immensely in scope.
The field now tackles scientific questions that address wide ranges of complex-
ity, scale, and time spans [12], [14]. Some of these questions are tackled by large
project groups, and others are answered by combining data sources from multiple
disparate projects. Despite the essential need for combining data from multiple
heterogeneous sources, it is evident that there is no systematic approach for
ecologists to share data and data workflows that takes into consideration the
ecologist’s in-situ knowledge about observations and experiments. More specif-
ically, for projects utilizing sensor networks, there is no systematic approach
to capture the ecologist’s in-situ knowledge about sensor deployments and con-
figurations such that the knowledge can inform data analysis and management
decisions. The lack of contextual knowledge about in-situ scientific activities af-
fects the way data should be further interpreted and analyzed. For example,
the data generated by an improperly calibrated instrument or an instrument
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not correctly placed on its platform should not be used in rigorous statistical
analysis. Similarly, configuration settings of sensor network equipment may be
changed in the field, which affects the resulting data product and the manner in
which it should be analyzed.

We introduce a semantic approach to mediate data usage and sharing by en-
coding the knowledge about the sensor network that generated the data. In par-
ticular, we encode knowledge about the deployments of platforms, instruments,
and detectors in support of the data products they generate. With this kind of
knowledge, ecologists can better understand the context of their data collection.
This information allows scientists unfamiliar with the original collection to make
appropriate use of the data [12]. Thus, the availability of semantic annotations
encoded as metadata increases the length of time that a data product is useful,
as the data no longer relies on the presence of the people who were involved in
the data collection process to explain how the data came to be. Whereas a file
without metadata may become useless once its originator changes jobs or forgets
some details, a file with metadata may be useful for many decades [12], [5]. Ex-
tending the longevity of data is especially important as ecological projects look
to answer questions spanning long periods of time. In addition, metadata allows
a data product to be used in the future to answer unanticipated questions [11].
In this paper, we describe a semantic technology-based mobile application that
enables on-site capture of metadata in real time. By embedding the metadata
capture system in a mobile device, much of the metadata capture can be com-
pleted automatically. The application uses a QR code-based sensor identification
system, which automates the identification of sensor equipment and minimizes
errors in data entry.

Our work overcomes three major challenges. First, our framework is a solution
for overcoming the barrier of entry to semantic technologies for field scientists.
This tool makes the collection of standardized and machine readable metadata
efficient for the practicing scientist, thus enabling the practicing scientist to
benefit from the advantages of semantic technologies without having any prior
knowledge of the technology. Second, it describes and implements a framework
for a method of using semantic technologies on a mobile platform to record data
in real time in the field. This framework makes metadata capture more efficient
and less error-prone compared to traditional recording methods. In addition,
this method description and implementation has the potential to be broadly
reused by a wide range of observational efforts. Finally, this application addresses
context-specific challenges to make it more likely for valuable in-situ knowledge
to be captured.

2 Challenges of Collecting In-Situ Contextual Knowledge

2.1 Challenges in Collecting Contextual Knowledge

The onset of automation in ecological data collection means that metadata about
in-situ contextual knowledge, including the knowledge about the sensor network
collecting the ecological data, is more important than ever before. A scientist
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needs metadata not only for remembering how to use a data set that was col-
lected years ago, but also for simply understanding how to use the data that
was collected by an autonomous sensor earlier the same day. Automated sensor
equipment collects data at an unprecedented rate, and it is necessary to have a
well-structured system for capturing all of the contextual knowledge surrounding
each data collection activity so that the data can be accurately used. Metadata
is also critical for sharing data sets between research groups who are unfamil-
iar with the details of each others’ work. For these reasons, metadata is widely
recognized as a critical component to ecological data management [12], [5], [11].

Semantic technologies can be and are being used to support improved knowl-
edge sharing: these technologies provide a standardized framework for storing
and sharing metadata, and they make data interpretation and use more efficient
[14]. However, creating semantic metadata is typically a slow and tedious pro-
cess for a human to do manually. Generating semantic data often requires much
technical knowledge, and the final product must be correct and complete if it
is to be used effectively by applications. While semantic technologies ease the
workload of the data consumer by improving integration and understandability,
they are often perceived as a burden by the data generator. These difficulties
present a large barrier to entry to many scientists, and many find that the chal-
lenges associated with adopting this new technology are not worth the benefits.
These problems present a very real barrier for semantic technology adoption in
non-computer science fields.

