
Implementing Troubleshooting with Batch Repair

Roni Stern1 and Meir Kalech1 and Hilla Shinitzky 1

1Ben Gurion University of the Negev
e-mail: roni.stern@gmail.com, kalech@bgu.ac.il, hillash@post.bgu.ac.il

Abstract
Recent work has raised the challenge of efficient
automated troubleshooting in domains where re-
pairing a set of components in a single repair ac-
tion is cheaper than repairing each of them sepa-
rately. This corresponds to cases where there is a
non-negligible overhead to initiating a repair ac-
tion and to testing the system after a repair ac-
tion. In this work we propose several algorithms
for choosing which batch of components to repair,
so as to minimize the overall repair costs. Experi-
mentally, we show the benefit of these algorithms
over repairing components one at a time (and not
as a batch).

1 Introduction
Troubleshooting algorithms, in general, plan a sequence of
actions that are intended to fix an abnormally behaving sys-
tem. Fixing a system includes repairing faulty components.
Such repair actions incur a cost. These costs can be parti-
tioned into two types of repair cost. The first, referred to as
the component repair cost, is the cost of repairing a compo-
nent. The second, referred to as the repair overhead, is the
cost of preparing the system to perform repair actions (e.g.,
halting the system may be required), and the cost of testing
the system after performing a repair action.

This paper considers the case where the repair overhead
is not negligible and is potentially more expensive than a
component repair cost (of a single component). Therefore,
it may be more efficient to repair a batch of components
in a single repair action. We call the problem of choosing
which batch of components to repair the Batch Repair Prob-
lem (BRP). BRP is an optimization problem, where the task
is to minimize the total repair costs, which is the sum of the
repair overheads and component repair costs incurred by all
the repair actions performed until the system is fixed.

Note that in this paper we use the term “repair” for a sin-
gle or a set of components and the term “fix” to refer to
the entire system. Thus, repairing components eventually
causes the system to be fixed, and a system is only fixed if it
returned to its nominal behavior.

Most previous work assumed that components are re-
paired one at a time [1; 2; 3; 4]. This approach can be
wasteful for BRP. For example, if a diagnosis engine infers
that multiple faulty components need to be repaired to fix
the system, then it would be wasteful to repair these com-
ponents one at a time since each repair action incurring its

repair overhead. Instead, an efficient BRP algorithm would
repair all the faulty components in a single repair action.
More generally, we expect an intelligent BRP algorithm to
weigh the cost of repairing batches of components as well
as the repair overhead. Some discussion on repairing mul-
tiple components together was done in prior work on self
healability [5].

Due to the repair overhead, repairing a single component,
even if it is the component most likely to be faulty, can
be wasteful. This is especially wasteful in cases where all
the found diagnoses consists of multiple faulty components,
thus suggesting that repairing a single component would not
fix the problem. Alternatively, one may choose to repair the
components in the most likely diagnoses. This may also
be wasteful, especially if there are several diagnoses which
have similar likelihood. It might be worthwhile to repair
by a single repair action a set of components that “covers”
more than a single diagnosis. This may reduce the number
of repair actions until the system is fixed, thus saving repair
overhead costs. The downside in this approach is that the
component repair costs can be high, as more healthy com-
ponents may be repaired.

out1=1

in1=1

in2=1

A

B

Consider the small system described in
Figure~\ref{fig:simple-example}. It is a logical circuit
whose output is fault, and assume that there are only
two possible diagnoses: either A is faulty or B is faulty,
where the probability that A and B are faulty is 0.6 and
0.4, respectively. There are three possible repair action –
to repair A, to repair B, and to repair A and B.
Assume that the repair overhead costs 10, and repairing
a component costs 1. If A is repaired, there is a 0.4
chance that the system would not be fixed and another
repair action would bee needed (repairing B). Thus, the
expected total repair cost of repairing A first is 15.
Similarly, the total repair cost for repairing B first is 17.
The best option in this case is thus to repair A and B
together, in a single repair action incurring a total repair
cost of 12.

p({B})=0.4

p({A})=0.6

Figure 1: An example where
repairing components one at
a time is wasteful.

For example, consider
the small system de-
scribed in Figure 1. It is
a logical circuit whose
output is fault. Assume
that the “OR” gate is
known to be healthy
and there are only two
possible diagnoses: either
A is faulty or B is faulty,
where the probability that
A and B are faulty is
0.6 and 0.4, respectively. There are three possible repair
actions: to repair A, to repair B, and to repair A and
B. Assume the repair overhead costs 10, and repairing a
component costs 1. If A is repaired, there is a 0.4 chance
that the system would not be fixed and another repair action
would be needed (repairing B). Thus, the expected total
repair cost of repairing A first is 15.4. Similarly, the total
repair cost for repairing B first is 17.6. The best option is
thus to repair A and B together in a single repair action,
incurring a total repair cost of 12.

