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Abstract

We introduce the problem of self healing, in
which a system is asked to self diagnose and
self repair. The two problems of computing
the diagnosis and the repair are often solved
separately. We show in this paper how to tie
these two tasks together: a planner searches
a prospective plan on a sample of the belief
state; a diagnoser verifies the applicability of
the plan and returns a state of the belief state
(added to the sample) in which the plan is
not applicable. This decomposition of the
self healing process avoids the explicit com-
putation of the belief state. Our experiments
demonstrate that it scales much better than
the traditional approach.

1 Introduction

Autonomous systems are subject to faults and require
regular repair actions; systems capable of performing
such tasks are called self healing. Finding the optimal
repair involves solving a diagnosis problem (what may
the current system state be?) together with a planning
problem (what optimal/near optimal course of actions,
applicable in all of the possible states, leads to an ac-
ceptable state?). In large, partially observable, systems
computing an explicit “belief state” can be intractable;
finding a plan applicable in all elements of this belief
state can be also intractable.
In this paper we propose a method that avoids these

two intractable problems. This method relies on the in-
tuition that the full belief state is not necessary to find
the appropriate repair. For instance, if a self-healing
problem requires to make sure that n given machines
are turned off and if the status (on or off) of these ma-
chines is unknown, then the belief state is comprised of
2n states. However the optimal plan (press the stop but-
ton on every machine) happens to be the optimal plan
of the state where none of the machines has been shut:
this single state is “representative” of all the states in
the belief state.
Our approach uses a planner to compute an opti-

mal plan for a small sample of the belief state (at most
dozens of elements); the plan is applicable in all these
states and leads to the goal state. In order to vali-
date the plan for the full belief state we search for an

element of the belief state in which the plan is not ap-
plicable. To this end we define a new type of diagnoser
that solves the following problem: find a possible be-
haviour of the system (that agrees with the model and
the observations) that ends up in a state q in which the
plan is not correct; this state q is added to the sample
of the belief state so that the planner finds a more suit-
able repair plan at the next iteration. Failure on the
part of the diagnoser to find such a behaviour proves
that the plan is indeed correct. In practice the prob-
lem of verifying the correctness of a plan is reduced to a
propositional satisfiability (sat) problem that is unsat-
isfiable iff the plan is applicable in all states and that
returns a counterexample if not.
The contributions of this paper are i) a formal def-

inition of the self-healing problem, ii) the solving of
self-healing as a combination of diagnosis and planning
steps, and iii) the reduction of each step to sat.
This work is performed in the context of discrete

event systems [Cassandras and Lafortune, 1999]. As
opposed to supervisory control, where actions (either
active or passive, such as forbidding some events) are
performed while the system is running, we follow the
work from Cordier et al. [2007] and assume that the
repair is being performed whilst the system is inactive.
The paper is divided as follows. Next section defines

the self-healing problem formally. Section 3 presents
the proposed algorithm with a set-based perspective.
The sat implementation is presented in Section 4. Ex-
perimental validation is given in Section 5. A compar-
ison with other problems and approaches is given in
Section 6.

2 Problem Definition
The problem we are addressing is illustrated on Fig-
ure 1. We are concerned with finding the most appro-
priate repair for a partially observed system that has
been running freely.
We assume that the system can run in two different

modes: the “active” (and useful) mode in which the
system is free to operate (left half of the figure) and
the “repair” mode in which the system state is being
re-adjusted (right half). The system behaves quite dif-
ferently in the two modes. In the active mode, the sys-
tem is partially observable but uncontrolled. In the re-
pair mode, the system is not observed albeit controlled;
the state changes only through explicit application of
actions; and special attention must be made to their
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Figure 1: Schematic description of the self-healing problem: find a repair plan that returns the state in the goal
set.

applicability/effects. One reason for assuming that the
system does not run freely in the repair mode is that we
do not want to consider scenarios where faults can oc-
cur during the repair, which would increase the overall
complexity of the problem. We believe that this limi-
tation, essentially the fact that the repair actions have
deterministic effects, can be lifted.

