
1st International Workshop on
Mobile Deployment of Semantic
Technologies (MoDeST 2015)

At the 14th International Semantic Web Conference
(ISWC 2015)

Bethlehem, PA, USA

October 2015

Preface

This volume contains the papers presented at the 1st Workshop on Mobile
Deployment of Semantic Technologies (MoDeST2015) held on October 11th,
2015 in Bethlehem, Pennsylvania (USA) at the 14th International Seman-
tic Web Conference (ISWC2015). MoDeST2015 aimed to bring together
researchers, as well as developers and practitioners, who are interested in
studying and deploying Semantic Web technology on mobile devices, as well
as illustrating its useful deployment in particular application domains. More
information about the workshop can be found at http://modest.mobi.

MoDeST2015 was a half-day workshop which included an invited talk
by Jeff Z. Pan entitled “The Ubiquitous Semantic Web: The Story So Far”
followed by the presentation of 4 full research papers and 2 short position
papers. MoDeST2015 received 7 submissions from which the Program Com-
mittee selected 6 for presentation at the workshop and to be included in the
proceedings.

We want to thank the members of the Program Committee for their
help and support to make this first edition of MoDeST possible. We also
thank the Deborah, Syed, and Eduardo for their help in the organization.
We thank our invited speaker, Jeff Z. Pan, for his useful talk. We thank the
organizers of the 14th International Semantic Web Conference for selecting
MoDeST and hosting it at such important event. Finally, we thank all the
participants of the workshop for their involvement and their contributions
to the debate.

Evan Patton, William Van Woensel, and Roberto Yus

October 2015

http://modest.mobi

Contents

1 The Ubiquitous Semantic Web: The Story So Far

Jeff Z. Pan . 1

2 Are Apps Going Semantic? A Systematic Review of Semantic Mobile

Applications

R. Yus and P. Pappachan . 2

3 Building a Mobile Applications Knowledge Base for the Linked Data

Cloud

P. Pappachan, R. Yus, P. K. Das, S. Mehrotra, T. Finin, and A. Joshi . 14

4 Challenges for Semantic Technologies in Distributed Mobile Environ-

ments

E. W. Patton and A. Borgida . 26

5 Automating the Collection of Semantic Sensor Network Metadata in the

Field with Mobile Applications

L. Kinkead, P. Pinheiro, and D. L. McGuinness 32

6 Linked Data and Mobile Application Privacy

E. W. Patton and I. Liccardi . 44

7 Mobile Semantic Query Distribution with Graph-Based Outsourcing of

Subqueries

William Van Woensel . 50

MoDeST2015 Organization

MoDeST2015 Chairs

Evan Patton Rensselaer Polytechnic Institute, USA
William Van Woensel Dalhousie University, Canada
Roberto Yus University of Zaragoza, Spain

MoDeST2015 Steering Committee

Deborah McGuinness Rensselaer Polytechnic Institute, USA
Syed Sibte Raza Abidi Dalhousie University, Canada
Eduardo Mena University of Zaragoza, Spain

MoDeST2015 Program Committee

Sören Auer University of Bonn, Germany
Carlos Bobed University of Zaragoza, Spain
Fernando Bobillo University of Zaragoza, Spain
Alex Borgida Rutgers, USA
Sven Casteleyn Universitat Jaume I, Spain
Mathieu d’Aquin Open University, UK
Oscar Diaz University of the Basque Country, Spain
Tim Finin University of Maryland, Baltimore County, USA
Lalana Kagal MIT CSAIL, USA
Yuan-Fang Li Monash University, Australia
Jeff Z. Pan University of Aberdeen, UK
Primal Pappachan University of California, Irvine, USA
Michele Ruta Politecnico di Bari, Italy
Oshani Seneviratne Oracle, USA
Fuming Shih Oracle, USA
Heiner Stuckenschmidt University of Mannheim, Germany

The Ubiquitous Semantic Web: The Story So Far

Jeff Z. Pan

University of Aberdeen, UK
jeff.z.pan@abdn.ac.uk

Abstract of Invited Talk. Semantic Web technologies make it possible to rep-
resent, integrate, query and reason about structured online data. Recent years
have witnessed tremendous growth of mobile computing, represented by the
widespread adoption of smart phones and tablets. The versatility of such smart
devices and the capabilities of semantic technologies form a great foundation
for a ubiquitous Semantic Web that will contribute to further realising the true
potential of both disciplines. In this talk, I will provide a brief overview of state-
of-the-art research in this emerging area and try to conclude with a summary of
challenges and important research problems.

Biography of the Speaker. Jeff Z. Pan received his Ph.D. in computer sci-
ence from The University of Manchester in 2004, on the topic of Description
Logics: Reasoning Support for the Semantic Web. He joined the faculty in the
Department of Computing Science at University of Aberdeen in 2005. He is
now the Deputy Director of Research of the department. His research focuses
primarily on knowledge representation and reasoning, in particular scalable on-
tology reasoning, querying and reuse, and their applications (such as Semantic
Web, Advertising, Healthcare, Software Engineering and Multimedia). He is a
key contributor to the W3C OWL2 standard. He leads the work of the TrOWL
Tractable OWL2 reasoning infrastructure. He is widely recognised for his work
on scalable and efficient ontology reasoning; he gave tutorials on this topic in
e.g. AAAI2010, ESWC2010, ESWC2011, SemTech2011 and the Reasoning Web
Summer School (2010 and 2011).

1

Are Apps Going Semantic?
A Systematic Review of Semantic Mobile

Applications

Roberto Yus1 and Primal Pappachan2

1 University of Zaragoza, Spain
ryus@unizar.es,

2 University of California, Irvine, USA
primal@uci.edu

Abstract. With the wide-spread availability of cheap but powerful mo-
bile devices and high-speed mobile Internet, we are witnessing an un-
precedented growth in the number of mobile applications (apps). In this
paper, we present a systematic review of mobile apps which use Semantic
Web technologies. We analyzed more than 400 papers from proceedings
of important conferences on Semantic Web and other venues. We give a
brief overview of the 36 semantic mobile apps we identified by grouping
them based on their specific functionalities. Our results show that usage
of Semantic Web technologies on mobile devices is on the rise and there
is a need for development of more tools to facilitate this growth.

Keywords: Semantic Web, semantic mobile applications, Android

1 Introduction

Mobile devices (such as smartphones and tablets) have been fast replacing other
stationary devices as de facto medium for online browsing, social networking, and
other applications. The widespread availability of high-speed mobile Internet
and lowering prices of smartphones has accelerated this change. In fact, the
most popular mobile application (app) stores crossed the one million apps mark
in 2013. By using semantic technologies, applications on mobile devices can
benefit from the advantages of the Semantic Web. For example, apps can use
information from the Linked Data cloud, publish as well as subscribe to various
data sources without worrying about app or device specific schemas, and reason
over information to derive non-explicit facts.

The use of semantic technologies on mobile devices has been subject of in-
terest from the early stages of the Semantic Web [1] and it has been recently
invigorated with efforts to test and even port existing semantic technologies to
mobile devices [2–5]. However, how many of the existing apps are using Semantic
Web technologies is still unknown. Recently, Ermilov et al. performed a study on
the field [6] by analyzing 172 relevant papers and coming up with guidelines for
designing and developing effective semantic applications for ubiquitous devices.

2

However, the focus of their work was to find “the existing approaches for devel-
opment of ubiquitous semantic applications” and thus slightly different from the
goal of discovering how many semantic mobile apps have been presented.

In this paper we present a systematic review of semantic mobile applications
which covers the breadth of semantic mobile apps and the depth of semantic
data management. To this end, we analyzed more than 400 papers extracted
from Google Scholar as well as proceedings of important Semantic Web confer-
ences. From this set of studies we found 36 papers presenting semantic mobile
apps for which we have extracted a brief summary with the focus on identify-
ing “what” and “how” of semantic technology usage in these apps. We present
information about common platforms and operating systems for mobile apps,
Semantic Web technologies being used (locally on the device or in servers), and
domains of the apps. We also outline some of the challenges and problems faced
by researchers while developing semantic mobile apps. Our results show that
number of semantic mobile apps has been steadily increasing over the years.

The rest of the paper is organized as follows. In Section 2, we present the
methodology followed in performing this systematic review. In Section 3, we
overview the semantic mobile apps we discovered grouped by specific domains.
In Section 4, we answer the research questions proposed in our methodology.
Finally, in Section 5, we discuss about findings of the review and outline future
work.

2 Methodology

In this section we explain the methodology followed for the systematic review
performed (based on the guidelines proposed in [7]).

Research Questions. The goal of this review is to find evidence to answer the
following questions:

RQ1 : How many semantic mobile applications have been developed?
RQ2 : Is the increase on the number of mobile devices and their features

motivating the development of more semantic mobile apps?
RQ3 : Which domains are more suited for Semantic Web in mobile apps?
RQ4 : What are the most used platforms and operating systems for semantic

mobile apps?
RQ5 : What are the most used Semantic Web technologies on mobile devices?
RQ6 : Are Semantic Web technologies being used locally on mobile devices?
RQ7 : What challenges/problems (specific to mobile devices) are researchers

facing when developing semantic mobile apps?

Search Strategy and Study Selection Criteria. To find the studies to an-
alyze we used the Google Scholar3 web search engine which indexes millions of
research papers (and thus, includes documents from the major electronic libraries

3 https://scholar.google.com

3

–such as ACM, IEEE, and Springer–). We also went through the proceedings of
the following Semantic Web conferences: the International Semantic Web Confer-
ence (ISWC) from 2002 to 2014 (last edition available), the Extended Semantic
Web Conference (ESWC) from 2004 to 2015, and the International Conference on
Semantic Systems (I-SEMANTICS) from 2009 to 2014. To query Google Scholar
we used combinations of the following keywords: “Semantic Web”, “Mobile de-
vice”, “Android”, “SPARQL”, “RDF”, “OWL” and selected the first 400 results.
Regarding the proceedings of the conferences we manually checked the title and
abstract of each paper to select those focusing on mobile computing.

After this step, we manually went through each paper to check if there was
a semantic mobile system described in it. We use the definition of ubiquitous
semantic application as an app which is designed and developed for ubiquitous
devices and uses semantic data in any way during it’s execution by Ermilov et
al. [6]. We excluded papers which only presented an architecture or an ontology
but did not describe an implementation of a semantic mobile app.

Data Extraction Strategy. For each paper remaining after the selection pro-
cess we extracted the following information required to answer the research ques-
tions explained earlier: year, app functionality, mobile platform, local vs. remote
handling of semantic data, Semantic Web technologies, and specific challenges
related to development of the app.

3 Semantic Mobile Apps

In this section we give a brief overview of the 36 semantic mobile apps identified
in the selection process. We have grouped the selected apps into disjoint domains.
Therefore, even though many of the apps can be classified as Location-Based
Services, we have chosen a more specific functionality for the purpose of this
classification.

Map based and Augmented Reality. mSpace Mobile [1] provides informa-
tion about topics of chosen interest to mobile users related to their location. The
client app accesses the knowledge about topics and the location based informa-
tion by calling remote web services. The server queries RDF KBs, using RDQL
(RDF Data Query Language) [8], and returns the results to the client app. DB-
pedia Mobile [9] extracts information about POIs in the surroundings of the user
from DBpedia [10] and displays them on a map. The client app, developed as a
web app, displays the information obtained by a server which queries DBpedia
using SPARQL. PediaCloud [11] displays tag clouds with information related to
the user geographical location. The app executes SPARQL queries against the
DBpedia endpoint to obtain POIs around the user and computes the tag cloud
with the information retrieved. The app presented in [12] offers nearby POIs
(e.g., cultural attractions) which match a user request or user interests. The app
uses a semantic matchmaker (using non-standard reasoning services) on the de-
vice to match POIs (extracted from OpenStreetMap and enhanced semantically
by a back-end) with given requests.

4

LOD4AR [13] displays POIs around the user by using augmented reality
(AR). The client app, developed as a web application, obtains POIs as JSON by
querying a server and displays it using an AR library. The server manages an
OpenRDF Sesame RDFS store with information gathered from several sources
(DBpedia, LinkedGeoData.org, Romanian Government Open Data portal). Alive
Cemeteries [14] combines AR with Semantic Web to navigate through a ceme-
tery in Hungary. The client app uses Androjena4 to handle the POIs returned
by executing SPARQL queries against a knowledge base (it is not clear whether
the KB is stored in the device or in a server). ARSemantic [15] offers person-
alized POIs using AR considering the user profile. The app uses a semantic
reasoner (Mini-ME [16]) to infer POIs which might be interesting for a user re-
garding her profile. The reasoning tasks of subsumption, satisfiability, concept
abduction, and concept contraction are used on the mobile device with enhanced
OpenStreetMap data to do the matching between services and profile.

Disaster, Health Management and Collaborative. WeReport [17] allows
people to report the situation during an emergency and relief workers to obtain
continuously disaster feed. Donate-N-Request [17] (Android) matches requests
for resources with their availability in the context of disaster scenarios. Both
apps use a ported version of Jena to manage semantic data (reports or requests
near the user) retrieved from an external server by executing SPARQL queries.
Also, the app semantically annotates user generated reports and requests and
sends them to the server. VGSAndroidApp [18] allows users to submit and browse
volunteering requests. The client app uses the Triploid API, realized on top of
Androjena, to parse the information returned by a RESTful web service. The
web service executes SPARQL queries against the Jena triplestore in the server.

Patient Self-Management App [19] helps patients to develop self efficacy to
overcome barriers for the self-management of cardiac risk factors. The app uses
an OWL ontology to model the patient profile but it is not explicitly mentioned
whether the app manages the OWL ontology directly or not. Rafiki [20] helps
community health-workers in remote areas in the diagnosis of diseases. The app
manages OWL ontologies on the device which are defined using the OWL API5.
The app also uses SWRL rules and a DL reasoner (HermiT [21]) on the device to
infer the most probable diseases for a patient given her symptoms and context.

ParkJam [22] helps users to find parking using crowdsourced geographic data
(from external sources and users of the system). The client app gets the parking
information from a back-end system on a server which integrates information
from Linked Data sources (such as OpenStreetMap). Urbanapoly [23] uses Hu-
man Computation (minigames to engage users) to enrich and validate geo-spatial
Linked Data (POIs). The client app obtains information about POIs around the
user and the server validates information received from multiple users and pub-
lishes it. FaceBlock [24, 25] allows users to define their context-aware privacy
policies regarding pictures taken by others (e.g., “do not allow strangers to take

4 https://github.com/lencinhaus/androjena
5 http://owlapi.sourceforge.net

5

my picture”) and implements it on devices around. The app, which has been
tested on smartphones and Google Glass, uses the OWL API to handle OWL
ontologies for the representation of the user context and SWRL rules for the
definition of the policies. The app also uses a DL reasoner (JFact6) to infer the
policy to be executed depending on the user context. csxPOI [26] enables the
collaborative creation, sharing, and modification of semantic POIs. The client
app receives POIs from the server, which stores them in a triplestore, and allows
users to modify them or create new ones.

Semantic Web Browsers and Endpoints. mSWB [27] is an effort to develop
an endpoint-agnostic mobile Semantic Web browser which can connect to any of
the available endpoints to retrieve maximum information. The client app allows
user to perform keyword based search and visualize the results in table and map
view. The federated middleware, on an external server, takes care of running
semantic queries in parallel on different endpoints and returning the results to
the app. OntoWiki Mobile [28] is a mobile version of the free and open-source se-
mantic wiki application “OntoWiki” which facilitates knowledge acquisition in a
collaborative manner. The app is a HTML5 application which uses RDFauthor7

(Javascript-based system) for data authoring and utilizes HTML5 cache func-
tionality to support offline work. Persistence of data is provided at the server
which has advanced conflict resolution and replication features built-in which
allows concurrent editing of same resources.

RDFBrowser [29] is an RDF browser which provides a generic layer for ac-
cessing device information making it independent of specific application schemas.
The app uses Androjena to manage RDF data on the device and there is a remote
RDF server which exposes the device information for outside world consump-
tion. RDF On the Go [30] is an RDF storage and SPARQL query processor
for Android devices allowing them to query data collected on the devices lo-
cally. They have adapted Jena and ARQ toolkits for mobile to handle RDF
data and the app stores the triples from LinkedGeoData collection. The data is
indexed using R-trees to support spatial SPARQL queries. The app presented
in [31] makes it possible for mobile devices to publish the information from ap-
plications and sensors on them through a SPARQL endpoint. This data can
be gathered by applications by querying the endpoints and federation through
SPARQL queries. The app includes an RDF store and SPARQL endpoint based
on the Sesame library (adapted to Android). Linked Sensor Middleware [32] pro-
vides wrappers for sensors on mobile device for the purpose of data collection
and publishing. Through their web interface users can annotate and visualize
the real world sensed data. They have also linked this sensor stream data to
other Linked Data sources and the unified dataset can be queried through a
SPARQL endpoint. SHERLOCK [33, 34] enables devices to automatically ex-
change knowledge about Location-Based Services in the geographic area of the
user (e.g., a service to find taxis or to obtain pictures of monuments around). The

6 http://jfact.sourceforge.net/
7 http://aksw.org/Projects/RDFauthor.html

6

app manages OWL ontologies using the OWL API. Also, it uses a Description
Logics reasoner on the device (JFact) to infer services which might be interesting
for the user.

Social Networks and Recommendation. Person Matcher [35] obtains FOAF
profiles from persons around the user (via Bluetooth) and calculates a “compat-
ibility” score with the user for each profile discovered. The app handles RDF
data using the MicroJena library8. Mobile Social Semantic Web [36] offers a dis-
tributed social network based on Semantic Web technologies. The app queries
various triple stores (e.g., FOAF) and transforms the RDF, by using the An-
drojena, into a format that is suitable for social applications such as contact
information based and FOAF based. Who’s Who [37] enables users to access
and visualize Linked Data by linking physical world with virtual with the help
of contextual information (e.g., location). To address the potential latency prob-
lems due to low bandwidth or no network connection, the app includes a light
weight triple store on the device, using the RDFquery library9, which stores
knowledge from the remote RDF server.

Mobile Wine agent [38] offers descriptions of wines and dishes, and recom-
mendations to the user regarding her location. The app manages an ontology
and supports partial reasoning on the device and exhaustive reasoning over the
information collected is performed on the Jena server. Cinemappy [39] computes
contextual movie recommendations for users by using their spatial and temporal
position. The app executes SPARQL queries against the DBpedia endpoint to
obtain information related to movies which is combined with information from
semistructured sources. Krishi-Mantra [40] offers suggestions and alerts to farm-
ers to improve productivity regarding the crops being cultivated. The client app
sends information introduced by the user in forms to the server through RESTful
web services and displays the results. The server translates the information to
SPARQL and queries the KB with information about cotton. RealFoodTrade [41]
allows farmers and fishermen to sell their products directly to the end-buyer. The
client app sends user keywords (related to a particular type of fish) to the server
which obtains a matching product in its ontology and finds announcements re-
garding fishermen selling it.