Recent work [6] proposed two high-level approaches to
solve BRP: as a planning under uncertainty problem, or as a
combinatorial optimization problem. When modeling BRP
as a planning under uncertainty problem the task is to find a

Proceedings of the 26th International Workshop on Principles of Diagnosis

113

repair policy, mapping a state of the system to the repair ac-
tion that minimizes the expected total repair costs. This ap-
proach, while attractive theoretically, quickly becomes not
feasible in non-trivial scenarios.

In this work we focus on the second high-level approach
proposed for BRP, in which BRP is modeled as a combi-
natorial optimization problem, searching in the combinato-
rial space of possible repair actions for the best repair ac-
tion. There are two challenges in implementing this ap-
proach. First, how to measure the quality of a repair ac-
tion and how to efficiently search for the repair action that
maximizes this measure. There are many efficient heuristic
search algorithms in the literature, and thus the main chal-
lenge addressed in this work is in proposing several heuris-
tics for estimating the merit of a repair action.

The contributions of this work are practical. A range of
heuristic objective functions are proposed and analyzed, and
we evaluate their effectiveness experimentally on a standard
benchmark. A clear observation from the results is that in-
deed considering batch repair actions can save repair cost
significantly. Moreover, the most effective heuristics pro-
vide a tunable tradeoff between computation time and re-
sulting repair costs.

2 Problem Definition
A classical MBD input 〈SD,COMPS,OBS〉 is assumed,
where SD is a model of the system, COMPS represents
the components in the system, and OBS is the observed
behavior of the system. Every component can be either
normal or abnormal. The assumption that a component
c ∈ COMPS is abnormal is represented by the abnormal
predicate AB(c).
A batch repair problem (BRP) arises when the assumption
that all components are normal is not consistent with the
system description and observations. Formally,

SD ∧OBS ∧
∧

c∈COMPS

¬AB(c) is not consistent

In such a case, at least one component must be repaired.

Definition 1 (Repair Action). A repair action can be ap-
plied to any subset of components and results in these com-
ponents becoming normal. Applying a repair action to a set
of components γ is denoted by Repair(γ).

Definition 1 assumes that repair actions always succeed,
i.e., a component is normal after it is repaired.

After a repair action, the system is tested to check if it
has been fixed. We assume that the system inputs in this test
are the same as in the original observations (OBS). The
observed system outputs are then compared to the expected
system outputs of a healthy system. Thus, the result of a
repair action is either that the system is fixed, or a new ob-
servation that may help choosing future repair actions.

Repairing a set of components incurs a cost, composed
of a repair overhead and component repair costs. The repair
overhead is denoted by costrepair, and the component repair
cost of a component c ∈ COMPS is denoted by costc.

Definition 2 (Repair Costs). Given a set of components γ ⊆
COMPS, applying a repair action Repair(γ) incurs a cost:

cost(Repair(γ)) = costrepair +
∑

c∈γ
costc

We assume that all repair costs are positive and non-zero,
i.e., costrepair > 0 and costc > 0 for every component
c ∈ COMPS. As defined earlier, the task in BRP is to fix
a system with minimum total repair cost.

As shown in Figure 1, an efficient BRP solver should con-
sider the possibility of repairing a set of components in a
single repair action. Thus, the potential number of repair
actions is 2|COMPS|. Therefore, from a complexity point of
view BRP is an extremely hard problem.

3 Preliminaries
Next, we provide background and definitions required for
describing the BRP algorithms we propose.
SD describes the behavior of the diagnosed system, and

in particular the behavior of each component. The term be-
havior mode of a component refers to a state of the compo-
nent that affects its behavior. SD describes for every com-
ponent one or more behavior modes. For every component,
at least one of the behavior modes must represent the nomi-
nal behavior of the component.

A mode assignment ω is an assignment of behavior
modes to components. Let ω(+) be the set of components
assigned a nominal (i.e., normal) behavior mode and ω(−)

be the set of components assigned one of the other modes.
Definition 3 (Diagnosis). A mode assignment ω is called a
diagnosis if ω ∧OBS ∧ SD is satisfiable.

