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Abstract
This paper discusses a distributed diagnosis ap-
proach, where each subsystem diagnoser operates
independently without a coordinator that com-
bines local results and generates the correct global
diagnosis. In addition, the distributed diagnosis
algorithm is designed to minimize communica-
tion between the subsystems. A Minimal Struc-
turally Overdetermined (MSO) set selection ap-
proach is developed as a Binary Integer Linear
Programming (BILP) optimization problem for
subsystem diagnoser design. For cases, where a
complete global model of the system may not be
available, we develop a heuristic approach, where
individual subsystem diagnosers are designed in-
crementally, starting with the local system MSOs
and progressively extending the local set to in-
clude MSOs from the immediate neighbors of the
subsystem. The inclusion of additional neighbors
continues till the MSO set ensures correct global
diagnosis results. A multi-tank system is used to
demonstrate and validate the proposed methods.

1 Introduction
The Minimal Structurally Overdetermined (MSO) sets ap-
proach has been used extensively for designing model based
fault detection and isolation (FDI) schemes for complex
systems [Krysander et al., 2008a; Krysander et al., 2008b;
Svard et al., 2012]. However, for large complex systems
such as aircraft and other transportation systems, manufac-
turing processes, supply chain and distribution networks,
and power generation and the power grid it is becoming
imperative to develop distributed approaches to monitoring
and diagnosis to overcome the need for complete global
models, while also addressing computational complexity
and reliability problems for the diagnosers [Leger et al.,
1999; Shum et al., 1988; Deb et al., 1998; Lanigan et al.,
2011].

Unlike centralized approaches, distributed approaches are
more reliable because they avoid single points of failure.
In addition, they can reduce the problems of noise, cor-
ruption, and losses that can occur when transmitting sig-
nals from individual subsystems to a centralized fault di-
agnosis unit. Measurement noise and signal corruption can
significantly affect diagnoser robustness and accuracy [Fer-
rari et al., 2012]. Transmission delays not only increase
detection time, but can also affect the order of detection,

which can further affect diagnostic accuracy. Detection time
is important for the safe and reliable operation of safety-
critical systems. Faster fault detection and isolation en-
ables accompanying fault tolerant control units to react in
a timely manner, thus reducing damage and down time of
systems [Roychoudhury et al., 2009; Daigle et al., 2007;
Duarte Jr and Nanya, 1998; Rish et al., 2005; Bregon et al.,
2014]. The computational intractability of building central-
ized diagnosers for the large systems is another important
reason to develop distributed solutions for FDI problems.

In this paper, we formulate the distributed minimal struc-
turally overdetermined set selection as a binary integer lin-
ear programming (BILP) problem [Wolsey, 1998]. The ap-
proach efficiently picks a minimal number of measurements
from a subsystem and its neighboring subsystems to develop
a local diagnoser for each subsystem of the larger, complex
dynamic system. We start with an efficient algorithm de-
signed by [Krysander et al., 2008a] for finding minimally
overdetermined sets of constraints to generate the minimal
structurally overdetermined (MSO) sets for designing the
diagnoser. Other researchers have employed binary inte-
ger programming and binary linear integer programming for
optimal sensor placement for fault detection and isolation
[Sarrate et al., 2007; Rosich et al., 2009]. In this paper, we
utilize BILP for distributed MSO selection to facilitate an
efficient distributed diagnosis approach.

Our method is designed in a way that the subsystem di-
agnosers, once designed can operate independently with no
communication with the other subsystem diagnosers (other
than a minimal number of shared measurements), but still
provide globally correct diagnosis results. Unlike [Lafor-
tune, 2007; Debouk et al., 2000; Indra et al., 2012] this
method does not require the use of a centralized coordina-
tor during on-line operations. Therefore, we avoid the sin-
gle point-of-failure problem of centralized diagnosers. Our
method assumes the availability of a global system model
from which the set of MSOs for the system can be derived.
The independent subsystem diagnosers are designed to min-
imize the sharing of measurements across subsystems, thus
decreasing the cost, and increasing the reliability of the
overall system diagnosis.