Travel. GetThere [42] provides users from rural areas with details about public
transport (buses). The client app invokes web services which execute SPARQL
queries against the dataset managed by the back-end. The server integrates in-
formation from Linked Data points with crowdsourced locations of buses shared
by the clients. LinkedQR [43] enables users to scan QR codes attached to pieces
of art in a museum to obtain further information. The client app creates and ex-
ecutes a SPARQL DESCRIBE query against the server using the URI contained in
the QR code. The returned RDF is parsed by the app, using the Sesame library,
and shown to the user. The server manages a KB with information about an art

8 http://poseidon.ws.dei.polimi.it/ca/?page_id=59
9 https://code.google.com/p/rdfquery

7

gallery enriched with information from DBpedia. HDTourist [44] helps tourists
visiting a foreign city by displaying urban data from DBpedia. The app executes
SPARQL queries against a local RDF/HDT file (which contains information
extracted from DBpedia) using a Java library10. Touristguide [45] offers person-
alized tourist information to users after profiling them through questions. The
client app obtains the information from a server which maintains the informa-
tion about places in an ontology. CURIOS [46] offers personalized information
to tourists based on their preferences and activity history. The client app uses
RESTful services to obtain the information from the KB (generated by their
previous system CURIOS CMS from Hebridean Connection dataset). Addition-
ally the client also provides semantic (semantic relevance) and location-based
(euclidean) caching to overcome connectivity issues. Mobile Cultural Heritage
Guide [47] helps in finding interesting cultural material for a tourist using her
location. The client app sends user information (location, heading, and facets) to
the server which queries the KB (containing data from the Eculture data cloud,
LinkedGeoData.org, and DBpedia, among others) and returns POIs.

4 Results

In this section, we answer the research questions posed in Section 2:

RQ1: How many semantic mobile applications have been developed? At least
36 semantic mobile apps have been presented in the literature based on our
survey of publications over the last 10 years. Given that there is no central
repository for authors to publish their semantic mobile apps, the process of find-
ing them relies on quality of indexing mechanisms, appropriateness of keywords
used in the search, and effectiveness of the selection of the studies. In our effort
to avoid a possible bias, the studies were evenly split between the authors for
the purpose of reviewing them.

RQ2: Is there an increase on the number of semantic mobile apps? Figure 1(a)
shows the number of papers presenting a semantic mobile app per year (the
figure do not include one app published in 201511). Notice that there is a gap
between 2005 and 2009, we believe that this might be related to two milestones:
the release of the iPhone in June 29, 2007, and the release of the first commercial
version of Android in September 23, 2008. With the more powerful and affordable
devices, high speed Internet, and better tools available, the number of mobile
semantic web apps doubled in 2010 and 2014 whereas it remained stable in
between.

10 https://github.com/rdfhdt/hdt-java
11 This study has been finished in May 2015 so more semantic mobile apps might be

presented in 2015.

8

(a) (b)

Fig. 1. Number of semantic mobile apps per year (a) and number of semantic mobile
apps per platform (b).

RQ3: Which domains have the most number of Mobile Semantic Web apps? The
majority of the apps reviewed, 27 apps out of 36 (i.e., [1, 9, 11–15, 17, 18, 20, 22,
23, 25, 26, 34, 35, 37–42, 44–47]), can be classified as Location-Based Services
(LBSs). This was as expected as mobile devices are equipped with sensors which
are able to obtain the location of the user in real-time. Among these LBS apps,
the most common functionality is providing information about Points Of Interest
(POI), 14 apps (i.e., [1, 9, 11–15, 23, 26, 37, 44–47]).

RQ4: What are the most used platforms and operating systems? In general all
the apps are deployed on smartphones, except for [1, 35] which were deployed
on Personal Digital Assistants (PDAs), as they were developed when PDAs
where the most popular mobile devices. Figure 1(b) shows the distribution across
different operating systems with Android being the most common choice for
semantic mobile apps [11, 14, 15, 17, 17, 18, 20, 22, 23, 25–27, 29–32, 34, 36,
37, 39–46] (27 out of 36). 3 of the apps were developed for iOS [19, 38, 47]
whereas 2 are Windows Mobile apps [1, 35]. Also, there are 4 apps that have
been developed as web applications [9, 12, 13, 28] and thus are cross-platform.
The dominance of Android could be attributed to two factors: (1) it has the
most number of users worldwide and it is based on Java as most of the popular
semantic tools.

RQ5: What are the most used Semantic Web technologies? Figure 2 shows a
wordcloud generated with the different semantic technologies that the apps re-
ported using. For management of semantic data on the device, the most common
libraries used are: Androjena (in [14, 18, 29, 36]), OWL API (in [20, 25, 34]), and
Sesame API (in [31, 43]). Regarding Linked Data endpoints, apps use mainly
the DBpedia (in [9, 11, 13, 39, 43, 44, 47]) and OpenStreetMap/LinkedGeoData
(in [12, 13, 15, 22, 30, 47]) KBs. With regards to semantic reasoning, the fol-
lowing reasoners have been reported: Mini-Me (in [15]), JFact (in [25, 34]) and
Hermit (in [21]).

9

Fig. 2. Wordcloud with the semantic technologies used by the different apps.

RQ6: Are Semantic Web technologies being used locally on the device? Most
of the apps, 23 out of 36 (i.e., [1, 9, 13, 14, 17, 18, 22, 23, 26–28, 32, 37, 38,
40–47]), use a client-server approach in which the mobile app itself acted as
an interface to present the results returned by the server. These type of client
apps were also reported to be majority in [6] (where they were called “thin
client apps”). However, 9 of these 23 apps (i.e., [14, 17, 18, 28, 37, 38, 43, 44])
processed Semantic Web languages on the device. 13 apps (i.e., [11, 12, 15, 19,
20, 25, 29–31, 34–36, 39]) do not follow the client-server approach and manage
semantic data on the device (which can obtain from other devices or directly
from Linked Data sources). Also, just 6 apps (i.e., [12, 15, 20, 25, 34]) use a
semantic reasoner/matcher on the device to infer facts.

RQ7: What challenges/problems (specific to mobile devices) are researchers fac-
ing when developing semantic mobile apps? The challenges reported by apps
can be broadly categorized into two: general Semantic Web challenges and those
specific to mobile apps. In the first category we have long term issues such as
helping users to define content in RDF or integrating information from differ-
ent source. While the challenges specific to mobile apps include: the need for
efficient mobile RDF triplestores [44], scalability issues from the perspective of
storage and processing while increasing number of triples (e.g., [43] reported
that increasing the number of triples in 20 multiplied the processing time almost
by 4), lack of semantic reasoners for certain mobile operating systems (such as
iOS), better local storage to minimize bandwidth and battery consumption for
retrieving and processing semantic data [34, 46].

5 Conclusion and Next steps

The results of our systematic review, with more than 400 papers analyzed, show
that mobile semantic apps have been presented since the early days of the Se-

10

mantic Web, 2005. However, it was not until 2009 that the number of mobile
semantic apps started to steadily increase. The increment seen in 2014 motivates
us to believe that in the following years this number will continue growing with
the adoption of new mobile devices (such as smartwatches, smartglasses, and
even “smart cars”). However, Semantic Web research should focus on dealing
with the problems related to this new scenario (e.g., devices with limited capa-
bilities which generate large amounts of highly-dynamic data) to popularize the
use of semantic technologies in apps on these existing and future devices.

Our results show that most of the apps act as clients which rely on exter-
nal servers for the handling of semantic data. This means that although they
consume data which comes from Linked Data points and ontologies, this data
is preprocessed on a server which returns the data in a semistructured format
(JSON) or just as strings. However, this has been changing recently with few
apps exploiting the capabilities of current mobile devices to handle semantic
data locally. We believe that this trend would continue with work performed in
porting existing semantic technologies (such as the Jena port Androjena, and
semantic reasoners [2–4]) or creating new technologies specifically for mobile
devices (e.g., semantic reasoners such as Mini-Me [16]).

Finally, based on the results and apps discovered in this review, we think it
would be useful to formally define what a “semantic application” is, irrespective
of whether it is mobile or not, by further studies. This would help in coming up
with methodologies for systematic reviews and recommendations for semantic
app development. The different scenarios presented in this paper, such as apps
consuming data from a server in a non-standard format while the server obtains
this information from the Linked Data cloud, apps handling data in a semantic
format (i.e., RDF and OWL) on the device, or apps using a semantic reasoner
to handle the data, would have to be studied to determine an specification of
semantic apps.

In future, we want to extend this work by considering semantic mobile apps
published in app stores (such as Google Play or Apple App Store). Based on a
preliminary look at the Google Play Store12 we found that number of commercial
semantic mobile apps are indeed meager. Also, we are planning to build a website
which can act as central repository of mobile semantic apps which would be
updated periodically to keep track of all the latest apps.

Acknowledgments. This research work has been supported by RADICLE project
CNS-1059436, CNS-1212943, CNS-1118127 and CNS-1450768, CICYT project TIN2013-
46238-C4-4-R and DGA FSE.

References

[1] Wilson, M.L., Russell, A., Smith, D.A., Owens, A., et al.: mSpace mobile: A mobile application
for the Semantic Web. In: 2nd International Workshop on Interaction Design and the Semantic
Web. (2005)

[2] Patton, E.W., McGuinness, D.L.: A power consumption benchmark for reasoners on mobile
devices. In: 13th International Semantic Web Conference (ISWC). (2014) 409–424

12 https://play.google.com/store

11

[3] Van Woensel, W., Haider, N.A., Roy, P.C., Ahmad, A.M., Abidi, S.S.R.: A comparison of
mobile rule engines for reasoning on semantic web based health data. In: 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-
IAT). (2014) 126–133

[4] Yus, R., Bobed, C., Esteban, G., Bobillo, F., Mena, E.: Android goes semantic: DL reasoners
on smartphones. In: 2nd International Workshop on OWL Reasoner Evaluation (ORE). (2013)
46–52

[5] Valincius, E., Nguyen, H.H., Pan, J.Z.: A power consumption benchmark framework for ontol-
ogy reasoning on Android devices. In: 4th International Workshop on OWL Reasoner Evaluation
(ORE). (2015) 80–86

[6] Ermilov, T., Khalili, A., Auer, S.: Ubiquitous semantic applications: A systematic literature
review. International Journal on Semantic Web Information Systems 10(1) (2014) 66–99

[7] Kitchenham, B.: Procedures for performing systematic reviews. Keele University 33(2004)
(2004) 1–26

[8] Seaborne, A.: RDQL a query language for RDF. W3C Member submission (2004)
[9] Becker, C., Bizer, C.: Exploring the geospatial semantic web with DBpedia Mobile. Journal of

Web Semantics 7(4) (2009) 278–286
[10] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus

for a web of open data. In: 6th International Semantic Web Conference (ISWC). (2007) 722–735
[11] Tessem, B., Johansen, B., Veres, C.: Mobile location-driven associative search in DBpedia with

tag clouds. In: 9th International Conference on Semantic Systems (I-SEMANTICS). (2013)
6–10

[12] Ruta, M., Scioscia, F., Ieva, S., Loseto, G., Sciascio, E.D.: Semantic annotation of Open-
StreetMap points of interest for mobile discovery and navigation. In: 1st International Confer-
ence on Mobile Services (MS). (2012) 33–39

[13] Vert, S., Dragulescu, B., Vasiu, R.: LOD4AR: exploring linked open data with a mobile aug-
mented reality web application. In: 13th International Semantic Web Conference (ISWC).
(2014) 185–188

[14] Matuszka, T., Kiss, A.: Alive cemeteries with augmented reality and Semantic Web technologies.
International Journal of Computer, Information Science and Engineering 8 (2014) 32–36

[15] Ruta, M., Scioscia, F., Filippis, D.D., Ieva, S., Binetti, M., Sciascio, E.D.: A semantic-enhanced
augmented reality tool for OpenStreetMap POI discovery. Transportation Research Procedia
3 (2014) 479 – 488

[16] Ruta, M., Scioscia, F., Sciascio, E.D., Gramegna, F., Loseto, G.: Mini-ME: the mini match-
making engine. In: 1st International Workshop on OWL Reasoner Evaluation (ORE). (2012)

[17] Shih, F., Seneviratne, O., Liccardi, I., Patton, E., Meier, P., Castillo, C.: Democratizing mobile
app development for disaster management. In: Joint Workshop on AI Problems and Approaches
for Intelligent Environments and Workshop on Semantic Cities (AIIP). (2013) 39–42

[18] Savelyev, A., Xu, S., Janowicz, K., Mülligann, C., Thatcher, J., Luo, W.: Volunteered geo-
graphic services: developing a linked data driven location-based service. In: 2011 International
Workshop on Spatial Semantics and Ontologies (SSO). (2011) 25–31

[19] Abidi, S.R., Abidi, S.S.R., Abusharek, A.: A Semantic Web based mobile framework for de-
signing personalized patient self-management interventions. In: 1st Conference on Mobile and
Information Technologies in Medicine. (2013)

[20] Pappachan, P., Yus, R., Joshi, A., Finin, T.: Rafiki: A semantic and collaborative approach to
community health-care in underserved areas. In: 10th IEEE International Conference on Col-
laborative Computing: Networking, Applications and Worksharing (CollaborateCom). (2014)
322–331

[21] Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In: 5th OWLED
Workshop on OWL: Experiences and Directions, collocated. (2008)

[22] Kopecký, J., Domingue, J.: ParkJam: Crowdsourcing parking availability information with
linked data. In: 9th Extended Semantic Web Conference (ESWC). (2012) 381–386

[23] Celino, I., Cerizza, D., Contessa, S., Corubolo, M., Dell’Aglio, D., Valle, E.D., Fumeo, S.:
Urbanopoly - A social and location-based game with a purpose to crowdsource your urban
data. In: 2012 International Conference on Social Computing (SocialCom). (2012) 910–913

[24] Pappachan, P., Yus, R., Das, P.K., Finin, T., Mena, E., Joshi, A.: A semantic context-aware
privacy model for FaceBlock. In: 2nd International Workshop on Society, Privacy and the
Semantic Web - Policy and Technology (PrivOn). (2014)

[25] Yus, R., Pappachan, P., Das, P.K., Mena, E., Joshi, A., Finin, T.: FaceBlock: Privacy-aware
pictures for Google Glass. In: 12th Annual International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys). (2014) 366–366

[26] Braun, M., Scherp, A., Staab, S.: Collaborative semantic points of interests. In: 7th Extended
Semantic Web Conference (ESWC). (2010) 365–369

[27] Matuszka, T., Gombos, G., Kiss, A.: mSWB: Towards a mobile Semantic Web browser. In:
11th International Conference on Mobile Web Information Systems (MobiWIS). (2014) 165–175

[28] Ermilov, T., Heino, N., Tramp, S., Auer, S.: OntoWiki Mobile - knowledge management in your
pocket. In: 8th Extended Semantic Web Conference (ESWC). (2011) 185–199

[29] David, J., Euzenat, J.: Linked data from your pocket: The Android RDFContentProvider. In:
9th International Semantic Web Conference (ISWC). (2010) 129–132

12

[30] Phuoc, D.L., Parreira, J.X., Reynolds, V., Hauswirth, M.: RDF on the go: RDF storage and
query processor for mobile devices. In: 9th International Semantic Web Conference (ISWC).
(2010)

[31] d’Aquin, M., Nikolov, A., Motta, E.: Building SPARQL-enabled applications with android
devices. In: 10th International Semantic Web Conference (ISWC). (2011) 23–27

[32] Le-Phuoc, D., Quoc, H.N.M., Parreira, J.X., Hauswirth, M.: The linked sensor middleware–
connecting the real world and the semantic web. In: 10th International Semantic Web Confer-
ence (ISWC). (2011)

[33] Yus, R., Mena, E., Ilarri, S., Illarramendi, A.: SHERLOCK: A system for location-based services
in wireless environments using semantics. In: 22nd International World Wide Web Conference
(WWW). (2013) 301–304

[34] Yus, R., Mena, E., Ilarri, S., Illarramendi, A.: SHERLOCK: Semantic management of location-
based services in wireless environments. Pervasive and Mobile Computing 15 (2014) 87–99

[35] Van Woensel, W., Casteleyn, S., Troyer, O.D.: Applying Semantic Web technology in a mobile
setting: The Person Matcher. In: 10th International Conference on Web Engineering (ICWE).
(2010) 506–509

[36] Tramp, S., Frischmuth, P., Arndt, N., Ermilov, T., Auer, S.: Weaving a distributed, semantic
social network for mobile users. In: 8th Extended Semantic Web Conference (ESWC). (2011)
200–214

[37] Cano, A.E., Dadzie, A., Hartmann, M.: Who’s Who - A linked data visualisation tool for
mobile environments. In: 8th Extended Semantic Web Conference (ESWC). (2011) 451–455

[38] Patton, E.W., McGuinness, D.L.: The mobile wine agent: Pairing wine with the social Semantic
Web. In: 2nd Workshop on Social Data on the Web. (2009)

[39] Ostuni, V.C., Noia, T.D., Mirizzi, R., Romito, D., Sciascio, E.D.: Cinemappy: a context-aware
mobile app for movie recommendations boosted by DBpedia. In: International Workshop on
Semantic Technologies meet Recommender Systems & Big Data. (2012) 37–48

[40] Kumar, V., Dave, V., Nagrani, R., Chaudhary, S., Bhise, M.: Crop cultivation information
system on mobile devices. In: IEEE Global Humanitarian Technology Conference: South Asia
Satellite (GHTC-SAS). (2013) 196–202

[41] Cal̀ı, A., Virgilio, R.D., Noia, T.D., Menichetti, L., Mirizzi, R., Nardini, L., Ostuni, V.C.,
Rebecca, F., Ungania, M.: Semantic search in RealFoodTrade. In: 8th Alberto Mendelzon
Workshop on Foundations of Data Management. (2014)

[42] Corsar, D., Edwards, P., Baillie, C.C., Markovic, M., Papangelis, K., Nelson, J.D.: GetThere: A
rural passenger information system utilising linked data & citizen sensing. In: 12th International
Semantic Web Conference (ISWC). (2013) 85–88

[43] Emaldi, M., Lázaro, J., Laiseca, X., López-de-Ipiña, D.: LinkedQR: Improving tourism ex-
perience through linked data and QR codes. In: 6th International Conference on Ubiquitous
Computing and Ambient Intelligence (UCAmI). (2012) 371–378

[44] Hervalejo, E., Mart́ınez-Prieto, M.A., Fernández, J.D., Corcho, Ó.: HDTourist: Exploring urban
data on Android. In: 13th International Semantic Web Conference (ISWC). (2014) 65–68

[45] Dodwad, P.R., Lobo, L.: A context-aware recommender system using ontology based approach
for travel applications. International Journal of Advanced Engineering and Nano Technology 1
(2014)

[46] Nguyen, H.H., Beel, D.E., Webster, G., Mellish, C., Pan, J.Z., Wallace, C.: CURIOS mobile:
Linked data exploitation for tourist mobile apps in rural areas. In: 4th Joint International
Conference on Semantic Technology (JIST). (2014) 129–145

[47] van Aart, C.J., Wielinga, B.J., van Hage, W.R.: Mobile cultural heritage guide: Location-aware
semantic search. In: 17th International Conference on Knowledge Engineering and Management
by the Masses (EKAW). (2010) 257–271

13

Building a Mobile Applications Knowledge Base
for the Linked Data Cloud

Primal Pappachan1, Roberto Yus2, Prajit Kumar Das3,
Sharad Mehrotra1, Tim Finin3, and Anupam Joshi3

1 University of California, Irvine, USA
{primal,sharad}@uci.edu,

2 University of Zaragoza, Zaragoza, Spain
ryus@unizar.es,

3 University of Maryland, Baltimore County, Baltimore, USA
{prajit1,finin,joshi}@umbc.edu

Abstract. The number of mobile applications (apps) in major app
stores exceeded one million in 2013. While app stores provide a central
point for storing app metadata, they often impose restrictions on the
access to this information thus limiting the potential to develop tools to
search, recommend, and analyze app information. A few projects have
circumvented these limitations and managed to create a dataset with
a substantial number of apps. However, accessing this information, es-
pecially for the purpose of an integrated view, is difficult as there is
no common standard for publishing data. We present Mobipedia, an
effort to gather this information from various sources and publish it as
RDF Linked Data. We describe the status of Mobipedia, which currently
has information on more than one million apps that has been extracted
from a number of unstructured and semi-structured sources. This paper
describes the ontology used to model information, the process for fact
extraction, and an overview of applications facilitated by Mobipedia.