A model-based diagnosis engine (MBDE) accepts as in-
put SD, OBS, and COMPS and outputs a set of diag-
noses Ω. Although a diagnosis is consistent with SD and
OBS, it may be incorrect. A diagnosis ω is correct if
by repairing the set of components in ω(−) the system is
fixed. Some diagnosis algorithms return, in addition to Ω, a
measure of the likelihood that each diagnosis is correct [7;
8]. Let p : Ω → [0, 1] denote this likelihood measure. We
assume that p(ω) is normalized so that

∑
ω∈Ω p(ω) = 1 and

use it to approximate the probability that ω is correct.
A common way to estimate the likelihood of diagnoses,

assumes that each component has a prior on the likelihood
that it would fail and component failures are independent.
Therefore, if p(c) represents the likelihood that a component
c would fail then diagnosis likelihood can be computed as

p(ω) =

∏
c∈ω− p(c)∑

ω′∈Ω

∏
c∈ω′− p(c)

(1)

where the denominator is a normalizing factor. We assume
in the rest of this paper that diagnoses likelihoods are com-
puted according to Equation 1. Other methods for comput-
ing likelihood of diagnoses also exist [9].

3.1 System Repair Likelihood
If the MBDE returns a single diagnosis ω that is guaranteed
to be correct, then the optimal solution to BRP would be to
perform a single repair action: Repair(ω−). This, however,
is rarely the case, and more often a possibly a very large
set of diagnoses is returned by diagnosis algorithms. This
introduces uncertainty as to whether a repair action would
actually fix the system. We define this uncertainty as fol-
lows:
Definition 4 (System Repair Likelihood). The System Re-
pair Likelihood of a set of components γ ⊆ COMPS,
denoted SystemRepair(γ), is the probability that
Repair(γ) would fix the system.

Proceedings of the 26th International Workshop on Principles of Diagnosis

114

Consider the relation between p(ω) and
SystemRepair(ω). If ω is correct, then repairing
all components that are faulty, meaning ω(−), would fix the
system. Therefore, the likelihood of repairing ω(−) causing
the system to be fixed is at least p(ω), i.e.,

SystemRepair(ω(−)) ≥ p(ω)

Moreover, if ω is correct then repairing any superset of ω(−)

would also fix the system. Thus, SystemRepair(ω(−))
may be larger than p(ω). On the other hand, repairing any
set of components that is not a superset of ω(−), as there
would still be faulty components in the system. Therefore,
a repair action Repair(COMPS′) would fix the system if
and only if ω∗(−) ⊆ COMPS′, where ω∗ is the correct
diagnosis. While we do not know ω∗, we can compute
SystemRepair(γ) from Ω and p(·):

SystemRepair(γ) =
∑

ω∈Ω∧ω⊆γ
p(ω)

For example, in the logical circuit depicted in Fig-
ure 1, there are two diagnoses, {A} and {B}, such
that p({A}) = 0.6 and p({B}) = 0.4. Thus,
SystemRepair({A})=0.6, SystemRepair({B})=0.4, and
SystemRepair({A, B})=p({A})+p({B})=1.

4 BRP as a Combinatorial Search Problem
As mentioned in the introduction, the approach for solving
BRP that we pursue in this paper formulates BRP as a com-
binatorial search problem. The search space is the space of
possible repair actions, i.e., every subset of the set of com-
ponents there were not repaired yet. The search problem is
to find the repair action that maximizes a utility evaluation
function u(·) that maps a repair action to a real value that
estimates its merit.

The effectiveness of this search-based approach for BRP
depends on the search algorithm used and how the u(·) util-
ity function is defined. There are many existing heuristic
search algorithm for searching large combinatorial search
spaces [10; 11]. Thus, in this work we propose and evalu-
ate a set of possible utility functions. Note that for some of
the utility functions described next it is possible to find the
best repair action without searching the entire search space
of possible actions, while others are more computationally
intensive.

4.1 k Highest Probability
A key source of information for all the utility functions de-
scribed below is the set of diagnoses Ω and their likelihoods
(p(·)). We assume that this information is obtained by us-
ing a diagnosis engine over the observations of the current
state of the system. The set of returned diagnoses may be
very large. The first utility function we propose is based on
the system’s health state, which has been recently proposed
as a method for aggregating information from a set of diag-
noses [12].

Definition 5 (Health State). A health state is a mapping F :
COMPS → [0, 1] where

F (c) =
∑

ω∈Ωs.t.c∈ω
p(ω)

F (c) is an estimate of the likelihood that component c
is faulty given a set of diagnoses Ω and their likelihoods.
Based on the system’s health state, we propose the following
utility function, denoted uHP :

uHP (γ) =
∑

c∈γ
F (c)

where γ is any subset of COMPS that has not been re-
paired yet.

The repair action that maximizes uHP is trivial — repair
all components. This would result in the system being re-
pairs, but of course, may repair many components that are
likely to be healthy. To mitigate this effect, we propose the
k highest probability repair algorithm (k-HP), which limits
the number of components that can be repaired in a single
repair action to k, where k is a user-defined parameter. Note
that computing k-HP does not need any exhaustive search:
simply sort the health state in descending order of F (·) val-
ues and repair the first k components.