However, global models of a complex system are hard to
construct and may not be readily available. Subsystems are
often provided by different manufacturers, who are not will-
ing to pass along all of the intellectual property associated
with the subsystem to the system integrator. Therefore, to
avoid the unrealistic assumption that the complete model of
the complex system is available for subsystem diagnoser de-
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sign, we propose a second algorithm that constructs the in-
dividual subsystem diagnosers without assuming the avail-
ability of a global model. The modified algorithm is com-
putationally more efficient, but we cannot guarantee that the
shared measurements between the subsystems is minimal
globally (i.e., across the entire system).

The rest of this paper is organized as follows. The back-
ground material, definitions and the running example, a
four-tank system, are presented in Section 2. The distributed
diagnosis problem formulation is presented in Section 3. Al-
gorithm 1 for distributed MSO set selection is described in
Section 4. The heuristic modifications to Algorithm 1 given
the global model is not available is presented in Section 5 as
the incremental algorithm. Section 6 discusses the contribu-
tions of the paper in relation to previous work, and presents
the conclusion of the paper.

2 Background

This section introduces the basic concepts associated with
MSO set selection for structural diagnosis of dynamic sys-
tems. The system model S is defined as follows.

Definition 1 (System model). A system model S is a four-
tuple: (V , M , E, F ), where V is the set of variables, M is
the set of measurements, E is the set of equations and F is
the set of system faults.

We use a configured four tank system, shown in Fig-
ure 1, as a running example throughout this paper to de-
scribe the problem, and to illustrate the algorithms for dis-
tributed MSO set selection. We assume each tank, and the
outlet pipe to its right, constitute a subsystem. Therefore,
this system has four subsystems. Two of the subsystems,
1 and 3, also have inflows into their tanks. We assume the
subsystems are disjoint, i.e., they have no overlapping com-
ponents. Associated with each subsystem are a set of mea-
surements that are shown as encircled variables in the figure.
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Figure 1: Running example: Four Tank System.

More generally, we assume the system, S has n pre-
defined subsystems, S1, S2, ....Sn. Each subsystem model
is defined as:

Definition 2 (Subsystem model). A subsystem model of sys-
tem model S, Si (1 ≤ i ≤ k) is also a four-tuple: (Vi, Mi,
Ei, Fi), where Vi ⊆ V , Mi ⊆ M , Ei ⊆ E and Fi ⊆ F .
Also, S1 ∪ S2 ∪ ....Sk = S.

For illustration, the first subsystem in our running exam-
ple is described by the following set of equations:

e1 : ṗ1 =
1

CT1 + f1
(qin1 − q1)

e2 : q1 =
p1 − p2
RP1 + f2

e3 : p1 =

∫
ṗ1 dt

e4 : qin1 = u1

e5 : p1 = y1
e6 : q1 = y2.

(1)
Therefore, E1 = {e1, e2, e3, e4, e5, e6} defines the set of
equations, V1 = {ṗ1, p1, p2, qin1, q1} defines the set of vari-
ables, M1 = {u1, y1, y2} defines the set of subsystem mea-
surements, and F1 = {f1, f2} defines the set of faults asso-
ciated with this subsystem model.

Similarly, the second subsystem model is defined by the
following equations:

e7 : ṗ2 =
1

CT2 + f3
(q1 − q2)

e8 : q2 =
p2 − p3
RP2 + f4

e9 : p2 =

∫
ṗ2 dt

e10 : p2 = y3
e11 : q2 = y4.

(2)
For this subsystem the set of equations is E2 =
{e7, e8, e9, e10, e11}, the set of variable is V2 = {ṗ2, p2,
p3, q1, q2}, the set of measurements is M2 = {y2, y4}, and
F2 = {f3, f4} is the set of faults.

In this paper, we assume there are no overlapping com-
ponents among the subsystems. However, the subsystems
may share variables at their interface. For example, the liq-
uid flowrate at outlet pipe of subsystem qi = qi′, the liquid
flowrate at input to connected tank i+ 1.
Definition 3 (First Order Connected Subsystems). Two sub-
systems, Si and Sj are defined to be first order connected if
and only if they have at least one shared variable.