Keywords: Semantic Web, Linked Data, SPARQL, Knowledge Base, Android

1 Introduction

The incredible penetration of mobile devices (e.g., smartphones and tablets) in
our lives in the last few years has been accompanied by an overwhelming growth
in the number of mobile applications (also called apps) available for various
platforms. The Google Play Store4 and the Apple App Store5, which are the
main app stores currently, achieved the 1 million apps milestone in 2013, and,
as of May 2015, both stores offer more than 1.4 million apps. Therefore, today’s
users have an array of choices while installing apps of any kind for entertainment,
utility, or education. This has resulted in smart phones replacing other devices

4 https://play.google.com/store
5 https://www.apple.com/itunes/charts

14

as de facto medium for online browsing, social networking, and other activities,
and mobile apps replacing traditional desktop applications and web sites.

Most of the popular app stores, which are used for showcasing as well as
downloading apps, are proprietary and only offer a limited set of search func-
tionalities. Some of them also restrict crawlers from downloading the metadata
associated with apps and thus developers and researchers do not have access
to this huge data set. While there have been industrial and academic efforts to
gather information from app stores, the former is usually not freely available
and the latter is difficult to access as they use different methods to release the
datasets (e.g., websites, dumps, or databases) and various formats (from un-
structured to semi-structured data). As a result a new project in this domain
has to start either with a small data set of apps to analyze or repeat the process
of gathering information which might be already available.

If developers and researchers are able to access information about apps eas-
ily, it would facilitate interesting analyses. For instance, the information could
be used to warn users about malicious apps or apps that might request sensitive
data. Also, such information would be useful to help users in the difficult task of
selecting apps taking into account different parameters: from a purely technical
one (such as the version of the operating system supported, the device require-
ments, or the installation size), to app credibility (such as ratings, privacy grade),
among others. Therefore, we believe that having a centralized online knowledge
base (KB) integrating information about mobile apps from various datasets and
publishing it in an standard format would be very useful.

In this paper we present Mobipedia6, an evolving KB which integrates mo-
bile app information from different sources and publishes it following the prin-
ciples of Linked Data [1]. In its current version, Mobipedia contains metadata
of around 1 million Android apps, including permissions and libraries used, ex-
tracted from two research projects and the official Android website. The informa-
tion in Mobipedia, published in the standard Resource Description Framework
(RDF) language, can be accessed through web browsers, programs, and query
interfaces. To summarize, the major contributions presented in this paper are:

– Definition of an ontology to model app metadata information.
– Development of tools to extract facts from different sources and label the

information semantically with the Mobipedia ontology.
– Creation of multiple access methods for Mobipedia data (Linked Data inter-

face, SPARQL endpoint, and RDF dumps).

We present some example of interesting applications that can be developed
using Mobipedia focused on the domains of app recommendation and privacy
(based on our expertise). These applications can be developed agnostic of a
specific mobile platform as we are using Semantic Web technologies and stan-
dard languages for representation. In addition, it is also possible to access the
knowledge in Mobipedia locally on the device to draw inferences, for example,
suggesting apps to their users depending on their context.

6 http://mobipedia.link

15

The rest of the paper is organized as follows. In Section 2 we present Mo-
bipedia by explaining the ontology developed, the extraction of facts, and the
accessing mechanisms. In Section 3 we show some motivating applications that
can be developed using Mobipedia. Finally, in Section 4 we conclude and describe
the future directions we are planning to take.

2 The Mobipedia Knowledge Base

The Mobipedia project is composed of an ontology which models concepts related
to apps (see Section 2.1), an extraction module that generates facts from different
sources (see Section 2.2), and three mechanisms to access the information stored
(see Section 2.3). Figure 1 gives a high-level overview of the Mobipedia project
including its different modules and external libraries used.

AccessingSources Extraction

SPARQL
endpoint

Linkedv
Data

Interface

RDF
dumps

Pubby

TriplevStore
Virtuoso

PlayDrone

PrivacyGrade

Android
website

JSON

HTML

Gson

jsoup

Crawler
crawler4j

Parser Semanticv
Labeling

Triple
Serializer

Conceptv
Mapper

Ontology

Fig. 1. Mobipedia overview.

2.1 Ontology

Mobile apps are programs designed to run on mobile devices (e.g., smartphones
and tablets) and, as any other program, have different versions and use external
libraries. Mobile devices are usually equipped with different sensors such as lo-
cation, accelerometer, or gyroscope. Apps can make use of these sensors to, for
example, offer personalized services depending on the user context. However, the
information generated by the sensors on mobile devices could be sensitive (e.g.,
the location of the user). Mobile operating systems have a permission system
which lets the user decide whether to grant an app request to access a specific
sensor information.

In Mobipedia’s ontology7 we have modeled this information related to apps
which is independent of the mobile operating system. We considered using exist-
ing ontologies such as Dublin Core Metadata Initiative (DCMI) and Description
of a Project (DOAP) which are used to describe web resources and software
projects respectively. But as neither of them is focused on mobile development,

7 http://mobipedia.link/ont/mobipedia.owl

16

the concepts and properties in those vocabularies do not match the require-
ments for modeling of mobile apps completely. Nevertheless, we linked some of
the terms in DCMI ontology with Mobipedia terms using owl:subClassOf. For
example, “DCMI:Creator” (http://dublincore.org/documents/2012/06/14/
dcmi-terms/?v=terms#terms-creator) was linked to “Mobipedia:Developer”
(http://mobipedia.link/ontology/Developer).

Figure 2 shows an excerpt of the ontology including the most important
classes and the object properties that relate them8. The main classes in the ontol-
ogy are: mobipedia:App, which represents mobile apps; mobipedia:Version, for
the different versions of each app; mobipedia:Permission, for the permissions
that can be requested by apps; mobipedia:Library, for the libraries imported
by each version of an app; mobipedia:Developer, for the developers of each
app; mobipedia:Badge, for badges assigned to developers; mobipedia:Image,
for photos of the app or images of the badges; mobipedia:Category, for cate-
gories of apps, libraries, and permissions; and mobipedia:App Rating, for the
rating which users gave to the app. Table 1 shows some of the data properties in
the Mobipedia ontology including a brief description, their domain, and range.
In total, the current Mobipedia ontology includes 12 classes, 9 object properties,
and 50 data properties.

Fig. 2. Excerpt of the Mobipedia ontology.

2.2 Extraction Process

We focused on Android apps to populate the ontology and the current ver-
sion of the Mobipedia KB by incorporating information from datasets released

8 The figure has been generated using the Graffoo specification [4].

17

Data Property Description Domain Range

apk url URL to the APK Version xsd:anyURI

app title Name of an app App xsd:string

badge title Name of a developer badge Badge xsd:string

category name Name of a category Category xsd:string

comment count Number of comments for an app App Rating xsd:string

description html Description of an app App xsd:string

developer email Email of a developer of an app Developer xsd:anyURI

developer name Name of a developer Developer xsd:string

developer website Website of a developer Developer xsd:anyURI

downloads Number of downloads of an app App xsd:int

formatted amount Price of an app App xsd:string

image url URL of an image Image xsd:anyURI

installation size Size of an installed app Version xsd:int

library description Description of a library Library xsd:string

library name Name of a library Library xsd:string

major version number Version number of an app Version xsd:int

package name Name of the package of an app App xsd:string

permission description Description of a permission Permission xsd:string

permission name Name of a permission Permission xsd:string

permission reference URL of the permission Permission xsd:anyURI

privacy grade PrivacyGrade of an app Version xsd:string

recent changes html Change log of an app Version xsd:string

reviews url URL with the reviews of an app App xsd:anyURI

snapshot date Date when PlayDrone crawled
the information of an app

App xsd:dateTime

star rating User rating of an app App xsd:int

Table 1. Most important data properties in the Mobipedia ontology.

from two research projects as well as the Android website. Table 2 gives some
statistics about these data sets. As the information in these sources was mainly
unstructured or semi-structured (including HTML and JSON) we had to develop
modules to extract structured information from these sources and label it with
the Mobipedia ontology. As we had to filter out some of the information included
in the dataset in PlayDrone which was not relevant for Mobipedia, we decided
not to directly add a JSON-LD context. Instead, we developed ad hoc parsers
to determine the datatypes of the data extracted as well as associate them with
other entities in the dataset. For labeling the data we used the OWL API [6].
We have made crawlers and parsers available to help creating new tools for other
data sources9. Having the parser developed, extracting the app metadata and
converting it to RDF was easy.

PlayDrone. Google does not provide any mechanism to automatically extract
information about the apps available in the Google Play store. Instead Google

9 http://github.com/primalpop/MobipediaProject

18

Android Permissions Number of Permissions 152

PlayDrone
Number of Apps 1,402,894
Number of Categories 24

PrivacyGrade
Number of third party libraries used 246
Number of Apps 1,173,265

Table 2. Mobipedia Data Sources.

imposes restrictions to prevent the crawling of Google Play store data. However,
researchers from Columbia University built the PlayDrone, a scalable Google
Play store crawler which extracted information of over 1,100,000 apps [9]. The
PlayDrone project publishes dumps with the information extracted for different
dates10. The format used for the information published is JSON (see Figure 2.2
for an example). In our case we downloaded the latest dump available (October
31, 2014) and developed a parser to translate the JSON format, using the Gson
library11, to RDF.

{ ” app id ” : ”com . goog le . android . youtube” ,
” t i t l e ” : ”YouTube” ,
” developer name” : ”Google Inc . ” ,
” category ” : ”MEDIA AND VIDEO” ,
” f r e e ” : t rue ,
” ve r s i on code ” : 51405300 ,
” v e r s i o n s t r i n g ” : ”5 . 14 . 5” ,
” i n s t a l l a t i o n s i z e ” : 10191835 ,
”downloads” : 1000000000 ,
” s t a r r a t i n g ” : 4 . 08009 ,
” snapshot date ” : ”2014−10−31” ,
”metadata ur l ” : ” https : // a rch ive . org /download/playdrone−metadata−201

4−10−31−c9/com . goog le . android . youtube . j son ” ,
” apk ur l ” : ” https : // arch ive . org /download/playdrone−apk−c9/com . goog le

. android . youtube−51405300 . apk”}

Fig. 3. Excerpt from PlayDrone dataset.

Android Permissions. We extracted information about the Android permission
model from the website of the operating system12 (see Figure 4). The website in-
cludes information about 152 official permissions that Android apps can request
to access information from the user. For each permission the website contains its
name (key), the code that has to be added to the manifest of the app (value), and
a brief description. For extracting the content we developed an HTML parser
using the jsoup library13.

10 http://systems.cs.columbia.edu/projects/playdrone
11 https://github.com/google/gson
12 http://developer.android.com/reference/android/Manifest.permission.html
13 http://jsoup.org

19

Fig. 4. Android permissions web site. Fig. 5. PrivacyGrade for an app.

PrivacyGrade. A team of researchers from Carnegie Mellon University developed
a method to grade Android apps based on the analysis of people’s expectations
of an app’s behavior and app’s actual behavior [7]. For this purpose, they used
static analysis of sensitive data usage by an app and crowdsourcing. At the end
of analysis, apps are given a grade based on a 4.0 scale where “A+” means
apps have no privacy concerns. The privacy grade for each app, along with other
information such as the libraries used by the app, is published at their website14

(see Figure 5 for an example). To extract this information we developed a crawler
based on the crawler4j library15 and parsed the HTML obtained. In addition
to the Android permissions (152 in total) mentioned earlier, this dataset includes
custom permissions (e.g., permission to access Facebook data) which are created
by apps and used to restrict access to app data from other apps.

Linking Mobipedia with other Knowledge Bases. One of the requirements of
Linked Data is to interlink the different knowledge bases available16. Based on
this, we have interlinked Mobipedia with DBpedia [2], which is the nucleus of
the Linked Data cloud. To achieve this, we executed queries against the DB-
pedia SPARQL endpoint to obtain entities which are already in Mobipedia.
We analyzed the DBpedia category hierarchy and found two categories related
to mobile apps. In this way, we obtained instances of the DBpedia categories
Android (operating system) software and Mobile software, 409 and 221, respec-
tively. After filtering for duplicates, we checked the names of the 600 remaining
DBpedia entities against entities in Mobipedia and linked them by using the
owl:sameAs property (for each entity we automatically obtained a list of possi-
ble links based on the name and manually selected the most appropriate ones).

14 http://privacygrade.org
15 https://github.com/yasserg/crawler4j
16 http://www.w3.org/DesignIssues/LinkedData.html

20

2.3 Accessing Mobipedia

Access to Mobipedia is royalty-free under the terms of GNU free documentation
license. Similarly to DBpedia [2], we provide three mechanism of accessing the
Mobipedia dataset:

Linked Data. It uses HTTP protocol to retrieve entity information which con-
tains all the triples associated with the entity. This can be accessed using web
browsers, Semantic Web browsers, and crawlers. We generated the Linked Data
interface for the SPARQL endpoint by using the Pubby project17. Pubby is a
Java web application which translates URIs which are not dereferenceable to
dereferenceable URIs by connecting to the SPARQL endpoint. For example,
Figure 6 shows the web page created by Pubby for one of the entities in the
Mobipedia KB (an app called “Xmas 3D Live Wallpapers Free”18).

Fig. 6. Linked Data interface of Mobipedia as seen in a web browser.

SPARQL Endpoint. We have also setup a SPARQL endpoint at http://mobipedia.
link/sparql which can be used for querying the Mobipedia dataset. This end-
point is hosted using open source edition of Virtuoso server19.

17 http://wifo5-03.informatik.uni-mannheim.de/pubby
18 http://mobipedia.link:8080/ontology/xmas.tree.livewallpaper.free
19 https://github.com/openlink/virtuoso-opensource

21

RDF Dumps. Larger versions of the Mobipedia dataset in the form of serialized
triples can be downloaded from the Mobipedia website as well. These dumps can
be used as annotated datasets in research or for the purpose of running various
analyses locally.

3 Mobipedia Application Usecases

In this section we present some of the applications that can benefit from Mobi-
pedia’s data and its standard format for representing it. As Mobipedia provides
an easy access point for various app data, it could be useful for facilitating app
development as well as mobile computing research.

3.1 For Application Development

As today’s app stores are densely populated its not an easy task for either users
to find the right app or the developers to compare their app with what’s out
there already. We propose different applications to tackle this problem.

Semantic Search. With Linked Data in Mobipedia, it is possible to perform a
semantic search making it easier to find the right set of apps. In the case of users,
currently they are limited to keyword search in order to find the application they
are looking for. This makes it difficult to find applications for a unique set of
users (e.g., superhero games with parental control) or applications with special
features (e.g., todo list with location reminder) or an application which does
not collect unnecessary user data (e.g., the flash light app requesting the less
number of permissions). Developers have only the category information provided
by app stores to discover apps which are similar to theirs and. They have to
rely on external agencies or organizations (e.g., 42matters20) to have detailed
information about app markets. A semantic search engine for apps could be
developed, for example as a website, translating the user/developer queries to
SPARQL and executing them against the Mobipedia endpoint. For example,
Figure 7 shows the SPARQL query needed to extract the list of flash light apps
and the number of permissions they request.

App Recommendation. Mobipedia can also facilitate development of an app
recommendation system. By using simple distance measures and user history of
apps installed and rating, an app recommender could suggest which one of the
app should be installed for a particular requirement based on comparison with
apps with similar properties in Mobipedia. Also the user context could be used
to infer apps that might be interesting for her. For example, a user visiting a new
country could be presented with tourist apps for such a place. For that, it would
be possible to develop a semantic mobile app which uses a reasoner locally on
the device [10], an ontology defining the user context, and Mobipedia.

20 https://42matters.com/api

22

PREFIX mobipedia: <http://mobipedia.link/ontology/>

SELECT DISTINCT ?App, (COUNT (?permission) AS ?numPerm)
WHERE {

?App mobipedia:description_html ?Desc.
FILTER(contains(?Desc,"flashlight")).
?App mobipedia:hasVersion ?Vers.
?Vers mobipedia:hasPermission ?permission

}
GROUP BY ?App
ORDER BY ASC(?numPerm)

Fig. 7. An example of SPARQL query to return the list of flashlight apps and their
number of permissions requested.

Permission Suggestion. Similar to the app recommender, we can also develop a
permission chooser which helps developers to make an informed decision about
the permissions to be used in the app so that it would be compliant with reg-
ulations and user expectations. While building an app, a developer can verify
what permissions and external libraries data are typically used by other apps
in the similar category by using Mobipedia and make an informed decision on
what permissions/data to ask from the user. We hope that this would result in
evolution of a privacy guideline for developing apps of different categories and
not adhering to it would mean that app would be ranked lower in the suggestions
given by the previously mentioned app recommender.