While very valuable, collecting well-structured and comprehensive contextual
metadata can be expensive. At one point in time, requiring a scientist to take
thirty minutes to create a thorough metadata document was thought to be worth
the future value of that document [5]. However, the onset of large, automated
data-collection systems that generate data sets by the minute renders such a
value judgment unreasonable; such a researcher would be overwhelmed by the
rate of data collected by the network [12].

2.2 The Additional Challenges of In-Situ Knowledge Collection

Much of the most valuable contextual knowledge needs to be collected in-situ:
while a field scientist is actively collecting samples or making changes to au-
tomated equipment. Contextual knowledge such as the GPS points at which
a sample was collected, the serial number of instrument was used to collect a
sample, or what program was selected for an on-board computer is best written
down immediately to ensure the information is accurate and to ensure that the
knowledge is recorded at all.

Thus, while metadata recorded in the lab faces an efficiency problem at the
level of requiring time of a researcher who is sitting at his desk with competing
activities to do, collecting in-situ contextual knowledge has even more challenges.
The field is not an ideal place to record data: flat, dry surfaces are difficult to
come by, and a field scientist is often in a rush to complete a set of tasks not just
before lunch break, but before the sun goes down or before it rains. Traditionally,
field scientists have solved this problem by collecting metadata very quickly
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with pen and paper, without always applying consistency or completeness to
the process. This strategy leads to situations such as the one experienced by
our group recently in which we received sixteen boxes of field notes containing
handwritten metadata for a thirty year observational study. In its handwritten
form, this data is challenging to utilize effectively. Thus, we need a compromise
between efficiency for the knowledge recorder and usability for the knowledge
receiver.

Fortunately, creating shareable, machine readable data is a forte of ma-
chines. The emergence of powerful yet affordable handheld devices, namely mo-
bile phones, presents an opportunity for more efficient and less error-prone data
collection in-situ. Such tools can validate input to ensure that metadata ad-
heres to the structure of selected metadata standards. In addition, rather than
recording one’s own metadata in the field on paper and then later trying to fit
that data into a standard (and perhaps losing information in the transition),
semantic tools help scientists collect the right information in real time and on
site. These software tools may also include error-checking mechanisms, such as
checking for out-of-bounds values, to ensure that collected metadata is sensible
and to highlight mistakes for immediate correction [6].

3 Ontology-driven Contextual Knowledge Capture

This work is performed in the context of the Jefferson Project, a collective effort
of Rensselaer Polytechnic Institute, IBM, and The FUND for Lake George. The
Jefferson Project studies Lake George in New York state as a model ecosystem
and aims to apply the findings to freshwater resource management worldwide
[10]. One component of the Jefferson Project is a large network of sensors sta-
tioned around the lake and its watershed. These sensors collect data on a variety
of attributes, such as the region’s weather, the lake’s chemistry and currents, and
even populations at the lowest levels of the food web. The state and arrange-
ment of these sensors will change many times over the course of the project:
instruments will need to be taken back to the lab for calibration, fixed when
malfunctioning, upgraded, or may be deployed elsewhere. Throughout all of this
activity, the metadata about the position of all of the sensor equipment will
need to be recorded so that the data sets the sensors generate can be correctly
interpreted. Therefore, we decided to focus our metadata capture application
on collecting metadata about sensor deployments because this metadata will be
collected many times over the course of the project, thus it will benefit greatly
from being automated.

3.1 The Human Aware Sensor Network Ontology

We use the Human Aware Sensor Network Ontology [13], or HASNetO, to encode
our metadata. By using a semantic approach, we make the interpretation of the
metadata less subject to misleading interpretations, and make it possible for ma-
chines to read and leverage the knowledge in the process of managing the data.
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Fig. 1. The Human Aware Sensor Network Ontology (HASNetO) [13]
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In related work, concepts from the Extensible Observation Ontology (OBOE)
[8], the PROV Ontology (PROV-O) [7], and the Virtual Solar Terrestrial Obser-
vatory Ontology (VSTO) [9] were leveraged to build the Human-Aware Sensor
Network Ontology, or HASNetO [13]. Notably, we did not incorporate the Se-
mantic Sensor Network Ontology (SSN) into HASNetO because although SSN
uses similar concepts, it is not suited to our work because is does not talk about
human agents and their involvement in the process of managing sensor net-
works. HASNetO groups sensor network equipment into three types: detectors,
instruments, and platforms. Detectors are the objects that do the sensing: they
convert the physical signals about the characteristic of interest into a (most often
electric) signal that can be read by a computer or human. Instruments are the
objects that support the detectors. They do not do any sensing themselves, but
they provide the framework in which the detector captures signals, and convert
the detector’s signal into a data point. A platform is the object that determines
the location of the instrument, whether it be the point of a stationary platform
or the path of a mobile one. A platform may also provide overhead services,
such as providing the instrument with power, a data connection, and protection
against natural and human hazards. In HASNetO, a deployment is composed of
one platform, one instrument, and one or more detectors. A deployment also has
a start time and an end time.