In the running example, subsystems S1 and S2 are first
order connected and their shared variables are V1 ∩ V2 =
{p2, , q1}. The two other subsystems in the running example
are:

e12 : ṗ3 =
1

CT3
(qin2 + q2 − q3)

e13 : q3 =
p3 − p4
RP3 + f5

e14 : p3 =

∫
ṗ3 dt

e15 : qin2 = u2

e16 : q3 = y5.

(3)

e17 : ṗ4 =
1

CT4 + f6
(q3 − q4)

e18 : q4 =
p4
RP4

e19 : p4 =

∫
ṗ4 dt

e20 : p4 = y6.

(4)
In more general terms, ith order connected subsystem

models are defined as follows.
Definition 4 (ith Order Connected Subsystems). Two sub-
systems, Sk and Sj are defined to be ith order connected
if and only if there exists a subsystem model Sm that is
(i−1)th order connected to Sk, and is first-order connected
to Sj , or Sm is (i− 1)th order connected to Sj , and is first-
order connected to Sk .
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For example in the four tank system, S1 and S3 are sec-
ond order connected because both of them are first order
connected to S2.

In this paper, we use MSO sets [Krysander et al., 2008b]
as the primary conceptual approach for fault detection and
isolation. The formal definitions of Structurally Overdeter-
mined (SO) and MSO sets are:
Definition 5. (Structural Overdetermined Set) Consider a
set of equations and its associated variables, measurements,
and faults: (E, V,M,F ). This set of equations is struc-
turally overdetermined (SO) if the cardinality of the set {E}
is greater than the cardinality of set {V }, i.e. |E| > |V |.
Definition 6. (Minimal Structurally Overdetermined Set)
A set of over determined equations is minimal structurally
overdetermined (MSO) if it has no subset of structurally
overdetermined equations.

Consider subsystem S1 of the four tank system in equa-
tion (1). Using the software developed by [Krysander
et al., 2008a], we can compute the only minimal struc-
turally overdetermined set in this subsystem as MSO11 =
(E11, V11,M11, F11), where E11 = {e1, e3, e4, e5, e6},
V11 = {ṗ1, p1, qin1, q1}, M11 = {u1, y1, y2} and F11 =
{f1}. For the sake of brevity and simplification we simply
say a specific equation, variable, measurement, or fault is a
member of a MSO in the rest of the paper. For example, we
say f1 ∈MSO11.

MSOs represent the redundancies in the system and can
form the basis for fault detection and isolation. Global and
Local fault detectability are defined as:
Definition 7. (Globally detectable fault) A fault f ∈ F is
globally detectable in system S if there is a minimal struc-
turally overdetermined set MSOi in the system, such that f
∈MSOi.
Definition 8. (Locally detectable fault) A fault f ∈ Fi is lo-
cally detectable in subsystem Si if there is a minimal struc-
turally overdetermined set MSOi in the subsystem that f ∈
MSOi.

Consider Definition 8 and equation (1). Fault f1 is lo-
cally detectable because f1 ∈ MSO11 but f2 is not lo-
cally detectable since there is no MSO in this subsystem
that includes f2. To detect f2 locally, the diagnosis subsys-
tem needs to include additional measurements. Global and
Local fault isolability are defined as:
Definition 9. (Globally isolable fault) A fault fi ∈ F is
globally isolable from fault fj ∈ F if there exists a mini-
mal structurally overdetermined set MSOi in the system S,
such that fi ∈MSOi and fj 6∈MSOi .
Definition 10. (Locally isolable fault) A fault fi ∈ Fi is
locally isolable from fault fj ∈ F if there exists a mini-
mal structurally overdetermined set MSOi in subsystem Si,
such that fi ∈MSOi and fj 6∈MSOi .