3.2 For Research

Data from apps would be useful in many domains of mobile computing research
for privacy studies, application recommendation, and various statistical analyses.
For this purpose, researchers would have to comb through websites and papers
to find out datasets (if publicly available) and develop tools for data transforma-
tion. With Mobipedia, researchers can focus on building their system without
worrying about accessing data from different sources as well as linking them to
real world entities. Similar to DBpedia Query builder, we intend to provide var-
ious such examples of ready-made SPARQL query snippets for accessing various
kinds of information from Mobipedia in the form of a query builder. It will also
consist of queries written by Semantic Web researchers thus making it easier
for developers to find information inside Mobipedia without the prerequisite of
learning SPARQL.

Linking application user experiences. The information of user experiences while
using an application is fragmented across various sources such as app ratings,
reviews, blog articles, forums and so on. We intend to develop a mobile app
library which developers could embed in their applications for capturing various
user experiences in a systematic manner. These user experiences data can be
pushed to Mobipedia and linked to app information which we already have in

23

the KB and further the relevance of recommendations possible in the sample
applications given above.

Mining app reviews. In app stores, the user feedback is captured using reviews
which can help developers to improve user satisfaction. Previous work [3] has
been done in mining these reviews and visualizing them. By adding more classes
to Mobipedia, we can directly link the concepts from app reviews to apps itself
thus capturing the user sentiment in the knowledge base.

Policy Representation. Semantic Web technologies have been used significantly
in context-aware systems for security purposes [8]. Rule languages such as Se-
mantic Web Rule Language (SWRL) has been used to represent policies which
capture user preferences on sensitive data access to context-aware services or
apps. The Mobipedia ontology can be used to represent concepts related to
apps. Also, researchers can leverage various meta-data (e.g., privacy grade, de-
veloper rating, permissions requested, etc.) about apps in the KB to augment
their context-aware policies.

4 Discussion and Next Steps

Mobipedia is an effort to store information related to mobile apps from mul-
tiple sources and present it in a structured format accessible by humans and
machines. In the current version of Mobipedia we focused on Android apps and
incorporated three important data sources which contain information for more
than 1 million apps: PlayDrone, PrivacyGrade, and the Android permissions
website. We enabled three mechanisms to access the information in Mobipedia:
Linked Data interface, SPARQL endpoint, and RDF dumps. Therefore, users
can access Mobipedia from web browsers, query interfaces, or their own applica-
tions. We also interlinked the KB with DBpedia to fulfill the good practices for
publishing Linked Data21. This allows users to access information about apps
which is not available in DBpedia (e.g., Android permissions requested by an
app). Finally, we have shown several applications that can benefit from using the
content in Mobipedia and the standard representation format used (RDF). Until
now, developing such applications would require an effort to find and integrate
the information which is split in different sources and published with different
formats. Some of the applications are mobile semantic apps which would benefit
from accessing the knowledge in the Mobipedia KB locally.

Mobipedia is an evolving project due to the dynamic nature of mobile apps:
New apps or versions of existing apps are published every day. The next steps of
the project involve the integration of other published data sets such as the An-
droid Malware Genome Project [11], which contains information about malware
apps in the Android Play store, and the BlueSeal project [5], which analyzed
the flow of malicious apps. Second, we want to incorporate data from other app
stores such as the Amazon.com or GetJar and possibly app stores with different

21 http://www.w3.org/TR/ld-bp

24

permission model such as Apple App store. We are also hoping over time we
would be able to incorporate apps portals in other languages (e.g., Baidu store,
Tencent App Gem in China) as well. Currently contributions to Mobipedia can
be only approved by the developers. However, to tackle ever growing app stores
community participation would be essential. We are hoping to open for commu-
nity contributions. For this to be a reality, we need to develop mechanisms to
vet the quality of information submitted as well as make it easy to contribute
without relying on users knowledge of RDF and SPARQL.

Acknowledgments. This research work has been supported by RADICLE
project CNS-1059436, CNS-1212943, CNS-1118127 and CNS-1450768, CICYT
project TIN2013-46238-C4-4-R and DGA FSE, U.S. National Science Founda-
tion awards 0910838 and 1228198.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Semantic Ser-
vices, Interoperability and Web Applications: Emerging Concepts pp. 205–227
(2009)

2. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia - a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(3), 154–165 (2009)

3. Chen, N., Lin, J., Hoi, S.C.H., Xiao, X., Zhang, B.: Ar-miner: Mining informa-
tive reviews for developers from mobile app marketplace. In: 36th International
Conference on Software Engineering (ICSE). pp. 767–778 (2014)

4. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL on-
tologies with Graffoo. In: 11th Extended Semantic Web Conference (ESWC). pp.
320–325 (2014)

5. Holavanalli, S., Manuel, D., Nanjundaswamy, V., Rosenberg, B., Shen, F., Ko, S.,
Ziarek, L.: Flow permissions for Android. In: 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE). pp. 652–657 (2013)

6. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies.
Semantic Web 2(1), 11–21 (2011)

7. Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy pref-
erences: Restoring usability in a sea of permission settings. In: Symposium On
Usable Privacy and Security (SOUPS). pp. 199–212 (2014)

8. Truong, H.L., Dustdar, S.: A survey on context-aware web service systems. Inter-
national Journal of Web Information Systems 5(1), 5–31 (2009)

9. Viennot, N., Garcia, E., Nieh, J.: A measurement study of Google Play. In: The
2014 ACM International Conference on Measurement and Modeling of Computer
Systems. pp. 221–233. SIGMETRICS (2014)

10. Yus, R., Bobed, C., Esteban, G., Bobillo, F., Mena, E.: Android goes semantic:
DL reasoners on smartphones. In: 2nd International Workshop on OWL Reasoner
Evaluation (ORE). pp. 46–52 (2013)

11. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy. pp. 95–109 (2012)

25

Challenges for Semantic Technologies in
Distributed Mobile Environments

Evan W. Patton1 and Alexander Borgida2

1 Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY USA
2 Dept. of Computer Science, Rutgers University, Piscataway, NJ USA

Abstract. We present a scenario for a mobile wine recommendation
agent where semantic technologies can provide value to end users. The
wine recommender uses an ontology in the SHOIN (d) description logic,
and is extended to consider energy consumption of the device, intensional
social contexts, and reasoning in a privacy-aware manner. We discuss
the challenges semantic technologies, especially ones based on Descrip-
tion Logics, face in this scenario and formulate key issues for the mobile
semantic technology community to address.

Keywords: reasoning, mobile, resource constraints, distributed, descrip-
tion logics

1 Introduction

Recent work has demonstrated the feasibility of reasoning on mobile phones
[12,13], but resource constraints lead to poor performance of description logics
(DLs). Due to space constraints, we will focus discussion on the profiles of OWL
2 (i.e., EL, QL, and RL) rather than RDF(S), and consider mostly conjunctive
query answering rather than standard reasoning such as subsumption, given that
many mobile applications are data/instance oriented. Specifically, we present a
scenario of a mobile wine recommender system based on the SHOIN (d) descrip-
tion logic. We highlight some challenges presented when combining traditional
description logics with social structures and distribution in resource constrained
devices.

2 Contextual peer reasoning in a Recommender System

Consider a mobile wine agent (e.g., [7]), which is a semantic recommendation
engine. The user enters a restaurant as part of a group, and the agent, run-
ning on the phone of the user, is tasked with recommending wines to go with
the meal(s) chosen by the group. The agent uses its GPS together with search
engines to identify the restaurant and retrieve its menu and wine list. In addi-
tion, it obtains other information about the restaurant from social media (e.g.,
reviews). The agent has access to a global knowledge base of foods and wines
in an expressive DL (e.g., SHOIN (d)), with recommended pairings. The agent

26

also has access to a personal knowledge base consisting of the likes/dislikes and
past experiences of the specific user. This personal knowledge base also contains
private information concerning the health status of the user, which could affect
the choice of wines. Note that it is not necessary for the recommender agent to
return all possible wine pairings for the desired food, or even the best one; a wine
that is available locally is sufficient. Due to the use of description logics, which
can describe concepts intensionally not just extensionally (i.e., by enumeration),
it is possible for the agent to return an answer that describes appropriate wines,
such as “a light red wine from Spain,” which could be communicated to the
waiter or sommelier in the absence of machine-readable wine descriptions or in
case no instances on the wine list match the given class expression. Intensional
information also allows the agent to be told via DLs things about the group, like
the fact that they are celebrating someone’s birthday (the identity of the person
need not be known), or an important visitor/superior is present, in which case
the user’s personal preferences should be discounted. The incomplete informa-
tion that can be modeled by DLs is useful, for example, if the GPS information
is not sufficient to identify just one restaurant (GPS resolution is insufficient in
case the restaurants are located above one another or in dense urban areas with
limited access to open sky). Note therefore that recommendation is very contex-
tual (based on both the location and the group eating together). Throughout,
the system will need to balance the benefit of generating recommendations with
the amount of energy used to do so.

3 Discussion

First, let us observe some of the key features of this recommender system:

1. The recommender need not give the best answer, nor must it give complete
answers as patrons cannot try every wine/food pairing combination.

2. Recommendation context comes by both intensional and extensional means.
For example, GPS or other geolocation techniques can extensionally describe
user location. Individuals attending the meal can be described by concept
expressions, e.g. ∃hasAttendee.(clientOf.{user1}).

3. Private data may not be transmittable due to non-technological (e.g., legal)
reasons. For example, health data (e.g., allergies) used to make a recommen-
dation cannot be transmitted under the HIPAA law in the United States.
This information can only be used in a distributed inference scenario.

4. The agent’s distributed query answering can exploit advances in both dis-
tributed/mobile databases as well as techniques from federated SPARQL.
Further, using information about classes and role hierarchies, as well as least
common subsumers in DL, we could gain further knowledge about which
nodes are likely to have information relevant to answering a query.

5. Personal knowledge bases at each node evolve to be “egocentric” as the user
makes their preferences known. This provides an inherent locality that can
be exploited (e.g., user 2’s device does not know user 1’s preferences, so there
is little need to query user 2’s knowledge base vis-à-vis user 1).

27

6. Since queries can be answered in an intensional manner (i.e., by class expres-
sions) under open world semantics, answers are not restricted to concrete
instances and thus allow for more flexibility in query answering compared
with closed world approaches such as mobile databases.

We now briefly discuss some challenges related to the aforementioned features
and highlight some related work for the interested reader.

Challenge 1: Pervasive energy awareness. Due to significant resource require-
ments, mobile semantic technologies will need to be aware of available space and
energy for computation and communication. Predictive models of energy use
will enhance query cost estimation and planning. Intelligent migration of com-
putation will also be useful for balancing computation with user requirements to
maintain privacy or reserve sufficient energy in case of emergencies. Early work
has been done by [8,11] to measure power consumed by semantic technologies
but this area is still underexplored.

Challenge 2: Query, data, and knowledge migration. During query evaluation
the engine may generate one or more states relevant to other nodes. [5] explores
using ontology metrics to select an appropriate reasoner at runtime to minimize
T-box classification time. If the cost (e.g., time, energy) of computing these
states is greater than the cost to transmit, sharing them with other nodes could
save resources. Another case for migration is when the device is at a point
where computing a solution will require more than its available energy, but
sending a portion of its T-box or A-box (e.g., sending most specific concepts [1]
or summarizing [2,3]) might allow other nodes to answer sufficiently well. Energy
limits and privacy constraints may be defined by the user (e.g., always ensure
that I have at least 30 minutes of battery life left). [9] gives a sound algorithm
for query answering in an EL KB with secrecy.

Challenge 3: Query, data, and knowledge partitioning. In a highly distributed
world, partitioning semantic queries so that nodes only receive portions appropri-
ate to the local knowledge base, especially under security and privacy constraints,
will be challenging. Traditional approaches have included publishing link-sets be-
tween nodes or making statistics about the underlying RDF data available as a
part of a SPARQL service description [4]. However, publishing such information
may expose users to data-harvesting by malicious agents. Knowledge and data
may be naturally partitioned/modularized based on mobile application design,
such as wine preferences for a user stored on a device versus living in the cloud.
What are alternate techniques for planning semantic queries over partitioned
knowledge bases and can we take advantage of the semantics with respect to the
advances made by the mobile database community?

Challenge 4: Knowledge summarization and compression. Sharing knowledge in
a mobile environment costs time and energy, especially if network coverage is

28

spotty or a high speed, low power network such as WiFi is unavailable. Mini-
mizing the energy required to share knowledge between nodes will improve our
ability to parallelize inferences and reach consensus across many nodes.

Challenge 5: Optimizing tableaux concurrency as nodes enter/exit the network.
Techniques to parallelize tableaux reasoning include having different nodes clas-
sify different concepts or explore non-deterministic choices introduced by dis-
junction and maximum cardinality constructs in parallel.

Challenge 6: Reasoning in the face of contradictory information in a dynamic
network. Paraconsistent logics provide alternatives to the traditional description
logics used in the semantic web. Due to their ability to avoid deducing everything
in the presence of contradictory information, they are useful for reasoning over
large datasets curated by large groups (e.g., crowdsourced data about disasters
[6]) starting from different base assumptions about the world. In our mobile
scenarios, clearly different people may have different preferences – something
that would have to be modeled in a careful manner, possible using beliefs.

Challenge 7: Resolving updates that are locally consistent but globally inconsis-
tent. In a similar vein to challenge 6, updates consistent at a mobile node may
not be globally consistent considering all nodes. While this is not specifically
a challenge to mobile deployments of semantic technologies per se, one must
consider the cost of performing this task from an energy perspective.

Challenge 8: Anytime/approximate reasoning for low energy. Another approach
to limited energy resources is heuristics. If we can predict that an operation
is going to require too much energy to compute (but not too much energy to
communicate), the node could ask a peer to perform the calculation on its behalf.
Approximate reasoning through less expressive DL reasoners will also increase
throughput on mobile platforms when complete answers are not required.

Challenge 9: Dynamic cost functions based on context changes. Intensional de-
scriptions of context brought by knowledge representation techniques may help
reduce costs. For example, rather than having to have a user identify all of their
clients, once could use class expressions to infer them. This can reduce the cost
to transmit and store this information where memory and communication costs
are at a premium. If we extend this further to location-based context, the sav-
ings of not enabling the GPS or WiFi to obtain user location data will improve
battery duration over the course of the user’s day.

Challenge 10: Data Replication/Caching. As we have already mentioned, caching
is an important technique in linked data. [14] provides a model of data replication
of a knowledge base using contextual information. However, such approaches
often do not include a cost model with respect to the device’s energy reservoir.
It is possible that a sufficiently large enough cache would require so much energy
to download, that not enough energy would remain to use it effectively.

29

Table 1. Feature summary of mobile, distributed knowledge bases and the challenges
they present to reasoner designers, knowledge engineers, and application developers.

Feature Challenges

Security & Privacy • Preserving user privacy when performing dis-
tributed reasoning and query answering [9]
• Sharing generalized class expressions to hide user
preferences

Query processing & planning • Exploit class expressions, relations to determine rel-
evant endpoints

Distributed inference • Limited resources prevent “pulling all data” for in-
ferences

Preserving/forgetting history • Context changes may require frequent truth main-
tenance; how much can be deferred?

Unreliable connections • Truth maintenance when a node leaves the network

Summarization • Reduce T-box or A-box size for limited re-
sources [1,2,3]
• Cost to summarize versus compress and transmit
knowledge base elsewhere

Energy-awareness • Different reasoning techniques result in different
rates of energy consumption [8,11]
• Cost to transmit portions of the T-box, A-box

Concurrency • Reuse of partial models when answering multiple
queries simultaneously

Replication • Intermediate joins to reduce redundancy [10]
• Semantics-driven data replication and caching [14]

Updates • Simultaneous updates on devices may be locally
consistent, but not globally consistent

4 Summary

Table 1 presents a summary of different capabilities mobile knowledge base sys-
tems might include for various application domains. We encourage the com-
munity to look at these challenges through the lens of four different resources:
1) Memory, which can be reused if free, otherwise it is limited by the amount
of heap provided by the operating system; 2) Time, which can be reduced by
parallelization locally (multicore) or remotely (radio); 3) Energy, which is mono-
tonically decreasing until user connects phone to a power source; and 4) User
Attention, whereby if the application is unresponsive for a period of time the
user will lose interest.

This leads us to a number of open questions that may be of interest to the
research community. What are techniques for efficiently migrating data to one
or more nodes in the event the current node is going to run out of energy?
How can we partition queries for distributed evaluation when reasoning over

30

private information? How can semantic descriptions be used to improve caching
techniques between nodes? Can we use knowledge in addition to statistics to
better partition data and query parts than has been accomplished in the mobile
database community?

References

1. Baader, F.: Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In: Proc. 18th IJCAI.
pp. 319–324. Morgan Kaufmann Publishers Inc. (2003)

2. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In:
Proc. 22nd AAAI Conf. vol. 7, pp. 299–304 (2007)

3. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The summary
abox: Cutting ontologies down to size. In: Proc. 5th Int. Semantic Web Conf., pp.
343–356. Springer (2006)

4. Görlitz, O., Staab, S.: Splendid: Sparql endpoint federation exploiting void descrip-
tions. COLD 782 (2011)

5. Kang, Y.B., Krishnaswamy, S., Li, Y.F.: A meta-reasoner to rule them all. In:
Proc. 23rd Int. Conf. on Information and Knowledge Management. pp. 1935–1938.
ACM, New York, NY, USA (2014)

6. Li, W., Adebayo, J., Shih, F., Kagal, L.: The role of mobile technologies in hu-
manitarian relief. In: Proc. 12th Int. Conf. on Inf. Syst. for Crisis Response and
Management (2015)

7. Patton, E.W., McGuinness, D.L.: The mobile wine agent: Pairing wine with the
social semantic web. In: Proc. 2nd SDOW Workshop (2009)

8. Patton, E.W., McGuinness, D.L.: A power consumption benchmark for reasoners
on mobile devices. In: Proc. 13th Int. Semantic Web Conf. (2014)

9. Tao, J., Slutzki, G., Honavar, V.: Secrecy-preserving query answering for instance
checking in EL. Tech. rep., Iowa State University (2010)

10. Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: Webpie: A web-
scale parallel inference engine using mapreduce. J. Web Semantics 10, 59–75 (2012)

11. Valincius, E., Nguyen, H., Pan, J.Z.: A power consumption benchmark framework
for ontology reasoning on android devices. In: Proc. 4th ORE (2015)

12. Van Woensel, W., Haider, N.A., Ahmad, A., Abidi, S.S.R.: A cross-platform bench-
mark framework for mobile semantic web reasoning engines. In: Proc. 13th Int.
Semantic Web Conf. pp. 389–408 (2014)

13. Yus, R., Bobillo, F., Bobed, C., Mena, E.: The OWL reasoner evaluation goes
mobile. In: Proc. 4th ORE (2015)

14. Zander, S., Schandl, B.: Context-driven rdf data replication on mobile devices.
Semantic Web Journal Special Issue on Real-time and Ubiquitous Social Semantics
3(2), 131–155 (2012)

31

Automating the Collection of Semantic Sensor
Network Metadata in the Field with Mobile

Applications

Laura Kinkead1, Paulo Pinheiro1, Deborah L. McGuinness1

Rensselaer Polytechnic Institute, Troy NY 12180, USA

Abstract. In the past few decades, the field of ecology has grown from a
collection of disparate researchers who collected data on their local phe-
nomenon by hand, to large ecosystems-oriented projects partially fueled
by automated sensor networks and a diversity of models and experiments.
These modern projects rely on sharing and integrating data to answer
questions of increasing scale and complexity. Interpreting and sharing the
big data sets generated by these projects relies on information about how
the data was collected and what the data is about, typically stored as
metadata. Metadata ensures that the data can be interpreted and shared
accurately and efficiently. Traditional paper-based metadata collection
methods are slow, error-prone, and non-standardized, making data shar-
ing difficult and inefficient. Semantic technologies offer opportunities for
better data management in ecology, but also may pose a challenging
learning curve to already busy researchers. This paper presents a mo-
bile application for recording semantic metadata about sensor network
deployments and experimental settings in real time, in the field, and
without expecting prior knowledge of semantics from the users. This
application enables more efficient and less error-prone in-situ metadata
collection, and generates structured and shareable metadata.