2.1 Explicit Model

We are considering discrete event systems (DES, [Cas-
sandras and Lafortune, 1999]). The system is modeled
as a finite state machine, i.e., a finite set Q of states
together with a set T of transitions labeled with finitely-
many events/actions.

Definition 1 An explicit self-healing system model is
a tuple M = 〈Q, I,Σ,Σo,Σa, T,G, U〉 where
• Q is a finite set of states, I ⊆ Q is a set of initial
states, G ⊆ Q is a set of goal states, U ⊆ Q is a
set of unstable states,

• Σ is a finite set of events, Σo ⊆ Σ is the set of
observable events, Σa ⊆ Σ is the set of actions,
and

• T ⊆ (Q× Σ×Q) is the set of transitions 〈q, e, q′〉
also denoted q

e−→ q′.

In the active mode the system takes a path ρ = q0
e1−→

. . .
en−→ qn such that {e1, . . . , en} ⊆ Σ \ Σa, q0 ∈ I and

qn 6∈ U . This last condition is used to prevent situ-
ations where a fault happened right before the repair
is applied, i.e., before any observation of this fault was
made. This assumption is similar to the one made, e.g.,
by Lamperti and Zanella that the system is quiescent
(no more event is about to happen) when diagnosis is
performed [Lamperti and Zanella, 2003]. This assump-
tion can be removed by assuming U = Q. Finally the
observation O = obs(ρ) of this path is the projection
of e1, . . . , en on the observable events Σo (i.e., all non-
observable events are eliminated from the sequence).
In the repair mode a sequence of actions, called a plan

π = a1, . . . , ak, is applied ({a1, . . . , ak} ⊆ Σa). From
state q′0 ∈ Q, the application of π leads to the (single)

state q′k = π(q′0) such that q′0
a1−→ . . .

ak−→ q′k. We assume
that every action is applicable in every state (if this is
not the case a non-goal sink state can be created where
all inapplicable actions lead to) and have deterministic
effects. If π leads q′0 to a goal state, we say that π is
correct for q′0.

Notice that a plan is a simple sequence: we do not as-
sume that additional observations are available at run-
time. There is no probing action available. After non
deterministic action effects, the use of conditional plans
is a second natural extension of this work.

Definition 2 The self-healing problem is a pair P =
〈M,O〉 where M is a model and O is an observation.
A repair plan for P is a plan that is guaranteed to be
correct in the current state. Formally a repair plan is
a plan π such that

∀ρ = q0
e1−→ . . .

en−→ qn.
(q0 ∈ I ∧ obs(ρ) = O ∧ qn 6∈ U) ⇒ π(qn) ∈ G.

(1)

The set of repair plans is denoted Π(M,O) or simply
Π.
Given a cost function on sequences of actions, the

objective of the self-healing problem is to find a cost-
minimal repair plan (for simplicity we assume that such
a plan exists):

π⋆ = argmin
π∈Π

cost(π).

This definition assumes a cost function that provides
a total order on the plans. In practice we will try to
minimise the number of actions (all actions have the
same cost, the cost is cumulative) and break ties at
random.
We see two main categories of self-healing problems,

namely i) a recurring situation where the system is
stopped regularly, which provides a good opportunity
to perform corrective actions on the system; ii) a situa-
tion where a diagnoser/monitor detects an anomaly on
the system and triggers a self-healing procedure. The
present work is independent from how the problem was
prompted.

2.2 Solving the Problem Explicitly

This paper works under the assumption that the sys-
tem model is very large and that it is impractical to
manipulate sets of states. We discuss this issue here
and present some notations.
The simplest way to solve the self-healing problem

is to compute the belief state and then compute the
optimal plan for this set of states.
Given a model M and the observation O, the belief

state BO is defined as the set of states that the system
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could be in:

BO = {q ∈ Q | ∃ρ = q0
e1−→ . . .

en−→ qn.
q0 ∈ I ∧ obs(ρ) = O ∧ qn 6∈ U ∧ q = qn}.

Notice that the definition of the belief state matches
the first part of Equation (1).