Note that if a fault fi is locally detectable in a subsys-
tem Si, it is globally detectable too, and if a fault fi is lo-
cally isolable from a fault fj , it is globally isolable from fj
as well. The problem of MSO selection is presented as a
binary integer linear programming (BILP) problem in this
paper. BILP is a special case of the integer linear program-
ming problem (ILP), where the unknowns to be solved for
are binary variables.1

1See definition in Wikipedia: https://en.wikipedia.
org/wiki/Integer_programming.

Definition 11. (Binary integer linear programming problem
(BILP)) A Binary integer linear programming problem is a
special case of an integer linear programming (ILP) opti-
mization problem in which some or all the unknown vari-
ables to be solved for are required to be binary, and the
constraints in the problem and the objective function, like
ILP, are linear.

The mathematical formulation of BILP is as follows.

min cTx

Ax ≤ b

∃xb ⊂ x

∀xk ∈ xb ⇒ xk ∈ {0, 1},

(5)

where vector c is the cost weights and matrix A and vector
b define linear constraints, x represents the variables, and
xb represents the binary variables [Wolsey and Nemhauser,
2014].

3 Problem Formulation
Designing a set of distributed diagnosers that together have
the same diagnosability as a centralized diagnoser is the fo-
cus of our work in this paper. In the ideal case, each sub-
system includes sufficient redundancies, such that its set
of MSOs is sufficient to detect and isolate all of its faults,
Fi uniquely and unambiguously. In that case, we can as-
sociate an independent diagnoser Di with each subsystem
Si; 1 ≤ i ≤ k, and each diagnoser operates with no cen-
tralized control, and no exchange of information with other
diagnosers. If the independence among diagnosers does not
hold, then the subsystems need to communicate some of
their measurements to other subsystems to detect and iso-
late the faults. To address this problem in an efficient way,
we derive an integrated approach to select a set of MSOs for
each subsystem that guarantee full diagnosability and mini-
mum exchange of measurements among subsystems.

Given subsystems, Si; 1 ≤ i ≤ k, with a set of local fault
candidates, Fi, such that

⋃
i=1

k
Fi = F . We may need to

augment each subsystem with additional measurements that
are typically acquired from the (nearest) neighbors of the
subsystem, such that all of the faults associated with the ex-
tended model of this subsystem are detectable and isolable.
In the worst case, all of the measurements from another sub-
system may have to be included to make the current subsys-
tem diagnosable. When such a situation occurs, we say the
two subsystems are merged and represented by a common
diagnoser, therefore, the total number of independent dis-
tributed diagnosers may be less than k.

Each MSO is sensitive to a set of faults and, therefore can
be used to detect them and isolate them from the other faults
in the system. For each subsystem Si, our goal is to find a
minimal set of MSOs that provide maximum detectability
and isolability to that subsystem. A set of MSOs is mini-
mal if there is no subset of MSOs that provides the same
detectability and isolability. To achieve distributed fault di-
agnosis, we also want each subsystem to use the minimum
number of measurements from the other subsystems. In
other words, we want to minimize communication or the
amount of data (measurements) to be transmitted between
the subsystems. More formally, the problem for designing a
diagnoser for a particular subsystem Si can be described as
follows:
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ConsiderMSO = {MSO1,MSO2, . . . ,MSOr} as the
set of possible MSOs for the subsystem Si. We need to de-
velop an algorithm to select a minimal subset ofMSO that
guarantees maximal structural detectability and isolability
for faults Fi associated with the subsystem, and include a
minimum number of measurements from the other subsys-
tems in the system to assure the equivalence of local and
global diagnosability , i.e.,

∀Si; 1 ≤ i ≤ k

Select MSOSi ⊂MSO
s.t. min

Mo⊆M
|Mo|

Di(Mi ∪Mo) = Di(M),

Ii(Mi ∪Mo) = Ii(M),

(6)

where Mo represents the set of measurement we need to
communicate to the subsystem Si along with the set of mea-
surements, Mi associated with the subsystem Si. M repre-
sents the set of all measurements in the system. For a given
set of measurements, X , Di(X) represents the set of de-
tectable faults in Fi, and Ii(X) represents the set of isolable
faults in Fi from the system faults, F .