1 Introduction

Over the past few decades, the field of ecology has expanded immensely in scope.
The field now tackles scientific questions that address wide ranges of complex-
ity, scale, and time spans [12], [14]. Some of these questions are tackled by large
project groups, and others are answered by combining data sources from multiple
disparate projects. Despite the essential need for combining data from multiple
heterogeneous sources, it is evident that there is no systematic approach for
ecologists to share data and data workflows that takes into consideration the
ecologist’s in-situ knowledge about observations and experiments. More specif-
ically, for projects utilizing sensor networks, there is no systematic approach
to capture the ecologist’s in-situ knowledge about sensor deployments and con-
figurations such that the knowledge can inform data analysis and management
decisions. The lack of contextual knowledge about in-situ scientific activities af-
fects the way data should be further interpreted and analyzed. For example,
the data generated by an improperly calibrated instrument or an instrument

32

not correctly placed on its platform should not be used in rigorous statistical
analysis. Similarly, configuration settings of sensor network equipment may be
changed in the field, which affects the resulting data product and the manner in
which it should be analyzed.

We introduce a semantic approach to mediate data usage and sharing by en-
coding the knowledge about the sensor network that generated the data. In par-
ticular, we encode knowledge about the deployments of platforms, instruments,
and detectors in support of the data products they generate. With this kind of
knowledge, ecologists can better understand the context of their data collection.
This information allows scientists unfamiliar with the original collection to make
appropriate use of the data [12]. Thus, the availability of semantic annotations
encoded as metadata increases the length of time that a data product is useful,
as the data no longer relies on the presence of the people who were involved in
the data collection process to explain how the data came to be. Whereas a file
without metadata may become useless once its originator changes jobs or forgets
some details, a file with metadata may be useful for many decades [12], [5]. Ex-
tending the longevity of data is especially important as ecological projects look
to answer questions spanning long periods of time. In addition, metadata allows
a data product to be used in the future to answer unanticipated questions [11].
In this paper, we describe a semantic technology-based mobile application that
enables on-site capture of metadata in real time. By embedding the metadata
capture system in a mobile device, much of the metadata capture can be com-
pleted automatically. The application uses a QR code-based sensor identification
system, which automates the identification of sensor equipment and minimizes
errors in data entry.

Our work overcomes three major challenges. First, our framework is a solution
for overcoming the barrier of entry to semantic technologies for field scientists.
This tool makes the collection of standardized and machine readable metadata
efficient for the practicing scientist, thus enabling the practicing scientist to
benefit from the advantages of semantic technologies without having any prior
knowledge of the technology. Second, it describes and implements a framework
for a method of using semantic technologies on a mobile platform to record data
in real time in the field. This framework makes metadata capture more efficient
and less error-prone compared to traditional recording methods. In addition,
this method description and implementation has the potential to be broadly
reused by a wide range of observational efforts. Finally, this application addresses
context-specific challenges to make it more likely for valuable in-situ knowledge
to be captured.

2 Challenges of Collecting In-Situ Contextual Knowledge

2.1 Challenges in Collecting Contextual Knowledge

The onset of automation in ecological data collection means that metadata about
in-situ contextual knowledge, including the knowledge about the sensor network
collecting the ecological data, is more important than ever before. A scientist

33

needs metadata not only for remembering how to use a data set that was col-
lected years ago, but also for simply understanding how to use the data that
was collected by an autonomous sensor earlier the same day. Automated sensor
equipment collects data at an unprecedented rate, and it is necessary to have a
well-structured system for capturing all of the contextual knowledge surrounding
each data collection activity so that the data can be accurately used. Metadata
is also critical for sharing data sets between research groups who are unfamil-
iar with the details of each others’ work. For these reasons, metadata is widely
recognized as a critical component to ecological data management [12], [5], [11].

Semantic technologies can be and are being used to support improved knowl-
edge sharing: these technologies provide a standardized framework for storing
and sharing metadata, and they make data interpretation and use more efficient
[14]. However, creating semantic metadata is typically a slow and tedious pro-
cess for a human to do manually. Generating semantic data often requires much
technical knowledge, and the final product must be correct and complete if it
is to be used effectively by applications. While semantic technologies ease the
workload of the data consumer by improving integration and understandability,
they are often perceived as a burden by the data generator. These difficulties
present a large barrier to entry to many scientists, and many find that the chal-
lenges associated with adopting this new technology are not worth the benefits.
These problems present a very real barrier for semantic technology adoption in
non-computer science fields.

While very valuable, collecting well-structured and comprehensive contextual
metadata can be expensive. At one point in time, requiring a scientist to take
thirty minutes to create a thorough metadata document was thought to be worth
the future value of that document [5]. However, the onset of large, automated
data-collection systems that generate data sets by the minute renders such a
value judgment unreasonable; such a researcher would be overwhelmed by the
rate of data collected by the network [12].

2.2 The Additional Challenges of In-Situ Knowledge Collection

Much of the most valuable contextual knowledge needs to be collected in-situ:
while a field scientist is actively collecting samples or making changes to au-
tomated equipment. Contextual knowledge such as the GPS points at which
a sample was collected, the serial number of instrument was used to collect a
sample, or what program was selected for an on-board computer is best written
down immediately to ensure the information is accurate and to ensure that the
knowledge is recorded at all.

Thus, while metadata recorded in the lab faces an efficiency problem at the
level of requiring time of a researcher who is sitting at his desk with competing
activities to do, collecting in-situ contextual knowledge has even more challenges.
The field is not an ideal place to record data: flat, dry surfaces are difficult to
come by, and a field scientist is often in a rush to complete a set of tasks not just
before lunch break, but before the sun goes down or before it rains. Traditionally,
field scientists have solved this problem by collecting metadata very quickly

34

with pen and paper, without always applying consistency or completeness to
the process. This strategy leads to situations such as the one experienced by
our group recently in which we received sixteen boxes of field notes containing
handwritten metadata for a thirty year observational study. In its handwritten
form, this data is challenging to utilize effectively. Thus, we need a compromise
between efficiency for the knowledge recorder and usability for the knowledge
receiver.

Fortunately, creating shareable, machine readable data is a forte of ma-
chines. The emergence of powerful yet affordable handheld devices, namely mo-
bile phones, presents an opportunity for more efficient and less error-prone data
collection in-situ. Such tools can validate input to ensure that metadata ad-
heres to the structure of selected metadata standards. In addition, rather than
recording one’s own metadata in the field on paper and then later trying to fit
that data into a standard (and perhaps losing information in the transition),
semantic tools help scientists collect the right information in real time and on
site. These software tools may also include error-checking mechanisms, such as
checking for out-of-bounds values, to ensure that collected metadata is sensible
and to highlight mistakes for immediate correction [6].

3 Ontology-driven Contextual Knowledge Capture

This work is performed in the context of the Jefferson Project, a collective effort
of Rensselaer Polytechnic Institute, IBM, and The FUND for Lake George. The
Jefferson Project studies Lake George in New York state as a model ecosystem
and aims to apply the findings to freshwater resource management worldwide
[10]. One component of the Jefferson Project is a large network of sensors sta-
tioned around the lake and its watershed. These sensors collect data on a variety
of attributes, such as the region’s weather, the lake’s chemistry and currents, and
even populations at the lowest levels of the food web. The state and arrange-
ment of these sensors will change many times over the course of the project:
instruments will need to be taken back to the lab for calibration, fixed when
malfunctioning, upgraded, or may be deployed elsewhere. Throughout all of this
activity, the metadata about the position of all of the sensor equipment will
need to be recorded so that the data sets the sensors generate can be correctly
interpreted. Therefore, we decided to focus our metadata capture application
on collecting metadata about sensor deployments because this metadata will be
collected many times over the course of the project, thus it will benefit greatly
from being automated.

3.1 The Human Aware Sensor Network Ontology

We use the Human Aware Sensor Network Ontology [13], or HASNetO, to encode
our metadata. By using a semantic approach, we make the interpretation of the
metadata less subject to misleading interpretations, and make it possible for ma-
chines to read and leverage the knowledge in the process of managing the data.

35

Fig. 1. The Human Aware Sensor Network Ontology (HASNetO) [13]

In related work, concepts from the Extensible Observation Ontology (OBOE)
[8], the PROV Ontology (PROV-O) [7], and the Virtual Solar Terrestrial Obser-
vatory Ontology (VSTO) [9] were leveraged to build the Human-Aware Sensor
Network Ontology, or HASNetO [13]. Notably, we did not incorporate the Se-
mantic Sensor Network Ontology (SSN) into HASNetO because although SSN
uses similar concepts, it is not suited to our work because is does not talk about
human agents and their involvement in the process of managing sensor net-
works. HASNetO groups sensor network equipment into three types: detectors,
instruments, and platforms. Detectors are the objects that do the sensing: they
convert the physical signals about the characteristic of interest into a (most often
electric) signal that can be read by a computer or human. Instruments are the
objects that support the detectors. They do not do any sensing themselves, but
they provide the framework in which the detector captures signals, and convert
the detector’s signal into a data point. A platform is the object that determines
the location of the instrument, whether it be the point of a stationary platform
or the path of a mobile one. A platform may also provide overhead services,
such as providing the instrument with power, a data connection, and protection
against natural and human hazards. In HASNetO, a deployment is composed of
one platform, one instrument, and one or more detectors. A deployment also has
a start time and an end time.

3.2 MOCCASN: Mobile Context Capture for Sensor Networks

Our solution for collecting in-situ contextual knowledge is MOCCASN, an An-
droid application. MOCCASN makes collecting metadata very quick, and it
does not require the scientist using the application to have any knowledge of
the underlying semantic technology. Using the phone’s camera, the MOCCASN
identifies sensor network objects via QR codes that are affixed to each object.
An object’s QR code contains the URI of the object’s instance of a HASNetO
concept. From the URI, one can retrieve instance properties such as the serial

36

Fig. 2. Constructing a new deployment and getting information about a deployment

number and type of sensing device. The scientist can use MOCCASN to scan
an object’s QR code and retrieve information about the object, to start a de-
ployment with the object, or to end the object’s current deployment. When
starting and ending deployments, MOCCASN uses the phone’s built-in GPS to
automatically assign latitude and longitude coordinates. Time and user log-in
information are automatically documented as well. All of this information is au-
tomatically recorded in accordance with the HASNetO ontology. The scientist is
guided through the process of creating and ending deployments via a dynamic
graphical user interface. MOCCASN accomplishes these tasks by communicating
with the online knowledge base through a cellular or wifi connection. When the
scientist does not have a data connection, records may be saved locally to the
phone for later submission. While in communication with the knowledge base,
MOCCASN initiates error checks on the scientist’s input based on the semantics
encoded in the ontology.

The GitHub page for MOCCASN may be found at [1], and a static demo
page at [3].

3.3 Software Development Tools

MOCCASN was developed with MIT App Inventor, on online tool with an in-
tuitive interface for developing Android applications quickly and easily [2]. MIT
App Inventor made it possible for MOCCASN to be developed in a matter of
weeks, and we believe that MIT App Inventor can be used to rapidly create sim-
ilar specialized applications to match the needs of a variety of observation-based
efforts.

37

4 Results

MOCCASN meets a number of requirements of in-situ metadata collection, in-
cluding deployment-specific requirements. First, deployments must be able to be
assembled in a piecemeal fashion. For example, the user may want to connect
the instrument-to-be-deployed with its associated detectors while still on shore,
and then connect the instrument on the platform at a later time. We use an
existing term in the OBOE ontology, “hasCode”, to “tag” partial deployments
in the knowledge base as “under construction”. With this method, a scientist
may connect an instrument and detector in the field and enter this partial de-
ployment in the knowledge base as a “deployment under construction”. When
that instrument is later brought into the field to be connected to a platform,
the tool automatically finds that the instrument is part of a “deployment under
construction”, and adds the platform to the same deployment. When the user
starts the deployment, the “under construction” tag is removed from the deploy-
ment. This method ensures that all of the application users and the knowledge
base always have the same information.

Second, a data or wifi connection cannot be relied upon. It is common for
field sites to be located in areas with no data connection. Therefore, all data
must be recorded in a sensible fashion even when the scientist is unable to
connect to the knowledge base. MOCCASN meets this requirement by offering a
“Save Deployment Data” button, which copies the recorded information to local
storage, such as the scanned URIs, the username, and the time. The scientist can
view this saved information in the “View Un-Submitted Records” screen, and
the scientist may re-submit any of these records when he or she returns to cell
service by clicking on the record and clicking “Re-Submit”. Upon resubmission,
the application will initiate all necessary error-checking routines and attempt to
write the data to the knowledge base.

Reasoning in support of error checking is performed when annotated data ar-
rives in the data repository. Reasoning capabilities are limited on the device itself
as much of the error checking involves comparing the scanned information against
information currently in the data repository. Therefore, when MOCCASN does
not have a connection to the knowledge base, the application cannot execute
error-checking on the recorded information in real time. Thus, it is possible that
locally stored information may contain information that is inconsistent with the
information in the knowledge base. These inconsistencies may only be identified
when a data connection is regained, and will prevent the data record from being
submitted. However, this information is likely still valuable even though it is not
completely valid; portions of the data record are likely accurate. To make use of
this partially correct information, the scientist is offered the option of emailing
the record so that the data record can be corrected and entered manually. This
feature ensures that no data that was collected in the field is ever lost.

In addition, by allowing the user to save deployment information, the appli-
cation is more robust to errors caused by the knowledge base becoming out-of-
sync with the true state of the sensor network. For example, consider a situation
where a user attempts to end the deployment of an object, but upon scanning

38

the object, the application finds that the object is not currently deployed. This
may happen because the scientist who set up the deployment forgot to click the
“Start Deployment” button. The current scientist is correct to want to enter the
deployment end time information, but the application will not let the scientist
do so due to inconsistent information in the knowledge base. The missing de-
ployment start information must be entered into the knowledge base by hand
before the app will enter the deployment end information. To accommodate this
type of situation, the user may save the end deployment information locally, and
re-submit it once the error has been solved manually.

We now introduce a number of use cases for the ways in which MOCASSN
has been used to read and write metadata while in the field.

4.1 Use Case: Constructing a Deployment

To construct a deployment, the scientist scans two directly sensor objects that
are to be directly attached to each other. For example, a scientist may scan an
instrument and one of its detectors, or a platform and its instrument. Every time
the scientist scans an object, the application queries the knowledge base to check
that the object is in the knowledge base, that it is either a type of instrument,
detector, or platform, and that it is not currently deployed (an object must be
un-deployed before it may be re-deployed). When a pair of objects is scanned,
the application queries to check that the types of the two objects are compatible
(an instrument must have a parent of type platform, and an detector must have
a parent of type instrument). It also checks that either one of the objects or
neither of the objects is part of a deployment under construction.

According to HASNetO, a deployment is comprised of one platform, one
instrument, one or more detectors, a start time, an end time, a location, and
the deploying scientist. The platform, instrument, and detector objects of the
deployment are assembled in a piecemeal fashion. During the time when the
deployment is incomplete because all of the pieces of information have not yet
been submitted, the deployment is tagged with the code “under construction”
to denote that the deployment is not consistent with the HASNetO definition
of a deployment. After the remaining deployment information is recorded, the
scientist clicks “Start Deployment” to add the end time and remove the “under
construction” tag.

4.2 Use Case: Ending a Deployment

To end an ongoing deployment, the scientist scans any of the objects associated
with the deployment, and the application adds an end time to the deployment.
The application will not allow the scientists to end a deployment that is not
currently underway.

4.3 Use Case: Getting Information about a Sensor

The application may also be used to retrieve information about any piece of
sensor network equipment. For scientists with no prior knowledge of linked data

39

and the SPARQL language that is used to query linked data, this feature offers
a simple solution for viewing deployment data in the knowledge base in a very
readable format. This screen presents a number of details about the most recent
(or current) deployment of the scanned object. For example, this screen dis-
plays the deployment’s associated platform, instrument, and detectors, as well
as the characteristics that are detected. In addition, the screen will show the
deployment’s start and end times if applicable.

4.4 Reflections on Field Testing

MOCCASN was field tested with a Jefferson Project field scientist. This scientist
has been performing ecological research on Lake George for many years, and is
part of the team deploying Jefferson Project sensor network equipment. Testing
was performed with an HTC One M7 phone. After reviewing the structure of
the application, the scientist started and ended about a dozen deployments. A
few mistakes were made at first, such as forgetting to click “Start Deployment”
after connecting all pieces of the deployment, and not waiting for a confirmation
of data submission before moving on to make the next entry. These problems
could be mediated by explicitly warning the scientist of the incomplete data
entry when they attempt to move on too quickly. We estimate that it takes
about fifteen minutes to introduce how to use the application, and about an
hour of practice for the field scientist to get a good understanding of how to use
MOCCASN proficiently.

5 Discussion

MOCCASN addresses issues related to barriers to entry, automatic metadata
capture, and in-situ context capture. The application removes the barrier-to-
entry that researchers often face when presented with semantic technology so-
lutions. With this tool, a researcher can generate machine readable metadata
without any prior knowledge of semantics.

Historically, progress on improving the way we model metadata knowledge
has come at the cost of increased time spent capturing metadata and increasingly
advanced formats. For a long time, the extra time required of the data generator
to standardize data was well worth the extra effort because it enabled efficient
data sharing. However, with the onset of automated data collection, researchers
will simply be overwhelmed by the amount of metadata that needs to be gener-
ated. Our work developing MOCCASN counters the trend of increased capture
time for the sake of data usability, reducing a researcher’s metadata capture to
a few QR code scans.

MOCCASN enables in-situ capture of contextual knowledge that would be
lost otherwise. Researcher field time is incredibly valuable, and automated tools
enable field scientists to quickly record valuable knowledge that would otherwise
have been recorded on paper or not recorded at all in an easily usable and
shareable format.