3.2 MOCCASN: Mobile Context Capture for Sensor Networks

Our solution for collecting in-situ contextual knowledge is MOCCASN, an An-
droid application. MOCCASN makes collecting metadata very quick, and it
does not require the scientist using the application to have any knowledge of
the underlying semantic technology. Using the phone’s camera, the MOCCASN
identifies sensor network objects via QR codes that are affixed to each object.
An object’s QR code contains the URI of the object’s instance of a HASNetO
concept. From the URI, one can retrieve instance properties such as the serial
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Fig. 2. Constructing a new deployment and getting information about a deployment

number and type of sensing device. The scientist can use MOCCASN to scan
an object’s QR code and retrieve information about the object, to start a de-
ployment with the object, or to end the object’s current deployment. When
starting and ending deployments, MOCCASN uses the phone’s built-in GPS to
automatically assign latitude and longitude coordinates. Time and user log-in
information are automatically documented as well. All of this information is au-
tomatically recorded in accordance with the HASNetO ontology. The scientist is
guided through the process of creating and ending deployments via a dynamic
graphical user interface. MOCCASN accomplishes these tasks by communicating
with the online knowledge base through a cellular or wifi connection. When the
scientist does not have a data connection, records may be saved locally to the
phone for later submission. While in communication with the knowledge base,
MOCCASN initiates error checks on the scientist’s input based on the semantics
encoded in the ontology.

The GitHub page for MOCCASN may be found at [1], and a static demo
page at [3].

3.3 Software Development Tools

MOCCASN was developed with MIT App Inventor, on online tool with an in-
tuitive interface for developing Android applications quickly and easily [2]. MIT
App Inventor made it possible for MOCCASN to be developed in a matter of
weeks, and we believe that MIT App Inventor can be used to rapidly create sim-
ilar specialized applications to match the needs of a variety of observation-based
efforts.
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4 Results

MOCCASN meets a number of requirements of in-situ metadata collection, in-
cluding deployment-specific requirements. First, deployments must be able to be
assembled in a piecemeal fashion. For example, the user may want to connect
the instrument-to-be-deployed with its associated detectors while still on shore,
and then connect the instrument on the platform at a later time. We use an
existing term in the OBOE ontology, “hasCode”, to “tag” partial deployments
in the knowledge base as “under construction”. With this method, a scientist
may connect an instrument and detector in the field and enter this partial de-
ployment in the knowledge base as a “deployment under construction”. When
that instrument is later brought into the field to be connected to a platform,
the tool automatically finds that the instrument is part of a “deployment under
construction”, and adds the platform to the same deployment. When the user
starts the deployment, the “under construction” tag is removed from the deploy-
ment. This method ensures that all of the application users and the knowledge
base always have the same information.

Second, a data or wifi connection cannot be relied upon. It is common for
field sites to be located in areas with no data connection. Therefore, all data
must be recorded in a sensible fashion even when the scientist is unable to
connect to the knowledge base. MOCCASN meets this requirement by offering a
“Save Deployment Data” button, which copies the recorded information to local
storage, such as the scanned URIs, the username, and the time. The scientist can
view this saved information in the “View Un-Submitted Records” screen, and
the scientist may re-submit any of these records when he or she returns to cell
service by clicking on the record and clicking “Re-Submit”. Upon resubmission,
the application will initiate all necessary error-checking routines and attempt to
write the data to the knowledge base.

Reasoning in support of error checking is performed when annotated data ar-
rives in the data repository. Reasoning capabilities are limited on the device itself
as much of the error checking involves comparing the scanned information against
information currently in the data repository. Therefore, when MOCCASN does
not have a connection to the knowledge base, the application cannot execute
error-checking on the recorded information in real time. Thus, it is possible that
locally stored information may contain information that is inconsistent with the
information in the knowledge base. These inconsistencies may only be identified
when a data connection is regained, and will prevent the data record from being
submitted. However, this information is likely still valuable even though it is not
completely valid; portions of the data record are likely accurate. To make use of
this partially correct information, the scientist is offered the option of emailing
the record so that the data record can be corrected and entered manually. This
feature ensures that no data that was collected in the field is ever lost.