In the next section we formulate the problem as a BILP
problem. Formulating the problem as a BILP, enables us to
use a number of well-developed tools like branch and bound
algorithms [Land and Doig, 1960] and branch and cut al-
gorithms [Mitchell, 2002] to solve the problem. However,
much like integer linear programming, the general BILP so-
lution is exponential.

4 MSOs Selection for Distributed Fault
Detection Using Global Model

In this section, we present our algorithm to select a mini-
mal set of residuals for each subsystem of a system whose
global model is available as a set of equations. In the next
section, we modify this algorithm to make it applicable to
much larger systems, where a compiled global model is not
available.

For the situation in which the global model is known,
M in equation (6) is the set of all system measurements.
Assume we have l measurements in the system: M =
{m1,m2, ...,ml}. The measurements imply redundancies
in the system model that form the basis for generating
MSOs. Let us assume we can generate r MSOs given
M : MSO = {MSO1,MSO2, . . . ,MSOr}. Our goal
is to design an algorithm that selects MSOi ⊆ MSO in
a way that we add a minimum number of measurements
Mo ⊆M,Mi∩Mo = ∅, i.e., measurements from the system
not belonging to subsystem i, to a subsystem to make all its
faults globally diagnosable. Note that this is equivalent to
the set covering problem and, therefore, any algorithm for
finding the minimal measurements is exponential, in gen-
eral. In the past, we have adopted heuristic search methods
for solving this problem. Our approach for designing sub-
system diagnosers used the Temporal Causal Graph (TCG)
approach [Roychoudhury et al., 2009]. In this paper, we for-
mulate the search for minimal sensors as a BILP problem.
The general formulation of BILP is presented in (5), and
there are several tools available for solving this problem.2

2For example, see http://www.
mathworks.com/help/optim/ug/

To formulate the problem (6) as a BILP problem we de-
fine a binary variable x(k): 1 ≤ k ≤ l, for measurement
mk in the system as follows:

x(k) =

{
1 if mk ∈Mi ∪Mo

0 if mk /∈Mi ∪Mo,
(7)

where Mo is the answer to problem (6). We also define
x(k + l): 1 ≤ k ≤ r, for MSO MSOk in the system as
follows.

x(k + l) =

{
1 if MSOk ∈MSOi

0 if MSOk /∈MSOi.
(8)

To minimize the number of measurements from the other
subsystems, we develop the following cost function c as:

c(k) =

{
0 if mk ∈Mi

1 if mk ∈M\Mi

0 if l < k ≤ l + r,
(9)

where l is the number system measurements and r is the
number of MSOs in the system. Using the algorithm pro-
posed in [Krysander et al., 2008a] 165 MSOs are generated
for the running example, the four tank system. Since there
are 8 measurements in the system c is a vector with 173 el-
ements for this example.

Consider subsystem Si with local faults Fi and the set of
system faults, F . Each local fault fj ∈ Fi has to be lo-
cally detectable. Given definition 8, we can guarantee local
detectability of all the faults fj ∈ Fi with the following
constraints in the optimization problem (5).

A(j, k) =

{
0 if k < l
−1 if fj ∈MSOk−l
0 otherwise.

(10)

Note that l is the number of measurements in the system.
By considering b(j) = −1 for 1 ≤ j ≤ g, where g is the
number of faults in Fi, we make sure that we have selected
at least one MSO to detect each fault.

To address isolability requirement we follow the same
procedure. To isolate fj ∈ Fi from any other fault in sys-
tem, i.e., fh ∈ F we need to have:

A(j + g, k) =

{
0 k < l
−1 fj ∈MSOk−l, fh /∈MSOk−l
0 otherwise.

(11)
Setting b(j) = −1 for g < j ≤ g ∗h, where h is the number
of faults in the system, h = |F |, we make sure that there
is at least one MSO to isolate each of the subsystem faults
from the other faults in the system.