40

By automating metadata generation, we make a number of other advances
in metadata capture. The application performs error-checking in real time by
communicating with the data repository to help prevent erroneous data from
being entered into the knowledge base. In addition, all metadata created with
this tool conform to a standard vocabulary and are immediately accessible by
anyone else on the team.

5.1 Value of Semantics

By automating the capture of contextual knowledge, we enable field scientists
with no technical knowledge of semantic technologies to benefit from the value of
semantic technologies. While the structure and capture of contextual knowledge
is often standardized within a lab, it is not common for such metadata to follow
broad community standards. This makes sharing datasets very difficult and time
consuming, as a human must interpret each dataset to determine its usability
and compatibility with other datasets. Semantic technologies turn the process
of integrating datasets into a machine’s task, which can be accomplished auto-
matically, consistently, and thoroughly via the semantic comparison of dataset’s
contextual knowledge. For instance, machines can verify whether the contents
of two datasets are semantically equivalent. Even if they are not equivalent, the
machine can identify if any contextual difference is significant enough to enable
or not the integration of the datasets.

A lab may feel confident in their current metadata practices for managing
hand-collected data. However, for projects involving automated sensor networks,
easily accessible and usable metadata is critical to harnessing the power of rapid
data collection. Semantic technologies provide a solution for this new era in
ecology because semantic metadata is structured and query-able, making it easy
to access and use for data management and analysis.

5.2 Share-ability and Re-usability

MIT App Inventor makes it easy to share projects and to allow others to down-
load the application to their phones. For those who wish to re-use this appli-
cation, the source code file is available to reopen in App Inventor, from which
point one can make changes to the interface and logic. Detailed instructions
about sharing App Inventor projects are available here [4].

Since this application is based on a public set of ontologies, it may easily be
re-used in projects that wish to use the same ontology to capture their deploy-
ment metadata. The application could be ready for a new use in just minutes
by simply changing the endpoint URLs to a new project’s knowledge base. Sim-
ilarly, it would be relatively easy to make extensions to the application for small
extensions required to the ontology. If a research team would like to collect meta-
data in a similar way, but with a different or modified ontology, it would still
be useful to use this application as a starting point. Many of the queries that
the app runs would likely need to be modified, but it may reduce development
turnaround time to start with this app as a framework.

41

Our team has already found the need to extend MOCCASN and found the
process to be very easy. While demonstrating MOCCASN to our field scientist
teammates, we discovered that MOCCASN would be more useful to them if it
collected information about samples in addition to information about deploy-
ments. After deciding on what terms from existing ontologies to use to represent
sample-based knowledge, MOCCASN was extended to capture metadata about
samples in just a few hours by adding “collect sample” and “analyze sample”
screens.

5.3 Future Work

After having completed initial testing with a small collection of field scientists
within our expanded team, we are beginning to deploy MOCCASN for real use
in the Jefferson Project. The app will be in use among field scientists as they
modify the arrangement of the equipment that autonomously monitors the lake,
as well as researchers collecting samples in the field.

In addition, though this work focused on capturing metadata related to de-
ployments, we plan to apply the same framework to rapidly develop additional
tools for capturing a wide range of metadata. For example, we plan to build a
similar tool to capture equipment calibration metadata in the lab, and for cap-
turing the way sensor’s configuration parameters are set. Both of these activities
will be performed routinely over the course of the Jefferson Project to main-
tain a well-functioning sensor network, and the calibration and configuration
parameters are important for accurately comparing and combining datasets. In
all sorts of human interventions, we are also planning to provide richer prove-
nance knowledge about how sensor calibrations, deployments and configurations
are decided.

More broadly, we think it would also be valuable to add to this tool the
ability to preview the deployed object’s data stream. It is not uncommon to
hear about a half of a day’s field work lost due to improperly set up equipment.
Since many sensor network instruments stream their data back to a central hub,
it should be possible for our tool, which is already connected to the knowledge
base, to show the user what the instrument is streaming. This would help the
researcher to correct mistakes quickly.

6 Conclusions

The advent of automation in data collection poses many opportunities for rev-
olutionizing data analysis in ecology. However, the large volume of datasets will
be difficult to use without improved metadata collection strategies. As more
diverse data is collected with the aim of integration and analysis, it becomes
more critical to thoroughly and accurately capture in-situ information concern-
ing dataset collection. Simultaneously, we do not want to overly burden field
researchers with inefficient or error-prone collection methods. We present a mo-
bile application for automating the collection of in-situ metadata in an efficient,
standardized, and error-free way.

42

7 Acknowledgements

We would like to thank Jeremy Farrell and Matt Schuler for their time beta test-
ing and reviewing the application from the point of view of a field scientist. We
also thank Katie Chastain for adopting this project after the primary developer
moves on. We would also like to thank the Jefferson Project Group at large for
their ongoing support and collaboration.

References

1. Github deployment metadata app, https://github.com/lokijuhy/Deployment-
Metadata-App

2. Mit app inventor, http://appinventor.mit.edu/ (Date last accessed: March 17,
2015).

3. Moccasn: A metadata collection app, http://tw.rpi.edu/web/project/JeffersonProj-
ectAtLakeGeorge/MetadataApp

4. Sharing and packaging apps, http://appinventor.mit.edu/explore/ai2/share.html
(Date last accessed: March 17, 2015)

5. Fegraus, E.H., Andelman, S., Jones, M.B., , Schildhauer, M.: Maximizing the value
of ecological data with structured metadata: An introduction to ecological meta-
data language (eml) and principles for metadata creation. Bulletin of the Ecological
Soc. of America 86(3), 158–168 (July 2005)

6. Jones, C., Blanchette, C., Brooke, M., Harris, J., Jones, M., Schildhauer, M.: A
metadata-driven framework for generating field data entry interfaces in ecology.
Ecological Informatics 2(3), 270–278 (2007)

7. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar, D.,
Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: Prov-o: The prov ontology.
W3C Recommendation (April 2013), http://www.w3.org/TR/prov-o/ (Date last
accessed: March 18, 2005).

8. Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An
ontology for describing and synthesizing ecological observation data. Ecological
Informatics 2(3), 279–296 (Oct 2007)

9. McGuinness, D., Fox, P., Middleton, D., Garcia, J., Cinquni, L., West, P., Darnell,
J., Benedict, J.: Solar-terrestrial ontology develop. In: AGU Fall Meeting Abstracts.
vol. 1, p. 0324 (2005)

10. McGuinness, D.L., Pinheiro, P., Patton, E.W., Chastain, K.: In21b-3712 semantic
escience for ecosystem understanding and monitoring: The jefferson project case
study. In: Proceedings of AGU Fall Meeting 2014 (December 15-19 2014, Moscone
Center, San Francisco, CA, US) (2014)

11. Michener, W.K.: Meta-inform. concepts for ecological data manage. Ecological In-
formatics 1(1), 3–7 (Jan 2006)

12. Michener, W.K., Brunt, J.W., Helly, J.J., Kirchner, T.B., Stafford, S.G.: Non-
geospatial metadata for the ecological sciences. Ecological Applicat. 7(1), 330–342
(Feb 1997)

13. Pinheiro, P., McGuinness, D.L.: Provenance-enabled integration of sensor network
data. In: AGU Fall Meeting 2014. San Francisco, CA, US (Dec 2014)

14. Reichman, O.J., Jones, M.B., Schildhauer, M.P.: Challenges and opportunities of
open data in ecology. Sci. 331, 703–705 (2011)

43

Linked Data and Mobile Application Privacy

Evan W. Patton1 and Ilaria Liccardi2,3

1 Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY USA
2 Oxford e-Research Centre, University of Oxford, Oxford, UK

3 MIT CSAIL, Cambridge, MA USA

Abstract. The smartphone applications ecosystem lacks significant con-
trols and accountability mechanisms to protect users’ privacy from snoop-
ing applications, especially when context may significantly impact the
decision to share sensitive information. In this paper, we discuss some
of the existing privacy concerns of mobile applications. In particular we
highlight how semantic web and linked data technologies have the po-
tential to help improve privacy controls through rules, queries, and rea-
soning. These technologies have the potential to obtain and maintain the
integrity of private data, but there are privacy challenges that may result
from widespread deployment of mobile semantic technologies.

Keywords: privacy, mobile applications, linked data, accountability

1 Introduction

Mobile devices are a ubiquitous part of modern life, with over 2 billion estimated
cellular connections in the world today [6]. The market for mobile applications,
or ‘apps’, is significant. The increase in the number of apps has been accompa-
nied by an increase in the amount of tracking and other forms of data collection
on users, primarily for the purpose of generating advertising revenue to sup-
port application developers. A recent report by the United States Federal Trade
Commission [4] shows that users are not always aware of the amount nor the
extent to which companies track their behavior. We propose that Resource De-
scription Framework (RDF) based technologies, such as rule engines, ontologies,
and reasoners, can be used to assist mobile users in preserving their privacy by
constructing a more robust platform for maintaining provenance about privacy-
oriented data. Such tools will help users understand where their information is
stored, how it is used, and create meaningful and informed decisions of how their
information are shared. The paper is structured as follows:

– People’s reactions and attitudes towards current app access: We
highlighted related research that explores people’s reaction when made aware
of the kind of access apps have to their personal data. We highlighted possible
reasons for developers wanting to access to these data (section 2).

– Smartphone privacy scenarios: We compared two hypothetical scenarios
of apps accessing one’s personal data. We described an implementation using
semantic technologies that could grant or deny access to personal data based
on context (section 3).

44

– Possible solutions using semantic web technologies: We presented
possible implementations using semantic web technologies which are aimed
at helping users’ preserve their privacy (section 4).

2 Related Research

Personal information is collected at a large scale from smartphone devices. Dif-
ferent operating systems have their own ways and mechanisms of presenting the
access requested by different apps and of gaining consent from users.

Android and Windows devices present users a set of permissions requested by
each app prior to installation. On these devices, users must accept all permissions
before the app can be installed. Often users are not aware of the type of access,
and even if they are able to understand they often do not know the reasons,
motivations and purposes for accessing this information.

Apple devices use a different method for informing and gathering consent.
An app that requires access to users’ personal information alerts the user to
obtain permission the first time it is required. Users can decide whether to grant
permission or not. While it is not always the case, denying access can result in
the app failing to work properly or stopping working all together.

In all cases, apps can request access to personal data for monetization rather
than core functionality. Mobile advertising is one of the most common and lu-
crative ways for app developers to monetize their apps [13]. Research on An-
droid apps found that almost half of the apps (49% (473) of 964 apps) in the
Google Play store requested multiple permissions only needed for advertising
libraries [14]. Often users have no way of understanding differences in permis-
sions, especially if personal information is legitimately needed by the app. For
example, weather apps need the user’s location to gather and display location-
based weather. However they can also send that information to advertisers to
serve targeted ads. Users are often unaware of this access, particularly because
only a small percentage of apps (fewer than 10%) have privacy policies specified
on their description page [10]. Even when present, users often ignore privacy
policies because they are often too vague or incomprehensible due to technical
and legal jargon [11]. While Apple’s permission model allows users to have more
fine-grained control over what data are accessed, users often grant access to all
the information the app requires because they are unaware that the app uses
their personal information for purposes other than the app’s functionality.

People are often unaware that apps may collect their personal data [3] as
permission mechanisms are often difficult to understand [11] and part of this
collection can happen silently in the background [18]. When users are made
aware of this collection, they feel much less willing to share data which they
perceive be extremely sensitive [15]. Some express shock and a desire to remove
the app [1,12] or experience a sense of “creepiness” that results in a loss of trust
[16]. The perceived sensitivity of data is subjective and can also vary within the
individual’s context [15]. For example, a user might be willing to share when he or
she is at a certain location or while engaging in a certain activity (e.g., relaxing),

45

but not when performing another (e.g., working). Users are also less willing to
disclose personal data when more specific usage details are provided [15], which
suggests that user awareness of how data are used is critical to preserving privacy.
It is impossible to consent to data collection for every foreseeable purpose, given
the incomplete, missing or difficult to understand information users receive when
making the decision about whether to install an app [11,15].

3 Apps and Personal data: Access, sharing and consent

This section outlines a hypothetical, yet realistic scenario that depicts what
happens when we carry and/or use smartphone devices. We then propose a
possible improvement to the scenario using semantic technologies to grant or
deny access to personal data using contextual information.

3.1 How currently is people’s data shared and access?

Alice needs to drive to work, but before she starts driving, she checks routeInfo,
an app for real-time traffic updates (many such apps are present in app markets).
To provide this information, routeInfo requests access to GPS. Alice is not aware,
however, that other apps on her phone (e.g., a game she installed for her child) are
also passively listening to these GPS updates to identify nearby businesses. These
apps (like the majority of apps) use targeted advertising to generate revenue.

Alice arrives at work; her smartphone recognizes her work WiFi “Work-
WiFi”. Alice’s company provides all employees with an app openSesame to nav-
igate the building which grants access to rooms and personal offices.

Alice has another app, remindME, installed on her phone to help her with
her errands, such as groceries and dry-cleaning. The app alerts Alice as she
leaves work of her errands. She proceeds with all her to-dos while other apps are
silently listening (e.g., apps gathering GPS updates for advertisement, openS-
esame knowing she is not longer at work). She runs her errands and drives back
home. Her smartphone recognizes her home wifi “Home-WiFi”.

Developers who have collected Alice’s location can estimate that Alice lives
at this address (Alice is there from evening to morning, everyday). Using public
(possibly linked) data repositories, this information can be used to determine
the average household income, home value, debt, number and length of car own-
ership, demographics, likely political affiliation, etc. All this information can be
used by the developers for revenue (e.g. selling this information to data brokers),
advertisement, etc. Alice never wanted or intended to supply such specific in-
formation, however. The lack of control over passive applications and types of
information accessed has caused her device to leak significant private information
about her without her express permission or intention.

3.2 How can semantic technologies improve smartphone privacy?

Alice needs to drive to work, but before she starts driving, she checks routeInfo,
an app for real-traffic updates. To provide this information, routeInfo requests

46

GPS information and her context is set {driving}. Alice only wants the fore-
ground app to have access to GPS updates while driving. Since she has launched
the app it receives GPS but other apps do not.

Alice arrives at work; her smartphone recognizes her work WiFi “Work-
WiFi” and sets her context to at.{Work}. Her company provides employ-
ees with an app, openSesame, that grants access to rooms and personal of-
fices. Only openSesame is allowed to access information in the Work context.
She attends a meeting, her smartphone updates her context to at.{Work} ∩
located in.{Building A#Room 304B}, openSesame knows she is in the room.

Alice has another app, remindME, installed on her phone that helps her with
her errands, such as groceries and dry-cleaning. The apps alerts Alice of her
errands after she leaves work. As she proceeds with all her to-dos, her smartphone
updates her context to intent.{running errands}. openSesame can not collect
the location in this context, nor can other apps unless Alice has allowed it.

She runs her errands and drives home. Her smartphone recognizes her home
wifi “Home-WiFi” and her smartphone updates her context to at.{Home}; all
apps are prevented from collecting location.

Developers have collected Alice’s location, but only for specific contexts.
While Alice’s personal information can still be deduced, the information is more
sparse than before. Alice is also aware of the possibility for developers to access
her location when using an app. While her device may leak personal information,
it is dependent on the context information set by Alice.

4 Employing semantic technologies for privacy

Given limitations of current app permission models, we propose that semantic
technologies will improve the experience for users by enabling systems to:

1. Capture provenance of sensitive data to explain possible privacy violations.
2. Model user’s intent to share data (e.g., via description logic class expressions

or rules).

Since many semantic technologies assume an open world, privacy preservation
benefits from the fact that information can be unknown. We briefly explore some
ways in which semantic technologies have been used to model privacy and how
they might be adapted for mobile deployments.

4.1 Privacy information modeling

The Accountability in RDF (AIR) language was developed as a means of gen-
erating and tracking explanations on the Semantic Web [7]. Similar rule efforts
include Rule Interchange Format (RIF) [8] and Semantic Web Rule Language
(SWRL) [5]. PROV-O [9] provides an ontology for modeling provenance infor-
mation in a linked way. Using a PROV middleware, one could track how private
information are manipulated by different applications and shared with third
parties. Users could also specify a custom privacy policy using intensional (i.e.,
described) contexts and/or rules to describe additional limits on applications.

47

4.2 Controlling access to private information

Tao et al. demonstrate query answering with privacy preservation in the EL de-
scription logic [17]. They show that a set of secrets can be protected by invert-
ing the application of EL expansion rules to compute an “envelope of secrets.”
Queries are answered using secrets so long as the system will not reveal sufficient
information in the envelope that could infer secrets. Further, the computational
complexity of both EL and the envelope creation is polynomial, which makes
mobile deployments feasible. It is an open question whether secrets expressible
in a more expressive logic (e.g., ALC) will face tractability issues.

The WebID4 and WebACL5 community groups at the W3C are iterating on
frameworks for identification, authentication, and authorization built on RDF-
based representations. While these technologies are primarily aimed at web-
based deployments, one can see how their approach to access control using con-
straints structured in RDF could be repurposed for a mobile environment.

Chen et al. explore use of semantic technologies in a Context Brokering Ar-
chitecture for mobile environments [2]. They use the architecture to prototype
an intelligent meeting room that provides services by inferring when users enter
the room from sensor data streams. While context can be used to customize an
environment to the user’s needs, we note that devices might be unintentionally
informing untrusted external systems about user context as well.

5 Conclusion

The contextual features provided by mobile devices are a double-edged sword
for end users. They provide significant information to third-party applications
to tailor behavior to one’s situation, but can also provide others, e.g. advertisers,
a significant look at one’s behavior. Worse, the permissions models on mobile
phones lack transparency and fine control over how context is used and dissemi-
nated. We have presented a scenario where semantic technologies could be used
to capture provenance of private data and enforce user privacy policies.

Other techniques may be necessary to supplement linked data approaches
to modeling dynamic user context. Markov models, for example, may provide
a more compact, statistical representation of past context in a space and time
complexity amenable to mobile devices compared with tableaux reasoning about
context provenance modeled in PROV-O. Due to the error present in the various
sensors used to infer a user’s context, probabilistic models and logics will also
be relevant to enabling privacy-preserving technologies for mobile devices.

There are a number of open research questions for the community. Do we need
to develop novel representation languages for context and privacy, especially in
the face of probabilistic contextual features, or is RDF sufficient? What is the
maximal feature space for context and privacy in description logics and is their
evaluation on mobile devices sufficient? How can reasoning about context be
made efficient on mobile devices to reduce energy drain?