A conformant plan for the set of states BO is a plan
π that is correct for all states of BO: ∀q ∈ BO. π(q) ∈ G
(cf. Figure 2). Compared to the general definition of a
conformant plan (a more detailled comparison is given
in Section 6) we only deal with uncertainty on the initial
state and we assume that actions have deterministic
effects. Conformant planning is provably pspace-hard
for explicit models.
We consider the conformant planning problem from

the initial set of states BO and use b = |BO| to denote
the size of BO. The problem can be solved by consid-
ering the finite state machine M ′ where each state of
M ′ is a set of states of the original model and each
transition from state S labeled by action a leads to
S′ = {q′ ∈ Q | ∃q ∈ S. 〈q, a, q′〉 ∈ T }. The initial
state of M ′ is BO; a state S of M ′ is a goal state if
it satisfies S ⊆ G. A plan π is a sequence of actions
such that π(BO) (in M ′) is a goal state. Because the
original model is deterministic the transition 〈S, a, S′〉
is such that the size of S′ is smaller than S. The num-
ber of states in M ′ is bounded by the sum of binomial

coefficients

(
|Q|
1

)
+ · · ·+

(
|Q|
b

)
.

qb0 qb1
. . . qbk−1 qbk

...
...

. . .
...

...

q10 q11 . . . q1k−1 q1k

Initial states B Goal states

Figure 2: Solving conformant problems; the vertical
lines mean that the transitions are labeled by the same
action.

The model M ′ presented before cannot be easily ex-
pressed in planning modeling languages such as strips
or pddl, or implemented in sat. Another reduction, to
M ′′, can be introduced whose states are tuples (with b
elements) of states from the original model: Q′′ = Qb.
A tuple state is a goal state if all its elements are in the
goal: G′′ = Gb. The transitions in M ′′ correspond to
the parallel execution of the same action in each state
of the tuple (represented by the vertical lines on Fig-
ure 2).
In generalM ′′ is larger thanM ′. The model also con-

tains symmetries that efficient implementations might
need to address explicitely: for instance in model M ′′

states 〈q1, q2〉 and 〈q2, q1〉 are different while they would
be the same in M ′: {q1, q2} = {q2, q1}.
Clearly this type of approach is only applicable if BO

comprises no more than a few dozen elements.

Finally we look at a formulation of the planning prob-
lem that is complementary to the computation of the
belief state. Assume that a plan π is given and we want
to compute the set of states Bπ in which the plan π is
correct: Bπ = {q ∈ Q | π(q) ∈ G}.
Lemma 1 Plan π is a correct plan iff BO ⊆ Bπ.

Writing Bπ def
= Q \ Bπ the set of states for which π is

not correct, plan π is a correct plan iff BO ∩ Bπ = ∅.

3 Set Formulation of Self-Healing
We first present a formulation of our solution that is
based on sets and that does not consider implementa-
tion issues (presented in the next section).
We propose a lazy approach to self-healing. In this

approach we search a correct plan for a sample of the
belief state (a “belief sample”) and then search for a
state of the belief state in which the plan is not applica-
ble; this state is added to the sample and the procedure
is iterated again until a robust plan has been found.
We first give the theoretical results that justify the

algorithm presented at the end of the section.
In the following we use the notations BO and B to

represent sets of states such that B ⊆ BO. BO will
represent the belief state and B a small subset (a few
elements) of BO. S, S′ will represent any set of states.
Let Π(q) be the set of repair plans that are correct

for state q. Let Π(S) be the set of repair plans that are
correct whichever is the current state from S. Then
Π(S) =

⋂
q∈S Π(q). Notice that Π = Π(BO).

A trivial result is:

S ⊆ S′ ⇒ Π(S) ⊇ Π(S′).

A consequence of this proposition is that the optimal
repair for BO is a correct plan for B. Computing the
optimal repair plan for the latter may therefore yield
the optimal plan for the former. Let π∗(S) be the op-
timal plan for a set of states. The next proposition
determines how to characterize that an optimal plan
was found:

S ⊆ S′ ∧ (π∗(S) ∈ Π(S′)) ⇒ π∗(S) = π∗(S′).