In addition, by allowing the user to save deployment information, the appli-
cation is more robust to errors caused by the knowledge base becoming out-of-
sync with the true state of the sensor network. For example, consider a situation
where a user attempts to end the deployment of an object, but upon scanning
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the object, the application finds that the object is not currently deployed. This
may happen because the scientist who set up the deployment forgot to click the
“Start Deployment” button. The current scientist is correct to want to enter the
deployment end time information, but the application will not let the scientist
do so due to inconsistent information in the knowledge base. The missing de-
ployment start information must be entered into the knowledge base by hand
before the app will enter the deployment end information. To accommodate this
type of situation, the user may save the end deployment information locally, and
re-submit it once the error has been solved manually.

We now introduce a number of use cases for the ways in which MOCASSN
has been used to read and write metadata while in the field.

4.1 Use Case: Constructing a Deployment

To construct a deployment, the scientist scans two directly sensor objects that
are to be directly attached to each other. For example, a scientist may scan an
instrument and one of its detectors, or a platform and its instrument. Every time
the scientist scans an object, the application queries the knowledge base to check
that the object is in the knowledge base, that it is either a type of instrument,
detector, or platform, and that it is not currently deployed (an object must be
un-deployed before it may be re-deployed). When a pair of objects is scanned,
the application queries to check that the types of the two objects are compatible
(an instrument must have a parent of type platform, and an detector must have
a parent of type instrument). It also checks that either one of the objects or
neither of the objects is part of a deployment under construction.

According to HASNetO, a deployment is comprised of one platform, one
instrument, one or more detectors, a start time, an end time, a location, and
the deploying scientist. The platform, instrument, and detector objects of the
deployment are assembled in a piecemeal fashion. During the time when the
deployment is incomplete because all of the pieces of information have not yet
been submitted, the deployment is tagged with the code “under construction”
to denote that the deployment is not consistent with the HASNetO definition
of a deployment. After the remaining deployment information is recorded, the
scientist clicks “Start Deployment” to add the end time and remove the “under
construction” tag.

4.2 Use Case: Ending a Deployment

To end an ongoing deployment, the scientist scans any of the objects associated
with the deployment, and the application adds an end time to the deployment.
The application will not allow the scientists to end a deployment that is not
currently underway.

4.3 Use Case: Getting Information about a Sensor

The application may also be used to retrieve information about any piece of
sensor network equipment. For scientists with no prior knowledge of linked data
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and the SPARQL language that is used to query linked data, this feature offers
a simple solution for viewing deployment data in the knowledge base in a very
readable format. This screen presents a number of details about the most recent
(or current) deployment of the scanned object. For example, this screen dis-
plays the deployment’s associated platform, instrument, and detectors, as well
as the characteristics that are detected. In addition, the screen will show the
deployment’s start and end times if applicable.

4.4 Reflections on Field Testing

MOCCASN was field tested with a Jefferson Project field scientist. This scientist
has been performing ecological research on Lake George for many years, and is
part of the team deploying Jefferson Project sensor network equipment. Testing
was performed with an HTC One M7 phone. After reviewing the structure of
the application, the scientist started and ended about a dozen deployments. A
few mistakes were made at first, such as forgetting to click “Start Deployment”
after connecting all pieces of the deployment, and not waiting for a confirmation
of data submission before moving on to make the next entry. These problems
could be mediated by explicitly warning the scientist of the incomplete data
entry when they attempt to move on too quickly. We estimate that it takes
about fifteen minutes to introduce how to use the application, and about an

hour of practice for the field scientist to get a good understanding of how to use
MOCCASN proficiently.

5 Discussion

MOCCASN addresses issues related to barriers to entry, automatic metadata
capture, and in-situ context capture. The application removes the barrier-to-
entry that researchers often face when presented with semantic technology so-
lutions. With this tool, a researcher can generate machine readable metadata
without any prior knowledge of semantics.

Historically, progress on improving the way we model metadata knowledge
has come at the cost of increased time spent capturing metadata and increasingly
advanced formats. For a long time, the extra time required of the data generator
to standardize data was well worth the extra effort because it enabled efficient
data sharing. However, with the onset of automated data collection, researchers
will simply be overwhelmed by the amount of metadata that needs to be gener-
ated. Our work developing MOCCASN counters the trend of increased capture
time for the sake of data usability, reducing a researcher’s metadata capture to
a few QR code scans.