4 http://www.w3.org/wiki/WebID
5 http://www.w3.org/wiki/WebAccessControl

48

References

1. Balebako, R., Jung, J., Lu, W., Cranor, L.F., Nguyen, C.: Little brothers watching
you: Raising awareness of data leaks on smartphones. In: Proc. 9th SOUPS. pp.
12:1–12:11 (2013)

2. Chen, H., Finin, T., Joshi, A.: An intelligent broker for context-aware systems. In:
Adjunct proceedings of Ubicomp. vol. 3, pp. 183–184 (2003)

3. Felt, A.P., Egelman, S., Wagner, D.: I’ve got 99 problems, but vibration ain’t one:
A survey of smartphone users’ concerns. In: Proc. 2nd SPSM. pp. 33–44 (2012)

4. FTC Staff: Mobile privacy disclosures: Building trust through transparency. Tech.
rep., Federal Trade Commission (2013)

5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. Tech. rep.,
W3C (2004)

6. ICT Data and Statistics Division: The world in 2014: ICT facts and figures. Tech.
rep., International Telecommunications Union (2014)

7. Kagal, L., Jacobi, I., Khandelwal, A.: Gasping for air why we need linked rules and
justifications on the semantic web. Tech. rep., MIT (2011)

8. Kifer, M., Boley, H.: RIF overview (2nd edition). Tech. rep., W3C (2013)
9. Lebo, T., Sahoo, S., McGuinness, D.L.: PROV-O: The PROV ontology. Tech. rep.,

W3C (Apr 2013)
10. Liccardi, I., Pato, J., Weitzner, D.J.: Improving Mobile App selection through

Transparency and Better Permission Analysis. J. Privacy and Confidentiality 5(2),
1–55 (2014)

11. Liccardi, I., Pato, J., Weitzner, D.J., Abelson, H., De Roure, D.: No technical
understanding required: Helping users make informed choices about access to their
personal data. In: Proc. 11th MOBIQUITOUS. pp. 140–150 (2014)

12. Lin, J., Amini, S., Hong, J.I., Sadeh, N., Lindqvist, J., Zhang, J.: Expectation
and purpose: Understanding users’ mental models of mobile app privacy through
crowdsourcing. In: Proc. 14th Ubicomp. pp. 501–510 (2012)

13. Merisavo, M., Vesanen, J., Arponen, A., Kajalo, S., Raulas, M.: The effectiveness
of targeted mobile advertising in selling mobile services: an empirical study. Int. J.
Mobile Commun. 4(2), 119–127 (2006)

14. Pearce, P., Felt, A.P., Nunez, G., Wagner, D.: Addroid: privilege separation for
applications and advertisers in android. In: Proc. 7th ASIACCS. pp. 71–82 (2012)

15. Shih, F., Liccardi, I.: Privacy tipping points in smartphones privacy preferences.
In: Proc. 33rd CHI. pp. 807–816 (2015)

16. Shklovski, I., Mainwaring, S.D., Skúladóttir, H.H., Borgthorsson, H.: Leakiness
and creepiness in app space: Perceptions of privacy and mobile app use. In: Proc.
32nd CHI. pp. 2347–2356 (2014)

17. Tao, J., Slutzki, G., Honavar, V.: Secrecy-preserving query answering for instance
checking in EL. Tech. rep., Iowa State University (2010)

18. Zhang, F.: Assessing intrusiveness of smartphone apps. Tech. rep., Masters thesis,
MIT (2012)

49

Mobile Semantic Query Distribution with Graph-Based

Outsourcing of Subqueries

William Van Woensel

NICHE Research Group, Faculty of Computer Science,

Dalhousie University, Halifax, Canada

{william.van.woensel}@dal.ca

Abstract. While mobile computing domains have illustrated the usefulness of mobile

semantic data, improvements in mobile hardware are paving the way for local semantic

data access. To support this, a number of tools have been developed for storing, querying

and reasoning over local semantic data. However, recent benchmarks have shown that

mobile hardware still imposes limitations on efficient local data querying. Additionally,

mobile scenarios pose unique challenges due to their dynamic nature; making it difficult

to replicate semantic data a priori for local querying. In this paper, we propose a graph-

based query distribution approach, which efficiently distributes query execution across

configured remote datasets. Importantly, our approach aims to identify subqueries that

can be outsourced to remote datasets, thus reducing local joining work.

Keywords: mobile applications, query distribution, resource constraints

1 Introduction

As shown by the Linked Open Data cloud [1], a staggering number of online, machine-

readable and interconnected Semantic Web datasets are currently available. Multiple tools and

techniques have been developed to access this wealth of data. Local replication [2] involves

replicating relevant parts of semantic datasets locally, allowing for robust and efficient access.

Virtual data integration, or query distribution, distributes queries over the remote datasets

themselves, integrating the results locally [3, 4].

For some time now, mobile devices have met the hardware requirements for managing and

querying Semantic Web data. Reflecting this evolution, various mobile computing domains

currently leverage semantic data, including augmented reality [5], recommender systems [6],

location-aware [7] and context-aware systems [8], mobile tourism [9] and m-Health [10]. Sup-

porting these approaches, multiple tools have been developed for constructing, managing, que-

rying and reasoning over local semantic data on mobile devices, including AndroJena [11], a

port of the well-known Apache Jena framework [12], and Rdf On The Go [13], which was

specifically developed for mobile systems. However, as shown by recent benchmarks [14, 15],

mobile hardware limitations regarding processing power, memory and battery capacity, limit

the scale of purely local solutions. Many mobile scenarios also pose unique challenges due to

their highly dynamic nature; e.g., cases where semantic data related to the user’s dynamic

50

context needs to be continuously accessible. Such scenarios makes a priori, local replication

of relevant data on the device problematic. Virtual data integration solutions bypass this issue

by executing queries directly on remote datasets. Moreover, by leveraging the capabilities of

remote datasets, opportunities exist for dealing with mobile hardware limitations.

In particular, subqueries may be outsourced to relevant remote datasets, relieving the mo-

bile client of join processing. We also note that server hardware hosting these datasets are

better equipped, both hardware-wise and regarding data access optimizations (e.g., join indi-

ces), to execute these subqueries to begin with. Moreover, less intermediate results are returned

to the device, reducing bandwidth usage. To allow identifying subqueries that are resolvable

by a particular dataset, we propose indexing graph patterns (i.e., graph structure with only

predicate edges) found in the dataset. For a given query and set of configured datasets, suitable

subqueries are found by determining subgraph isomorphism between the query subgraphs and

dataset graph patterns. Although subgraph checking is an NP-hard problem, it has reasonable

execution times for many real-world scenarios and is often used in graph databases [16].

In this paper, we present a graph-based, semantic query distribution approach, which out-

sources suitable subqueries via graph pattern indexing and matching. We apply a custom,

back-tracking subgraph isomorphism algorithm, which is able to identify subqueries suitable

to be executed on a particular remote dataset. We present an evaluation comparing our system

to a predicate-based approach, using a real-world dataset.

Section 2 discusses the indexing of dataset graph patterns. Section 3 presents our query

distribution approach. Section 4 shows an initial evaluation of our approach, while Section 5

discusses related work. Section 6 presents conclusions and future work.

2 Indexing dataset graph patterns

To identify dataset graph patterns, our system first collects instance RDF graphs. Duplicate

instance graphs and subgraphs are hereby ruled out by applying subgraph checks on the col-

lected instance graphs, leaving only distinct graph patterns. Below, we show the pseudocode

for this indexing step:

1. 𝑞 ← SELECT ∗ WHERE { ? s ? p ? o . }
2. 𝑟𝑒𝑠𝑢𝑙𝑡 ← execute(q, dataset)

3. 𝑔𝑟𝑎𝑝ℎ𝑠 ← ∅

4. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑡1𝐢𝐧 𝑟𝑒𝑠𝑢𝑙𝑡

5. 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑡1

6. 𝑔𝑟𝑎𝑝ℎ1 ← ∅

7. 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ← [𝑡1]
8. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑐𝑢𝑟𝑇 𝐢𝐧 𝑡𝑟𝑖𝑝𝑙𝑒𝑠

9. 𝑔𝑟𝑎𝑝ℎ1 ← 𝑔𝑟𝑎𝑝ℎ1 + 𝑐𝑢𝑟𝑇

10. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑡2𝐢𝐧 𝑟𝑒𝑠𝑢𝑙𝑡

11. 𝐢𝐟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑐𝑢𝑟𝑇, 𝑡2) 𝐭𝐡𝐞𝐧

12. 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑡2

13. 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 + 𝑡2

14. 𝐞𝐧𝐝 𝐢𝐟

15. 𝐞𝐧𝐝 𝐟𝐨𝐫

16. 𝐞𝐧𝐝 𝐟𝐨𝐫

17. 𝐞𝐧𝐝 𝐟𝐨𝐫

18. 𝑒𝑥𝑖𝑠𝑡𝑠 ← 𝑓𝑎𝑙𝑠𝑒

19. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑔𝑟𝑎𝑝ℎ2 𝐢𝐧 𝑔𝑟𝑎𝑝ℎ𝑠

20. 𝐢𝐟 𝑖𝑠_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2) 𝐭𝐡𝐞𝐧

21. 𝑒𝑥𝑖𝑠𝑡𝑠 ← 𝑡𝑟𝑢𝑒

22. 𝐛𝐫𝐞𝐚𝐤

23. 𝐞𝐥𝐬𝐞 𝐢𝐟 𝑖𝑠_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔𝑟𝑎𝑝ℎ2, 𝑔𝑟𝑎𝑝ℎ1) 𝐭𝐡𝐞𝐧

24. 𝑔𝑟𝑎𝑝ℎ𝑠 ← 𝑔𝑟𝑎𝑝ℎ𝑠 − 𝑔𝑟𝑎𝑝ℎ2

25. 𝐞𝐧𝐝 𝐟𝐨𝐫

26. 𝐢𝐟 ! 𝑒𝑥𝑖𝑠𝑡𝑠

27. 𝑔𝑟𝑎𝑝ℎ𝑠 ← 𝑔𝑟𝑎𝑝ℎ𝑠 + 𝑔𝑟𝑎𝑝ℎ1

Code 1. Algorithm for extracting dataset graph patterns.

51

Lines 1-2 obtain all triples from the dataset. For each distinct result triple (lines 4-5), a new

graph pattern is created (line 6), as well as a list of candidates for expansion, initially contain-

ing the result triple (line 7). Each candidate for expansion is added to the graph pattern (lines

8-9), and other triples linking to the current candidate (lines 10-11) are themselves added as

candidates for expansion (line 13). This process continues until no more new expansion can-

didates are found, meaning a disjoint instance RDF graph has been identified.

Subsequently, the algorithm checks whether the collected graph is a subgraph of another,

previously identified graph, or vice versa (lines 18-27). In case it is found to be a (non-proper)

subgraph, the newly found graph is ignored (lines 20-22). In case a previously indexed graph

is a subgraph of the new graph, the previous is removed & the new graph is added (lines 24-

25, 26-27). Else, the new graph is added to the index as a new graph pattern (lines 26-27).

In Section 3, we elaborate on the implementation of the is_subgraph function. We note that

the matches function only considers certain types of links, to maximize the re-use of extracted

graph patterns. Overall, the function may consider 4 links to extend an instance graph, as il-

lustrated in Figure 1:

Figure 1. Potential links followed during indexing.

Two triples may be considered part of the same instance graph in case they represent a path

(links (1) and (3), and if they share the same subject (link (2)) or object (link (4)). In practice

however, we found that considering link (4) typically leads to cases where only a single (huge)

graph pattern can be extracted (i.e., about the same size as the dataset). For instance, most

resources will often be typed with owl:Thing, resulting in only one instance graph. Currently,

we follow a pragmatic solution to this problem, by simply ruling out link (4); thus maximizing

re-use of dataset graph patterns, and significantly reducing the size of extracted graph patterns.

On the other hand, we note that this will lead to problems if the shared object itself is involved

in other triples as subject. Tackling this issue more effectively is considered future work.

After extracting the graph patterns, they are added to an index keeping the graph patterns for

each dataset. Ideally, the resource-intensive indexing process occurs on the dataset server, rul-

ing out the need to communicate the entire dataset to another location. Subsequently, indexed

graph patterns are communicated to the mobile systems, and updated each time significant

changes occur that alter the previously indexed patterns.

3 Graph-based Query Distribution

Based on the dataset graph pattern index (see Section 2), query execution will be distributed

across matching datasets. To cope with mobile device limitations, our main goal is to distribute

coherent subqueries to relevant datasets, thus outsourcing the resource-intensive join work to

52

database systems better equipped to execute the work, both hardware-wise and regarding in-

ternal optimizations (e.g., join indices).

We apply a graph-based approach to identify subqueries resolvable by remote datasets. To

that end, we developed a custom subgraph isomorphism algorithm, discussed in Section 3.1.

Next, we present our query distribution algorithm (Section 3.2).

3.1 Backtracking subgraph-isomorphism

A subgraph isomorphism algorithm checks whether graph g1 is isomorphic to a (non-

proper) subgraph of graph g2. To suit our purposes, we developed a slightly modified algo-

rithm, which is able to identify the largest (non-proper) subgraph of g1 that is isomorphic to a

(non-proper) subgraph of g2. In doing so, our system can identify which subqueries, or query

subgraphs, are resolvable by dataset subgraphs.

For this purpose, a listener traces the algorithm execution, and tracks the most successful

comparison. Furthermore, certain optimizations, applicable when only checking for subgraph

isomorphism, need to be dropped (indicated by (†))1. Code 2 shows the pseudocode for this

algorithm. In the is_subgraph function, lines 2-5 check whether the g1 graph is subgraph-iso-

morphic to graph g2. In particular, for each combination of nodes n1 and n2, the code checks

whether the graph reachable from n1 is a subgraph of the n2 graph, using the compare function.

In case the n1 subgraph was compared successfully to g2 (line 5), and all g1 nodes were mapped

(line 6), g1 is a subgraph of g2. Else, previous mappings are undone (lines 10, 14) and another

node combination is tried. If no complete match was found in any comparison, g1 is not a

subgraph of g2 (line 20). We note that, in case no n2 nodes were found that even partially match

n1 (line 13-16), g1 cannot be a subgraph of g2; and false could be returned (at line 17). However,

a partial subgraph match, involving a subgraph of g1, may still occur; so this code is left out.

1. 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑖𝑠_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔1, 𝑔2)

2. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 node 𝑛1 𝐢𝐧 graph 𝑔1

3. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 node 𝑛2 𝐢𝐧 graph 𝑔2

4. 𝑚𝑎𝑝(𝑛1, 𝑛2)

5. 𝐢𝐟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑛1, 𝑛2) 𝐭𝐡𝐞𝐧

6. 𝐢𝐟 𝑚𝑎𝑝𝑝𝑖𝑛𝑔_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒()

7. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑑𝑜𝑛𝑒()

8. 𝐫𝐞𝐭𝐮𝐫𝐧 true

9. 𝐞𝐥𝐬𝐞 𝐭𝐡𝐞𝐧

10. 𝑚𝑎𝑝𝑝𝑖𝑛𝑔_𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘()

11. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑓𝑎𝑖𝑙()

12. 𝐞𝐧𝐝 𝐢𝐟

13. 𝐞𝐥𝐬𝐞 𝐭𝐡𝐞𝐧
14. 𝑐𝑙𝑒𝑎𝑟_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛1)

15. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑓𝑎𝑖𝑙()

16. 𝐞𝐧𝐝 𝐢𝐟

17. 𝐞𝐧𝐝 𝐟𝐨𝐫 (†)

18. 𝐞𝐧𝐝 𝐟𝐨𝐫

19. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑑𝑜𝑛𝑒()

20. 𝐫𝐞𝐭𝐮𝐫𝐧 false

21. 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑛1, 𝑛2)

22. 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑛1, 𝑛2)

23. 𝐢𝐟 ! 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝐭𝐡𝐞𝐧

24. 𝐫𝐞𝐭𝐮𝐫𝐧 false

25. 𝐞𝐧𝐝 𝐢𝐟

26. 𝑙1: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑚𝑎𝑡𝑐ℎ𝑖 𝐢𝐧 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

27. 𝑒1 ← 𝑚𝑎𝑡𝑐ℎ𝑖 . 𝑒1

28. 𝑙2: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑒2 𝐢𝐧 𝑚𝑎𝑡𝑐ℎ𝑖 . 𝑒2𝑠

29. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔(𝑒1, 𝑒2)

30. 𝑚𝑎𝑝 ← 𝑔𝑒𝑡_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑒1 . 𝑡𝑜𝑁𝑜𝑑𝑒)

31. 𝐢𝐟 𝑚𝑎𝑝 = NULL

32. 𝑚𝑎𝑝(𝑒1 . 𝑡𝑜𝑁𝑜𝑑𝑒, 𝑒2 . 𝑡𝑜𝑁𝑜𝑑𝑒)

33. 𝐢𝐟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑒1. 𝑡𝑜𝑁𝑜𝑑𝑒, 𝑒2. 𝑡𝑜𝑁𝑜𝑑𝑒)

34. 𝐛𝐫𝐞𝐚𝐤 l2

35. 𝐞𝐥𝐬𝐞 𝑐𝑙𝑒𝑎𝑟_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑒1 . 𝑡𝑜𝑁𝑜𝑑𝑒)

36. 𝐞𝐧𝐝 𝐢𝐟

37. 𝐞𝐥𝐬𝐞 𝐢𝐟 𝑚𝑎𝑝 = 𝑒2 . 𝑡𝑜𝑁𝑜𝑑𝑒

38. 𝐛𝐫𝐞𝐚𝐤 𝑙2

39. 𝐞𝐧𝐝 𝐢𝐟

40. 𝐞𝐧𝐝 𝐟𝐨𝐫 (†)

41. 𝐞𝐧𝐝 𝐟𝐨𝐫

1 These optimizations are enabled while building the dataset graph pattern index.

53

42. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑑𝑜𝑛𝑒_𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔(𝑛1, 𝑛2)

43. 𝐫𝐞𝐭𝐮𝐫𝐧 true

Code 2. Custom, back-tracking subgraph isomorphism algorithm.

The compare function starts by checking for overlaps between the outgoing edges of n1 and

n2 (neighbor_matches; line 22). In case n1 is not a leaf node and no overlaps are found, false

is returned (lines 23-25). For each overlap, the function checks whether the e1 to-node is al-

ready mapped to a g2 node (line 30; to avoid infinite loops). If so, and if it was already mapped

to the e2 to-node, edge e2 matches e1 (lines 37-38). If not, the e1 to-node is mapped to the e2 to-

node (line 32), and the function recursively compares these two to-nodes (line 33). E.g., in

case no overlapping edges are found, this call will return false; if n1 turns out to be a leaf node,

it will return true. In case n1 and n2 recursively match, edge e2 matches e1 (line 33-34). If not,

the previously assigned mapping is removed (line 35) and another edge e2 (if any) is tried2.

Again, at this point, the algorithm could return false if no matches are found for e1 (at line 40),

since all e1 edges need to be matched for a subgraph match. However, to allow identifying

partial matches (i.e., involving a subgraph of g1), all e1 edges need to be tried; even if some

have already failed.