This result can be derived from the previous propo-
sition. π∗(S′) belongs to Π(S) since S ⊆ S′; therefore
π∗(S) is better than (or equal to) π∗(S′). However, if
π∗(S) ∈ Π(S′) and yet π∗(S′) 6= π∗(S), then π∗(S′)
must be strictly better than π∗(S), which contradicts
what was just said.
Applied to S = B and S′ = BO ⊇ B, this means

that π∗(B) ∈ Π(BO) implies π∗(B) = π∗(BO).

We reuse the notation Bπ for the set of states in
which the plan π is correct, and Bπ = Q \ Bπ for the
set of states in which it is not. With this notation,

π∗(B) ∈ Π(BO) is equivalent to BO ∩ Bπ∗(B) = ∅.
Assume that there exists a procedure

verify applicability (S, π) that extracts a state
q ∈ S ∩ Bπ if such a state exists, and returns ⊥
otherwise. Then, for S ⊆ S′, the following results are
trivial:

• verify applicability (S′, π∗(S)) = ⊥ ⇒ π∗(S) =
π∗(S′);
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• let q = verify applicability (S′, π∗(S)) 6= ⊥ be a
state where π∗(S) is not applicable, then q 6∈ S
and π∗(S ∪{q}) 6= π∗(S) (and cost(π∗(S ∪{q})) >
cost(π∗(S)))1.

The first proposition shows that verify applicability can
be used to check whether the plan π∗(B) is correct for
BO. The second proposition indicates how a better
prospective plan can be computed if π∗(B) is not cor-
rect: the addition of q to S guarantees that a different
plan will be generated.
These results lead to the procedure presented in Al-

gorithm 1. In this procedure, find plan(B) is a method
that computes a conformant plan from B as defined
at the end of the previous section (and described next
section). The procedure computes the optimal plan for
a belief sample B. If verify applicability finds a state
q ∈ BO in which this plan is not correct, then this state
is added to the belief sample and a new optimal plan
is generated and tested.

Algorithm 1 Diagnosis algorithm for the self-healing
problem without enumerating the belief state BO

B := ∅
loop
π := find plan(B)
q := verify applicability (BO, π)
if q = ⊥ then
return π

else
B := B ∪ {q}

end if
end loop

Because i) each loop iteration adds an element to B
and ii) BO is finite, this procedure is guaranteed to ter-
minate. The number of iteration is, in the worst case,
the size of BO; we expect however that a handful of
calls to find plan(·) will be sufficient to find the opti-
mal plan.

Example

We illustrate Algorithm 1 with the example of Figure 3.
Assume that the observations are O = [o1, o2]. Accord-
ing to the model, the belief state is BO = {A,D, F,H}
(state B is unstable, so the system cannot be in this
state). The state needs to be returned to a subset of
{A,G}.
Since the belief sample B0 is initially empty, Algo-

rithm 1 first generates the empty plan π0 = ε. The
procedure verify applicability exhibits state F such that

B
u−→ D

o1−→ E
o2−→ F could explain O and such that

plan π0 does not lead to a goal state when applied from
F . The optimal plan for B1 = {F} is π1 = a1. This
time verify applicability extracts stateH which also be-
longs to the belief state and for which the application
of a1 leads to sink state I. The belief sample B2 now
equals {F,H} and the optimal conformant plan for B2

is π2 = a2, a1 (remember that unobservable transition

F
u−→ H cannot trigger after the execution of a2). This

plan is correct for all elements in the belief state. Notice

1Remember that no two plans have the same cost.

A

B
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E F
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H

I

o1

a2

o1

u

o2

o2 o1

a2

o1 o2

a1

u

a2

a1

Figure 3: System example with two initial states (A
and B), two goal states (A and G), one unstable state
(B), two observable events (o1 and o2), and two actions
(a1 and a2; an action affects the system state only if
there is a transition).

that neither A norD from BO were explicitly generated
during the procedure.

4 SAT Formulation of Self-Healing

In this section we show how Algorithm 1 can be im-
plemented using sat. This implementation assumes
a symbolic representation of the model, i.e., a repre-
sentation where states and transitions are not enumer-
ated but are, instead, implicitly defined by a set V of
Boolean state variables (aka fluents) as can be found,
e.g., in a strips model.