MOCCASN enables in-situ capture of contextual knowledge that would be
lost otherwise. Researcher field time is incredibly valuable, and automated tools
enable field scientists to quickly record valuable knowledge that would otherwise
have been recorded on paper or not recorded at all in an easily usable and
shareable format.
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By automating metadata generation, we make a number of other advances
in metadata capture. The application performs error-checking in real time by
communicating with the data repository to help prevent erroneous data from
being entered into the knowledge base. In addition, all metadata created with
this tool conform to a standard vocabulary and are immediately accessible by
anyone else on the team.

5.1 Value of Semantics

By automating the capture of contextual knowledge, we enable field scientists
with no technical knowledge of semantic technologies to benefit from the value of
semantic technologies. While the structure and capture of contextual knowledge
is often standardized within a lab, it is not common for such metadata to follow
broad community standards. This makes sharing datasets very difficult and time
consuming, as a human must interpret each dataset to determine its usability
and compatibility with other datasets. Semantic technologies turn the process
of integrating datasets into a machine’s task, which can be accomplished auto-
matically, consistently, and thoroughly via the semantic comparison of dataset’s
contextual knowledge. For instance, machines can verify whether the contents
of two datasets are semantically equivalent. Even if they are not equivalent, the
machine can identify if any contextual difference is significant enough to enable
or not the integration of the datasets.

A lab may feel confident in their current metadata practices for managing
hand-collected data. However, for projects involving automated sensor networks,
easily accessible and usable metadata is critical to harnessing the power of rapid
data collection. Semantic technologies provide a solution for this new era in
ecology because semantic metadata is structured and query-able, making it easy
to access and use for data management and analysis.

5.2 Share-ability and Re-usability

MIT App Inventor makes it easy to share projects and to allow others to down-
load the application to their phones. For those who wish to re-use this appli-
cation, the source code file is available to reopen in App Inventor, from which
point one can make changes to the interface and logic. Detailed instructions
about sharing App Inventor projects are available here [4].

Since this application is based on a public set of ontologies, it may easily be
re-used in projects that wish to use the same ontology to capture their deploy-
ment metadata. The application could be ready for a new use in just minutes
by simply changing the endpoint URLSs to a new project’s knowledge base. Sim-
ilarly, it would be relatively easy to make extensions to the application for small
extensions required to the ontology. If a research team would like to collect meta-
data in a similar way, but with a different or modified ontology, it would still
be useful to use this application as a starting point. Many of the queries that
the app runs would likely need to be modified, but it may reduce development
turnaround time to start with this app as a framework.
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Our team has already found the need to extend MOCCASN and found the
process to be very easy. While demonstrating MOCCASN to our field scientist
teammates, we discovered that MOCCASN would be more useful to them if it
collected information about samples in addition to information about deploy-
ments. After deciding on what terms from existing ontologies to use to represent
sample-based knowledge, MOCCASN was extended to capture metadata about
samples in just a few hours by adding “collect sample” and “analyze sample”
screens.

5.3 Future Work

After having completed initial testing with a small collection of field scientists
within our expanded team, we are beginning to deploy MOCCASN for real use
in the Jefferson Project. The app will be in use among field scientists as they
modify the arrangement of the equipment that autonomously monitors the lake,
as well as researchers collecting samples in the field.

In addition, though this work focused on capturing metadata related to de-
ployments, we plan to apply the same framework to rapidly develop additional
tools for capturing a wide range of metadata. For example, we plan to build a
similar tool to capture equipment calibration metadata in the lab, and for cap-
turing the way sensor’s configuration parameters are set. Both of these activities
will be performed routinely over the course of the Jefferson Project to main-
tain a well-functioning sensor network, and the calibration and configuration
parameters are important for accurately comparing and combining datasets. In
all sorts of human interventions, we are also planning to provide richer prove-
nance knowledge about how sensor calibrations, deployments and configurations
are decided.

More broadly, we think it would also be valuable to add to this tool the
ability to preview the deployed object’s data stream. It is not uncommon to
hear about a half of a day’s field work lost due to improperly set up equipment.
Since many sensor network instruments stream their data back to a central hub,
it should be possible for our tool, which is already connected to the knowledge
base, to show the user what the instrument is streaming. This would help the
researcher to correct mistakes quickly.

6 Conclusions

The advent of automation in data collection poses many opportunities for rev-
olutionizing data analysis in ecology. However, the large volume of datasets will
be difficult to use without improved metadata collection strategies. As more
diverse data is collected with the aim of integration and analysis, it becomes
more critical to thoroughly and accurately capture in-situ information concern-
ing dataset collection. Simultaneously, we do not want to overly burden field
researchers with inefficient or error-prone collection methods. We present a mo-
bile application for automating the collection of in-situ metadata in an efficient,
standardized, and error-free way.
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