In addition to the constraints that guarantee maximum de-
tectability and isolability for the distributed diagnosis sys-
tem, we need a set of constraints that capture the relation-
ship between the measurements and MSOs in the distributed
diagnosis system. Using a MSO is equivalent to using the
measurements that are included in the MSO, and we need
to include this in the optimization problem. For exam-
ple, consider MSO11, it has three measurements M11 =
{u1, y1, y2}. Using MSO11 in a local diagnosis subsystem
means we need to communicate these measurement streams
to that subsystem to achieve global diagnosability for the

mixed-integer-linear-programming-algorithms.
html in the MatlabTMlinear integer programming toolbox.
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faults that belong to that subsystem. The following equa-
tion represents this constraint.

− x(1)− x(2)− x(3) + |M1|x(7) ≤ 0, (12)

where |M1| = 3 is the cardinality number of M1 and x(1),
x(2), x(3) and x(7) are binary variables that are 1 if we use
u1, y1, y2 and MSO11 in the diagnosis system and are zero
otherwise. This constraint implies that if we use MSO1:
x(7) = 1, its associated measurements are used by the sub-
system too: x(1) = x(2) = x(3) = 1.

Equation (13) represents these set of constraints in A ma-
trix.

A(j + g ∗ h, k) =
{ −1 if mk ∈MSOj

|Mj | if k = j + |M |
0 otherwise,

(13)
where |Mj | is the cardinality number of set of measure-
ments in MSOj and |M | is the cardinality number of set
of all the measurements in the system. Setting b(j) = 0 for
g ∗ h < j ≤ g ∗ h + n, where n is the number of MSOs
in the system. The optimization problem takes into account
the relationship between measurements and MSOs. For the
running example we generated 165 MSOs, there are also 3
measurements in the subsystem 1, and 8 measurements for
the entire system. Similarly, subsystem 1 has two faults of
interest, and the goal is to be able to isolate them from any of
the 6 faults in the complete system. Therefore, to solve the
optimization problem (5) for subsystem 1, matrix A has 177
rows (equal to the number of constraints: 2 constraints to
guarantee the local detectability of f1 and f2, 10 constraints
to guarantee the local isolability of f1 and f2 from the other
faults, and 165 constraints to capture the relationship be-
tween the MSOs and the measurements) and 173 columns
(equal to the number of binary variables: 8 for the measure-
ments and 165 for the MSOs) and b is a vector with 177
elements (equal to the number of constraints).

Table 1 shows the set of measurements that we need to
add for each of the subsystem diagnosers to achieve max-
imum possible detectability and isolability using our pro-
posed algorithm. To find the optimum measurements, we
solved the optimization problem (5) for each subsystem.

Table 1: Set of augmented measurements to each subsystem
model

Subsystem Set of augmented measurements
S1 y3
S2 u2, y2, y6
S3 y4, y6
S4 y5

Considering the expanded measurement set the schematic
of the four tank system with the four distributed diagnosers
is shown in Figure 2. The figure shows the complete set
of measurements required by the four subsystem diagnosers
to achieve global detectability and isolability for the set of
faults they contain. For example subsystem 1 includes three
measurements M1 = {u1, y1, y2}, and to achieve global di-
agnosability for its faults, y3 must be communicated to its
diagnoser from subsystem 2. Subsystem 2 is the only sub-
system that shares a variable with a second order connected

subsystem, all the other subsystems only need to communi-
cate with their first order connected subsystems. Note that
communicated measurements typically will incur additional
cost and may lower reliability of the system diagnoser. But
keeping them to a minimum (see results in Table 1) reduces
that cost and uncertainty, while maintaining global diagnos-
ability.
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Figure 2: Distributed diagnosis subsystems.

A common way to validate a distributed fault detection
and isolation approach is to compare the result with the
maximum global detectability and isolability. Adopting the
exoneration assumption, Table 2 shows the detectability and
isolability performance of the centralized approach. An X
in the table shows that the fault in the row and the fault in
the column are not isolable from each other. An X in the
first column (NF) means the fault in the corresponding row
is not isolable from NF (No Fault) or simply it is not de-
tectable. Table 2 shows that with a centralized approach we
can detect and isolate all the faults.

Table 2: Fault isolability table for running example using
centralized approach

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

However, Table 3 shows that using the original subsys-
tems for distributed diagnosis does not provide the same re-
sults as the centralized global diagnoser.