The neighbor_matches function returns true in case n1 is a leaf node; since this means the

n1 subgraph has been checked completely. Else, it collects the overlaps between the outgoing

edges of e1 and e2: whereby two edges match in case both of them have the same label; either

of them represents a variable; or the e1 label represents a subproperty of e2. If no matches are

found for any edge e1, the function returns false; else, it returns the overlapping edges.

To track the largest matching subgraph of g1, a listener is notified when two edges are being

compared (line 29), when two nodes are finished comparing (line 42), when a g1 node com-

parison failed (lines 11, 15) and when comparison is done (lines 7, 19). Upon finishing the

subgraph comparison, the listener records the match by assigning dataset associated with the

dataset edge to its matching query edge; together with an ID uniquely identifying the subgraph

comparison3.

3.2 Query Distribution

To achieve virtual data integration, query execution is distributed across the configured

datasets, and the results integrated locally. In its simplest form , this involves splitting

up a query into its smallest units (i.e., triple patterns), executing them on each individual da-

taset, and combining the results. In doing so, a query distribution system ensures that all results

are returned, even for queries that are not resolvable by any single dataset. Initially, such a

Query Distribution Plan (QDP) consists of nm query sets, each representing a particular result

integration:

𝑄𝐷𝑃 = [{ 𝑡1 → 𝐷𝑥, … , 𝑡𝑖 → 𝐷𝑦, … , 𝑡𝑚 → 𝐷𝑧 }, …]

𝑛 = 𝑠𝑖𝑧𝑒(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠), 𝑚 = 𝑠𝑖𝑧𝑒(𝑞𝑢𝑒𝑟𝑦), 0 < 𝑖 < 𝑚, 0 < 𝑥, 𝑦, 𝑧 < 𝑛

Formula 1. Query Distribution Plan (QDP)

2 Multiple e2 matches for e1 are possible, and vice-versa (e2 is only matched to one e1 at a time).
3 This unique ID is required by the query distribution algorithm (see Section 3.2).

54

Where 𝑡𝑖 → 𝐷𝑥 stands for an atomic subquery, i.e., executing a single triple pattern 𝑡𝑖 on

dataset 𝐷𝑥; a set of subqueries between accolades forms a query set, standing for a particular

integration of results; and the set of query sets make up the QDP, standing for all possible

result integrations.

In our query distribution approach, graph patterns from an incoming query are compared to

the set of dataset graph patterns (see Section 2), using subgraph isomorphism checks. After

these checks, matching datasets are assigned to the query graph edges (see Section 3.1, last

paragraph), indicating which query triples (each corresponding to an edge) are collectively

resolvable by particular datasets. Based on these results, given a query set, multiple ti matched

to the same Dy (during the same subgraph check) can be grouped into the same subquery:

𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡 = {𝑡1 → 𝐷𝑥, … 𝑡𝑖,𝑗,𝑘 → 𝐷𝑦, … , 𝑡𝑚 → 𝐷𝑧}

𝑛 = 𝑠𝑖𝑧𝑒(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠), 𝑚 = 𝑠𝑖𝑧𝑒(𝑞𝑢𝑒𝑟𝑦), 0 < 𝑖, 𝑗, 𝑘 < 𝑚, 0 < 𝑥, 𝑦, 𝑧 < 𝑛

Formula 2. Grouping subqueries in query sets based on their shared dataset.

In the query shown in Figure 3, subqueries 𝑡1, 𝑡2, 𝑡3 → 𝐴, 𝑡2, 𝑡4 → 𝐵, 𝑡1 → 𝐶 and 𝑡5 → 𝐷

can be distinguished into their respective query sets.

Figure 3. Example query matched to the configured datasets.

In this process, it is important to consider the particular subgraph check in which the match-

ing dataset was found. For instance, consider the following cases:

Figure 4. Distinct graph matches when constructing subqueries.

In case (a), part of the query (t1, t3) was matched to a particular graph pattern (1) from A

during one subgraph check, while the remainder (t2) was matched to a different graph (2) from

A during another check. However, these two dataset graph patterns are disjoint; no single in-

stance graph exists that covers both graph patterns4. As such, this particular query set will

never yield any results, and need to be removed from the QDP. Case (b) illustrates that this

reasoning is only valid when considering connected query triples (i.e., with shared variables).

4 Else, they would have been combined during the graph extraction process (see Section 2).

55

Here, an intermediate query triple t2 is executed on dataset B, which may yield results that

connect t1 with t3 ; in other words, an instance graph, integrated from both datasets, may exist

that connects all 3 query triples.

Further, we note that triple patterns executed on the same dataset, but not sharing any vari-

ables, should ideally be kept separate. Putting these into the same subquery will lead to a Car-

tesian product, resulting in a huge number of results returned by the remote dataset; whereas

the associated local computational work is comparatively low.

Below, we show the pseudocode for post-processing the QDP, based on subgraph matches:

1. 𝑙1: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡 𝐢𝐧 𝑞𝑑𝑝

2. 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← 𝑔𝑟𝑜𝑢𝑝 𝑜𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑎𝑛𝑑 𝑠ℎ𝑎𝑟𝑒𝑑 𝑣𝑎𝑟𝑠 (𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡)

3. 𝐟𝐨𝐫 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 𝐢𝐧 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑖𝑒𝑠

4. 𝑙2: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑡1 𝐢𝐧 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

5. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝐨𝐭𝐡𝐞𝐫 𝑡2 𝐢𝐧 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

6. 𝐢𝐟 𝑡1 . 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 . 𝑖𝑑 ≠ 𝑡2 . 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 . 𝑖𝑑 𝐭𝐡𝐞𝐧
7. 𝐫𝐞𝐦𝐨𝐯𝐞 𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡 𝐟𝐫𝐨𝐦 𝑞𝑑𝑝

8. 𝐛𝐫𝐞𝐚𝐤 𝑙2

9. 𝐞𝐧𝐝 𝐢𝐟

10. 𝐞𝐧𝐝 𝐟𝐨𝐫

11. 𝐞𝐧𝐝 𝐟𝐨𝐫

Code 5. Processing the QDP based on subgraph matching results.

For each query set, query triples are grouped into subqueries based on assigned dataset and

shared variables (lines 1-2). If one of these subqueries involves two query triples, assigned to

the same dataset but associated with a different dataset graph pattern (lines 4-6), the query set

is removed from the QDP (lines 7-8).

After generating a QDP, it is passed to the execution engine. For each subquery, the engine

creates and executes a SPARQL query on the associated remote dataset. To integrate subquery

results from a single query set, we apply a hash join. Results from multiple query sets are

combined via a union operation. Since the same subquery-on-dataset combination will occur

in multiple query sets (see Formula 1), the engine caches previous results for later re-use.

4 Evaluation

This section presents a preliminary evaluation of our query distribution approach. In our

evaluation, a client app poses a query that requires data from two datasets to be integrated. To

illustrate the usefulness of graph-based query distribution, we compare our approach to a

straightforward predicate-based approach, which distributes incoming queries solely based on

query predicates and indexed dataset predicates. For each query triple, the approach checks

which datasets contain its concrete predicate; and then executes the query triple (potentially

grouped in a subquery) on the found datasets.

Below, we elaborate on the evaluation setup, including current implementation compo-

nents. Then, we discuss the results of each query distribution approach.

56

4.1 Setup

We ran all experiments 10 times, and took the average of the performance times. Below,

we elaborate on other relevant aspects:

- Dataset & query

 Dataset

Using interlinks made available by DBPedia5, we extracted two small datasets from DBPedia

(3846 triples; 487 Kb) and Geonames (1210 triples; 157 Kb). Both datasets supply different

data on the same resources; whereby the extracted Geonames dataset uses DBPedia resource

URIs to allow for data integration. Both datasets can be found online [19]. Although these

datasets are relatively small, we will show that these a) already result in non-trivial execution

times and b) indicate significant differences in performance between the evaluated approaches.

Respectively, 7 and 2 distinct graph patterns were found in the extracted DBPedia and

Geonames datasets.

 Query

Our evaluation executes the following query, selecting the label, type, coordinates and website

of geographic entities (namespaces omitted for brevity):

1. SELECT ∗ WHERE {
2. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙 ? 𝐥𝐚𝐛𝐞𝐥 .
3. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒 ? 𝐭𝐲𝐩𝐞 .
4. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑤𝑔𝑠: 𝑙𝑎𝑡 ? 𝐥𝐚𝐭 .
5. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑤𝑔𝑠: 𝑙𝑜𝑛𝑔 ? 𝐥𝐨𝐧𝐠 .
6. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑑𝑏𝑝: 𝑤𝑒𝑏𝑠𝑖𝑡𝑒 ? 𝐰𝐞𝐛𝐬𝐢𝐭𝐞 . }

Code 6. Evaluation query.

This query returns 51 results on the integrated dataset.

- Hardware

 Dataset

Both datasets were made accessible using the Apache Fuseki [17] SPARQL server, deployed

on a Dell PowerEdge 2950 Server running Windows Server 32-bit, with (2) Intel Xeon 2.33

GHz and 64 Gb RAM. The datasets were indexed on a Lenovo Thinkpad, running Windows

7 64-bit, with Intel Core i7-3520M 2.90 Ghz and 8Gb RAM.

 Mobile

We used a LG Nexus 5 (model LG-D820) running Android 5.1.1 (Lollipop), with 2.26 GHz

Quad-Core Processor, 2Gb RAM and 32Gb storage. The mobile device connects to the

SPARQL server over an Internet connection6 (using WiFi).

- Libraries: to index datasets, we utilize Apache Jena 2.11.0 [12]. For performing query

distribution on mobile systems, we rely on AndroJena 0.5 [18].

5 Such interlinks indicate resource equivalence with other major datasets.
6 To mimic real-life conditions, the SPARQL endpoint was not hosted on the same local network.

57

4.2 Results

Figure 5 shows the evaluation query graph after matching to indexed graph patterns, to-

gether with the resulting query sets. Although the DBPedia dataset (DB) contains individual

triples matching all query triples, no single connected instance graph connects all 5 query tri-

ples (see DB.1 and DB.2 graph matches). Therefore, resolving this query requires data inte-

gration with the GeoNames dataset (GN). Based on graph matches shown in the query graph,

two query sets are generated, each with a coherent subquery assigned to one of the datasets.

Figure 5. Query graph & subqueries for evaluation query.

For the predicate-based approach, we consider two configurations: a configuration where

joins are not outsourced (no-outsource); and a configuration where, per query set, query triples

assigned to the same dataset are grouped into the same subquery (outsource). In Table 1, we

indicate the number of query sets, remote query executions and total number of individual

query results to be joined.

 graph-based
predicate-based

no-outsource outsource

query sets 2 8 8

query exec. 4 8 15

indiv. results 151 1030 451

Table 1. Number of query sets and remote query executions.

The overall number of query executions is relatively low, since an internal cache is kept to

avoid re-sending the same subquery (see discussion after Code 5). We also note that, when

outsourcing queries, additional subqueries will be constructed. Therefore, the potential for re-

using cached results is reduced, and the overall number of query executions is comparatively

58

increased (see predicate-based > outsource column). However, the local join work is reduced,

as illustrated by the total number of individual query results.

Table 2 shows the performance results, where ID stands for identifying relevant datasets

and QDP for constructing the dataset (see Code 5):

 graph-based
predicate-based

no-outsource outsource

parse query 8

ID 4 0.1 0

QDP 40 0 0.7

execute 529 2065 1856

join 16 1654 19

total 597 3728 1883

Table 2. Performance results (ms).

Since less queries are sent to the datasets, executing queries takes much less time for graph-

based. Since pred-based > outsource and graph-based both outsource join work to the remote

dataset, locally joining results is much faster as well. Despite its extra overhead when identi-

fying relevant datasets and constructing the QDP, our graph-based query distribution approach

outperforms either predicate-based approach.

Creating the graph index and predicate index takes ca. 4431ms and 80ms, respectively. We

note that that the graph creation process only needs to be applied in case the dataset contents

are updated significantly, causing a change in its graph patterns.

5 Related work

The Distributed ARQ (DARQ) [3] and Semantic Web Integrator and Query Engine (SemWIQ)

[4] systems keep an index with summary dataset info. DARQ keeps so-called service descrip-

tions, including found predicates, constraints on subjects and objects occurring with these

predicates, and statistical data. The SemWIQ system maintains a catalog per data source,

which keeps a list of classes and their number of instances, as well as a list of properties and

their number of occurrences. Given a posed query, these indices are used to determine which

triple patterns should be sent to which datasets. As such, these works do consider join out-

sourcing; which has the potential for large performance gains, as shown by our evaluation.

The approach in [20] resembles our work, as it focuses on indexing found predicate se-

quences or paths. This allows identifying datasets that can handle particular query predicate

paths, with the goal of reducing local join work. In contrast, our approach supports outsourcing

any kind of subquery, and is not just limited to path-based queries.

59

6 Conclusions & Future work

In this paper, we presented a graph-based query distribution approach, focusing on out-

sourcing subqueries to relevant remote datasets. We presented a mechanism for indexing graph

patterns in remote datasets; a custom, backtracking subgraph isomorphism algorithm; and our

graph-based query distribution mechanism. Our evaluation shows that our approach has the

potential to significantly reduce the number of queries to be sent to remote datasets, as well as

minimize the resulting local join work.

Many avenues for future work exist. By keeping summary data on graph pattern nodes (cfr.

[3]), the “joinability” between graph patterns of different datasets can also be considered when

ruling out query sets (see Figure 4 (b)). Edges in extracted graph patterns can be annotated

with the number of associated instance graphs, to guide join optimizations. Currently, ex-

tracted graph patterns are kept per dataset. By keeping a single index, equivalent graph patterns

from multiple datasets can be merged, thus reducing the number of isomorphism checks.

To allow identifying partial subgraph matches, our subgraph checking algorithm drops a

number of optimizations that may result in serious performance gains. Studying other methods

of efficiently determining partial query matches is future work. Furthermore, although sub-

graph isomorphism checking is known to be an NP-hard problem, many algorithms have been

proposed over the years that solve it in a reasonable time [16]. In case our straightforward,

custom algorithm leads to problematic performance for larger datasets, future work may in-

volve studying and re-using other algorithms.

7 References

1. Cyganiak, R., Jentzsch, A.: The Linking Open Data cloud diagram, http://lod-cloud.net/.

2. Zander, S., Schandl, B.: A framework for context-driven RDF data replication on mobile devices.

Proceedings of the 6th International Conference on Semantic Systems. pp. 22:1–22:5. ACM, New

York, NY, USA (2010).

3. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. ESWC’08:

Proceedings of the 5th European semantic web conference on The semantic web. pp. 524–538.
Springer-Verlag, Berlin, Heidelberg (2008).

4. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data integration on

the web. Proceedings of the 5th European semantic web conference on The semantic web: research

and applications. pp. 493–507. Springer-Verlag, Berlin, Heidelberg (2008).

5. Reynolds, V., Hausenblas, M., Polleres, A., Hauswirth, M., Hegde, V.: Exploiting linked open data

for mobile augmented reality. W3C Workshop: Augmented Reality on the Web (2010).

6. Ziegler, C.: Semantic web recommender systems. In Proceedings of the Joint ICDE/EDBT Ph.D.
Workshop 2004 (Heraklion. pp. 78–89. Springer-Verlag (2004).

7. Becker, C., Bizer, C.: DBpedia Mobile: A Location-Enabled Linked Data Browser. In: Bizer, C.,
Heath, T., Idehen, K., and Berners-Lee, T. (eds.) LDOW. CEUR-WS.org (2008).

8. Van Woensel, W., Casteleyn, S., Paret, E., De Troyer, O.: Mobile Querying of Online Semantic

Web Data for Context-Aware Applications. IEEE Internet Comput. Spec. Issue (Semantics Locat.
Serv. 15, 32–39 (2011).

9. Keller, C., Pöhland, R., Brunk, S., Schlegel, T.: An Adaptive Semantic Mobile Application for

Individual Touristic Exploration. HCI (3). pp. 434–443 (2014).

60

10. Puertas, E., Prieto, M.L., De Buenaga, M.: Mobile Application for Accessing Biomedical

Information Using Linked Open Data. Proceedings of the 1st Conference on Mobile and
Information Technologies in Medicine. , Prague, Czech Republic (2013).

11. AndroJena, https://code.google.com/p/androjena/.

12. Apache Jena, https://jena.apache.org/.

13. Le-Phuoc, D., Parreira, J.X., Reynolds, V., Hauswirth, M.: RDF On the Go: An RDF Storage and

Query Processor for Mobile Devices. 9th International Semantic Web Conference (ISWC2010)
(2010).

14. Patton, E.W., McGuinness, D.L.: A Power Consumption Benchmark for Reasoners on Mobile

Devices. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic, D.,

Groth, P.T., Noy, N.F., Janowicz, K., and Goble, C.A. (eds.) The Semantic Web - {ISWC} 2014 -

13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.
Proceedings, Part {I}. pp. 409–424. Springer (2014).

15. Woensel, W. Van, Haider, N. Al, Ahmad, A., Abidi, S.S.R.: A Cross-Platform Benchmark

Framework for Mobile Semantic Web Reasoning Engines. The Semantic Web - {ISWC} 2014 -

13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.

Proceedings, Part {I}. pp. 389–408 (2014).

16. Lee, J., Han, W.-S., Kasperovics, R., Lee, J.-H.: An in-depth comparison of subgraph isomorphism

algorithms in graph databases. Proceedings of the 39th international conference on Very Large
Data Bases. pp. 133–144. VLDB Endowment (2013).

17. Apache Fuseki, http://jena.apache.org/documentation/fuseki2/.

18. AndroJena, http://code.google.com/p/androjena/.

19. Online Datasets, https://niche.cs.dal.ca/materials/qd/.

20. Stuckenschmidt, H., Vdovjak, R., Broekstra, J., Houben, G.: Towards distributed processing of
RDF path queries. Int. J. Web Eng. Technol. 2, 207–230 (2005).

61

	The Ubiquitous Semantic Web: The Story So FarJeff Z. Pan
	Are Apps Going Semantic? A Systematic Review of Semantic Mobile ApplicationsR. Yus and P. Pappachan
	Building a Mobile Applications Knowledge Base for the Linked Data CloudP. Pappachan, R. Yus, P. K. Das, S. Mehrotra, T. Finin, and A. Joshi
	Challenges for Semantic Technologies in Distributed Mobile EnvironmentsE. W. Patton and A. Borgida
	Automating the Collection of Semantic Sensor Network Metadata in the Field with Mobile ApplicationsL. Kinkead, P. Pinheiro, and D. L. McGuinness
	Linked Data and Mobile Application PrivacyE. W. Patton and I. Liccardi
	Mobile Semantic Query Distribution with Graph-Based Outsourcing of SubqueriesWilliam Van Woensel