4.1 Computing a Conformant Plan for B

The procedure we use to compute the optimal plan for
a belief sample relies on a sat solver and follows the
schematic representation of Figure 2. In planning by
sat [Kautz and Selman, 1996], given a horizon k and a
planning problem a propositional formula Φ is defined
that is satisfiable iff there exists a sequence of actions
of length k that solves the planning problem.2 Fur-
thermore Φ is defined over k + 1 copies of the state
variables (the state sat variables p0 to pk where p is a
state variable) and k copies of the actions (the action
sat variables a0 to ak−1 where a is an action). Φ is
defined such that a solution to the planning problem
can be trivially extracted from the satisfying assign-
ment (for instance, if ai evaluates to true, then the ith
action of the plan is a). If, for instance, action a sets
state variable p to false, Φ will be defined such that for
all i ∈ {1, . . . , k}

Φ ≡ (ai−1 → ¬pi) ∧ · · ·
We refer the reader to the literature on planning by sat
for more details on this reduction.
Given a sample B of b states we create b copies of the

state sat variables: p1i , . . . , p
b
i ; the variables pℓi model

the effects of applying the plan on the state qℓ ∈ B.
We stick to a single set of action sat variables and
each copy of the state sat variables is linked to this

2The value of k is initialized to 0 and incremented until
Φ becomes satisfiable.
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set. The formula Φ presented in the example above
will therefore now translate as

Φ ≡
((
ai−1 → ¬p1i

)
∧ · · · ∧

(
ai−1 → ¬pbi

))
∧ · · ·

4.2 Verifying Correctness of a Plan

Like the plan generation, plan correctness is imple-
mented in sat. This time it matches the representation
of Figure 1.
A plan is proved incorrect if an explanation of the

observations can be found in which the application of
the plan leads to a non final goal (remember that all
plans are applicable).
Once again a propositional formula is defined that is

satisfiable iff such an explanation exists. This formula
contains two parts: sat variables pi∈{0,...,n} represent
the state of the system in the active mode while vari-
ables p′i∈{0,...,k} represent the state in the repair mode.3

The formula is the conjunction of the formulas:

• Φactive a propositional formula that is satisfiable
iff there exists an explanation to the observa-
tions (whose final state is represented by the vari-
ables pn); this type of reduction is quite standard
[Grastien and Anbulagan, 2013];

• Φ′
repair a propositional formula that is satisfiable

iff there exists a state in which the proposed plan
is not correct (this state is represented by the vari-
ables p′0);

• ∧
p∈V (pn ↔ p′0), where p ranges over the state

variables, the formula that links the final state of
the active phase and the initial state of the repair
phase.

Intuitively, the assignments of the variables pn that
are consistent with Φactive are a symbolic representa-
tion of BO. Formally let V be the set of variables that
appear in Φactive; then ∃(V \ {pn | p ∈ V }). Φactive is
logically equivalent to the symbolic representation of
BO. Similarly the variables p′0 of Φ′

repair represent Bπ.

As a consequence any other representation of BO or
Bπ could be used if such representations are more con-
venient (e.g., if they are more compact or if they help
the sat solver).

Difference Between the Two Reductions

The first reduction aims at finding a plan of length k
that is applicable in b states. Therefore it includes b×k
copies of the state variables and k copies of the action
variables.
The second reduction aims at finding a plan com-

posed of two parts: a trajectory in the active space and
a trajectory in the repair space. Therefore it includes
n + k copies of the state variables and n copies of the
events (there could be k copies of the actions but the
value of these variables is known in advance since the
plan is an input of this reduction).
An interesting difference between the two reductions

is that the trajectories of the former should lead to goal
states while the trajectory of the latter should lead to
a non goal state. As a consequence when the repair

3It is assumed that the length of the explanation can be
bounded by a known value n; k is the length of the plan
being tested.

plan is finally computed the conformant planning re-
duction to sat is satisfiable while the reduction of the
applicability function is not.