Table 3: Fault isolability table for running example using
distributed approach for the original subsystems

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X X X X X X
f3 X X X X X X
f4 X X X X X X
f5 X X X X X X
f6 X X X X X X

In fact, only f1 can be detected and isolated from the
other faults. Using the augmented subsystems in Table 1
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Table 4: Fault isolability table for running example using
distributed approach for the augmented subsystems

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

(Figure 2) we achieve the same performance as the global
diagnoser as shown in Table 4.

This demonstrates that the distributed approach can
achieve the same performance with the centralized approach
for fault detection and isolation in the running example. In
general, the worst case scenario for a system with strongly
connected subsystems (i.e., all subsystems are connected to
each other) will typically require a large number of mea-
surements from other subsystems to be communicated to
each subsystem diagnoser. In those situations, subsystem
diagnosers just get rid of the single point of failure, but each
subsystem diagnoser may require a large number of mea-
surements to be communicated to it from all of the other
subsystems.

In our case study, the four tank system model included
165 MSOs, which means for each subsystem there was 2165
different MSO candidate sets. This creates a very large
search space (in general the search space is exponential in
the number of MSOs, and generating all MSOs is in itself
an exponential problem. This justifies the formulation of the
problem as a BILP problem that provides efficient tools, like
the bintprog function in MatlabTM(see earlier footnote), to
solve it. However, given the exponential nature of the solu-
tion, this method will not scale up for larger systems, even
if the subsystem diagnoser design is performed off-line. In
addition to the computational complexity, the availability of
global models for large, complex systems is unlikely be-
cause of the issues discussed in Section 1. To overcome this
problem, we sacrifice minimality of the solution to some ex-
tent, and propose an incremental algorithm for designing the
subsystem diagnosers.

5 MSOs Selection for Distributed Fault
Detection Using Neighboring Subsystems

The proposed approach in the previous section used the
global model of the system to generate the residuals, and
then derived the subsystem diagnosers using the BILP al-
gorithm run on the global MSO set. In this section, we
achieve global diagnosability of a subsystem diagnoser by
incrementally adding a minimum number of measurements
from the neighbors of this subsystem till the global diagnos-
ability property is established. The algorithm starts with the
set of equations for the subsystem whose diagnoser is being
designed, and if global diagnosability is not achieved using
this model, it expands to include equation sets that corre-
spond to the models of its immediate neighbors. If global
diagnosability is achieved, the algorithm terminates, oth-
erwise the algorithm expands to use the next higher order
of neighbors and repeats the search for minimal MSOs to
achieve complete diagnosability. The process of including
successively higher order neighbors is shown in Figure 3.

In the worst case, this process continues, till the complete
set of system equations are required to generate all possi-
ble MSOs, and establish global diagnosability for the sub-
system. Therefore, it is guaranteed that the method has the
same diagnosability performance as the best centralized di-
agnoser for the same set of measurements. Algorithm 1 de-
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Figure 3: Expanding the search environment to the higher
order connected subsystems.

scribes the algorithm for our proposed method.

Algorithm 1 Incremental Algorithm
1: for each Si ∈ S do
2: SS = Si

3: j = 0
4: while Di(SS) 6= Di(S) or Ii(SS) 6= Ii(S) do
5: j = j + 1
6: SS =SS ∪ (jth order connected subsystems of Si)

7: Generate all the MSOs for SS
8: Use equation (9) to compute cost function for SS
9: Use equations (10), (11), and (13) to generate A

matrix for SS
10: Generate vector b for SS
11: Use bintprog(c, A, b) to solve the problem and

compute Di(SS) and Ii(SS)

Consider the running example. To design the diagno-
sis system for the first subsystem, we start with its set of
equations and we can only generate one MSO which is not
enough to detect subsystem faults and isolate them from the
system faults. We then augment the subsystem model with
the model from its nearest neighbor subsystem 2, and gen-
erate the set of MSOs for the augmented model. The total
number of MSOs for the augmented subsystem (Subsystem
1 + subsystem 2) is 11 which leads to 211 MSO set can-
didates which is much smaller than 2165 candidates. Solv-
ing the optimization problem presented in this section gives
the same result with the global method for this subsystem,
but the computation time is reduced significantly. Using
the same approach for every subsystem, the set of measure-
ments that we need to transfer to each subsystem of the run-
ning example are presented in Table 5.