5 Experiments

We ran some experimental evaluation of the approach
presented in this paper.
Since the problem presented here is new, we had to

build new benchmarks. We propose a variant of the
benchmark presented by Grastien et al. [2007] which
will be made available to the community. The sys-
tem comprises 20 components interconnected in a torus
shape. Each component contains eight states, including
two unstable states and one goal state. The behaviour
on each component can affect its neighbour and the
local observations cannot allow to determine anything
about the local behaviour: the full system needs to
be monitored in order to understand the state system.
Repair actions can also be local or affect several com-
ponents.
We built 100 problem instances on this system. We

restricted ourselves to totally ordered observations, but
notice that one of the benefits of using diagnostic tech-
niques is to be able to handle partially-ordered obser-
vations (observations where the order of the observed
events is only partially known because the delay be-
tween their reception is small compared to the trans-
mission/processing delay).
We compare our approach to a symbolic approach

that uses BDDs (specifically the buddy package) to
track the belief state and then uses A* to find the op-
timal repair plan. The heuristic used by A* is imple-
mented as follows: a state of the system is extracted
from the BDD and the optimal repair is computed for
this state using sat; the length of this optimal repair is
used as a lower bound for the optimal repair from the
current search node.
Our belief sample method uses glucose_static 4.0

[Audemard and Simon, 2009]. glucose is heavily based
on the minisat solver [Eén and Sörensson, 2003].
The experiments were run on 4-core 2.5GHz cpu with

4GB RAM, with GNU/Lunix Mint 16 “petra”. A ten
minutes (600s) timeout was provided.

 1
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Figure 4: Runtime in seconds required to solve self-
healing problem instances; sorted.

The results are summarized in Figure 4. The in-
stances are sorted in increasing runtime, meaning that
the instance at position x for one implementation may
be different from the instance at the same position for
the other. The approach based on the generation of the
belief state only saw 64 instances solved before timeout,
against 83 for our approach. In general our approach
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is two orders of magnitude faster than A*, although
we would need more benchmarks and comparisons to
understand better the strength of this approach.
Out of the 87 instances instances solved by the Belief

Sample method, 82 could be solved by exhibiting only
one element of the belief state. Another three instances
could be solved with a sample of two elements, and
two required a sample of three elements to generate a
conformant plan.

6 Discussion

The objective of connecting the diagnostic and plan-
ning tasks is quite ambitious. From the diagnostic per-
spective, and since the seminal work from Sampath et
al. [1995] the problem has generally been the detection
of specific events or patterns of events [Jéron et al.,
2006]. The main inspiration of the present work is the
self-heability question asked by Cordier et al. [2007];
the aforementioned work is one of the first attempt to
frame diagnosis as the problem of finding the optimal
repair plan, although the complexity of computing the
plan is not addressed. In static contexts similar ques-
tions have been asked where the problem was framed as
finding the optimal balance between increasing the cost
of gathering information (observations) and improving
the precision of diagnosis (and, consequently, reducing
the cost of planning) [Torta et al., 2008].
Supervisory control [Ramadge and Wonham, 1989] is

a problem very similar to self-healing. The goal is to
control some actions (forbid their occurrence) in order
to meet some specification. The main difference with
our work is the fact that control applies continuously
while we assume that self-healing is performed when the
system is not active (either because the repair process
is expensive—it might require to stop the system for
instance—or because it can only be performed at some
time—every night for instance). Furthermore control
tries to be as unobtrusive as possible: it merely forbids
some transitions and generally does not choose actions
to perform.
Conformant planning [Smith and Weld, 1998] is the

problem of finding a sequence of actions that is guar-
anteed to lead to the specified goal, despite uncertainty
on the initial state and nondeterministic action effects.
Solutions to conformant planning have been proposed
that compute the belief state and run heuristic search
[Bonet and Geffner, 2000] or that represent the belief
state symbolically [Cimatti and Roveri, 2000]. More
similar to our work Hoffmann and Brafman [2006] pro-
posed Conformant-FF in which the belief state is rep-
resented implicitly by the set of initial states and the
sequence of actions leading to the current state; at ev-
ery time step, a sat solver is used to determine the state
variable values that can be inferred with certainty. This
approach is similar to ours in the way it avoids comput-
ing belief states. More generally, we would like to adapt
our method to solve conformant planning problems.
The combination of planning and diagnosis has also

been studied in the context of plan repair. There, a
(possibly conformant) plan is computed that assumes
that contigencies are unlikely to happen. The plan ex-
ecution is then monitored and if the outcome of exe-
cution does not match the predictions, a new plan is

generated [Micalizio, 2014].