Figure 4 shows that for the four tank case study, all the
subsystems share variables with their first order connected
subsystems. This provides a practical advantage to this al-
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Table 5: Set of augmented measurements to each subsystem
model

Subsystem Set of augmented measurements
S1 y3
S2 u2, y2, y5
S3 y4, y6
S4 y5

gorithm because usually the subsystems with shared vari-
ables are physically closer to each other (corresponding to
our definition of nearest neighbors) and, therefore, we do
not need to transfer data over long distances, which, as dis-
cussed earlier, can be costly and error-prone.

1S

1y

1T

1u

1P

2y

2P

4y

3P

5y3y

3T

2u

2S

6y

4T

4P

2T

Figure 4: Distributed diagnosis subsystems using incremen-
tal algorithm.

Table 6 shows that this distributed diagnosis system pro-
vides the same diagnosability performance as the central-
ized diagnosis method.

Table 6: Fault isolability table for running example using
the incremental algorithm

NF f1 f2 f3 f4 f5 f6
f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

The proposed algorithm provides the maximum possible
detectability and isolability that can be achieved. The ad-
vantage of this algorithm is that not only we do not need a
global model for detecting and isolating the faults, but also
we do not use the global model in the design process of the
supervisory system. This makes the approach suitable for
large, complex systems, such as aircraft and power plants
where the global systems models are likely to be unavail-
able or unknown.

6 Discussion and Conclusions
A distributed approach to the problem of fault detection and
isolation is presented in this paper. We proposed two al-
gorithms for MSOs selection for the distributed diagnosis.
The proposed algorithms provide the maximum possible de-
tectability and isolability that can be achieved for a sys-
tem given a set of measurements. The first algorithm also
guarantees that the subsystems share the minimum number

of measurements, implying that we minimize the commu-
nication of measurement streams across subsystems of the
global system. This is important because sending the data
to other subsystems is costly in large scale systems. On the
other hand, the second algorithm does not need to use the
global model in the design process of the supervisory sys-
tem . This makes the algorithm more practical, specially for
the complex systems. However, the second algorithm does
not guarantee that the number of shared variables among the
subsystems are globally minimum.

Unlike previous work, such as [Bregon et al., 2014;
Daigle et al., 2007] this method directly works with MSOs
generated from subsystem and system equations, and there-
fore, does not need to use the temporal response and event
ordering in the diagnosis, all of which are derived proper-
ties, and, therefore, require additional computation. Using a
purely structural approach, reduces the overall diagnosabil-
ity of the system for the given set of measurements. How-
ever, it also reduces the number of assumptions we need to
make about the fault characteristics, order of events in the
diagnoses subsystems (which can be error-prone), and we
dot have to analyze in detail the subsystem dynamics.

Moreover, in the incremental algorithm we do not need
to have the full global model to design the individual sub-
system diagnosers. This is an important practical contribu-
tion of this paper in comparison to our previous work (e.g.,
[Roychoudhury et al., 2009]). Requiring the global model
may render the approach to be impractical for the large-scale
complex systems, such as aircraft and power plants where
the global systems models are likely to be unavailable or
unknown.

Finally, in the proposed methods, we generate the MSOs
first to design our subsystem diagnosers. The total num-
ber of MSOs is exponential in terms of the system measure-
ments. This increases the computational cost of the prob-
lem. To make our diagnoser derivation process more effi-
cient, we used BILP framework. On the other hand, having
all the MSOs beforehand, makes robustness analysis [Kho-
rasgani et al., 2014a; Khorasgani et al., 2014b] possible for
robust distributed MSOs selection. In future work, we will
consider noise and uncertainty in the system and will ex-
tend the proposed method to robust distributed fault detec-
tion and isolation.
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