7 Conclusion and Extensions
In this paper we presented a method to solve the self-
healing problem. The problem consists in finding a
repair plan that can lead back to a goal state a sys-
tem whose execution has been partially observed. We
avoid computing the belief state. Instead we propose a
method whereby plans are computed on a sample of the
belief state whilst a diagnoser verifies their correctness
and generates an element of the belief state (added to
the sample) if the plan is not correct. Both the plan-
ning and the diagnosis problems are reduced to sat
problems. We show that non trivial problems can be
easily solved by this approach.

There are many possible extensions to this work.
One issue is that enforcing a conformant plan may be
too restrictive. We want to avoid prohibitive repairs
in situations where the system is healthy. This is a
common problem in diagnosis of dynamic systems: the
state of the system can never be precisely determined
at the current time; it is often not unconceivable that
a fault just happened on the system and has not had
time to develop into a visible faulty trace. The issue
here is that conformant plans must provide for such
contingencies even when there is no evidence for them.
An implicit assumption of our work is that unhealthy
system behaviours can be detected to a large extend.
The set of unstable states serves this purpose: they are
useful to model the fact that any “failure” in the sys-
tem will lead to abnormal observations before a repair
action is performed.
We see two avenues to handle situations where the

unstability feature cannot address the problem pre-
sented before. First probabilities can be incorporated
into the model, which allows for chance-constrained
planning [Santana andWilliams, 2014]. Issues with this
approach include the problem of building large models
with meaningful probabilities and the problem of ex-
tending the sat reduction to deal with probabilities
(as well as scaling up to large models). A second, qual-
itative, possibility is to ignore contingencies that are
supported by no strong evidence. For instance failures
that are not part of a minimal diagnosis might be ig-
nored.
Another restriction of the current approach is that

the goal G is assumed to be known explicitly. Speci-
fication of goal states may however be more complex:
Ciré and Botea [2008] have proposed to define goals
as properties of states defined in linear temporal logic
(LTL). Other relevant goal properties is diagnosability
[Sampath et al., 1995], i.e, the property that the obser-
vations on the system will allow to detect/identify the
important system failures. A related issue is the incre-
mental aspect: how to handle a repair after an active
period following a first repair. A simple solution is to
assume that the initial state after the repair is the goal
state.
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A Problem Benchmark

We now present the system we used in the experi-
ments.4

The system includes 20 components ci,j where i
ranges between 0 and 3 and j between 0 and 4. The
component ci,j is connected to ci′,j′ iff the total differ-
ent |i − i′|+ |j − j′| is at most one (where i and j are
taken modulo 3 and 4). For instance, c0,1 is connected
to four components c0,0, c0,2, c3,1, and c1,1.
The model of one component for the active mode is

given in Figure 5 and the model for the repair mode
is given in Figure 6. The connections between com-
ponents implies forced transitions when some events
occur; these are summarised in Table 1 For instance,
when event f occurs on component c0,1, event nf oc-
curs on every one of its four neighbours.
A component state contains two types of informa-

tion: whether a failure occurred on the component and
whether it is run. The first part of the state is initially

4The benchmark is available at this address:
http://www.grastien.net/ban/data/bench-dx15.tar.gz.

event/action neighbour event/action
f nf
t z

Table 1: Synchronised events

N (no fault); it moves to F when a fault occurs and R
when it recovers. The second part of the state is gener-
ally 0 (the component is running) and moves to 1 when
it needs to reboot and to 2 when it is rebooting. A fault
on a component forces its neighbours to reboot. One
difficulty of diagnosis for this type of system is that the
observations (reb and back) do not point precisely to
the faulty component.
The repair consists in returning to state N0. Most

states require action t to return to state N0 but this
action can move the neighbours of the component to
state N2. Therefore finding the optimal repair requires
to order the actions carefully.
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[Ciré and Botea, 2008] A. Ciré and A. Botea. Learn-
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