The k-HP repair algorithm has two clear disadvantages.
First, the user needs to define k. Second, k-HP does not
consider repair costs (neither component repair costs nor
overhead costs). The next set of utility functions and cor-
responding repair algorithms address these disadvantages.

4.2 Wasted Costs Utilities
Before describing the next set of proposed utility functions
we explain the over-arching reasoning behind it. Repair-
ing a system requires performing repair actions. Some re-
pair costs are inevitable. These are the repair overhead of
a single repair action, and the component repair costs that
repair the faulty components. We propose a family of utility
functions that try to estimate the expected total repair costs
beyond these inevitable costs. We refer to these costs as
wasted costs and to utility functions of this family as wasted
cost functions.

We model these wasted costs as being composed of two
parts.
• False positive costs (costFP). These are the costs

incurred by repairing components that are not really
faulty.

• False negative costs (costFN). These are the overhead
costs incurred by future repair actions.

It is clear why the false positive costs are wasted costs —
these are repair costs incurred on repairing healthy compo-
nents. The false negative costs are wasted costs because if
one knew upfront which components are faulty, then the op-
timal repair algorithm would repair all these components in
a single batch repair action, incurring no further overhead
costs. Thus, future overhead costs represent wasted costs.

We borrow the terminology of false positive and false
negative from the machine learning literature, but use it in a
somewhat different manner. To explain this choice of ter-
minology, assume that positive and negative mean faulty
and healthy components respectively. Choosing to repair
a faulty component is regarded as a true positive, and not
repairing a healthy component is regarded as a true nega-
tive. Thus, the wasted costs incurred by repairing healthy
components are costs incurred due to false positives, and
the wasted costs incurred by not repairing a faulty compo-
nent are costs incurred due to false negatives. While this is
not a perfect match in terminology, we belief that it helps
clarify the underlying intention of costFP and costFN .

Proceedings of the 26th International Workshop on Principles of Diagnosis

115

The Wasted Cost Utility Function
For a given set of components γ, we denote by costFP (γ)
and costFN (γ) the fast positive costs and false negative
costs, respectively, incurred by performing a batch repair ac-
tion of repairing all the components in γ. Given costFP (γ)
and costFN (γ), we propose the following general formula
for computing the expected wastes costs, denoted by CWC .

costFP (γ) + (1− SystemRepair(γ)) · costFN (γ)

The left hand side of the formula is the false positive costs.
The right hand side of the formula is the false negative
costs, multiplied by the probability that the system will
not be fixed by repairing the components in γ. Thus, the
formula gives the total expected wastes costs. We define
UWC = −CWC as the wasted cost utility function.

The wasted cost utility function is a theoretical utility
function, since one does not know upfront the values of
costFP and costFN . Next, we propose several ways to
estimate uWC by proposing ways to estimate costFP and
costFN .

Estimating the False Positives Cost
We propose to estimate the false positive costs by consider-
ing the system’s health state (Definition 5), as follows.

ĉostFP (γ) =
∑

c∈γ
(1− F (c)) · cost(Ci)

This estimate of the false positive costs can be understood
as an expectation over the false positive costs. The cost of a
repaired component c ∈ γ is part of the false positive costs
only if c is in fact healthy. The probability of this occurring
is (1 − F (c)). Thus, (1 − F (c)) · cost(c) is the expected
false positive cost due to repairing component c.

False Negatives Cost
Correctly estimating costFN is more problematic than
costFP , as it requires considering the future actions of the
repair algorithm. In the best case, only one additional repair
action would be needed. This would incur a single addi-
tional overhead cost. We call this the optimistic costFN ,
or simply costoFN , which is equal to costrepair. The other
extreme assumes that every component not repaired so far
would be repaired by a single repair action, and correspond-
ingly an incurred overhead cost. We experimented with a
slightly less extreme estimate, in which we assume that only
faulty component will be repaired in the future, but each will
be repaired in a single repair action, incurring one costrepair
per faulty component. Since we do not know the number of
faulty components, we use the expected number of faulty
components according to the health state:

∑
c/∈γ F (c). The

resulting estimate is referred to as the pessimistic estimate
of costFN , denoted by costpFN , is thus computed as:

costpFN (γ) = costrepair ·
∑

c/∈γ
F (c)

Summarizing all the above, we propose two utility func-
tions from the wasted cost utility function family. A pes-
simistic wasted cost function, that uses ĉostFP and costpFN
to estimate costFP and costFN , and an optimistic wasted
cost function that uses ĉostFP and costoFN . The cor-
responding repair algorithms search in the combinatorial
space of all possible sets of components to find the set of
components that maximizes uWC .

4.3 Handling the Computational Complexity
The search space is very large — the size of the power set of
all components that were not repaired so far. We explored
two simple ways to handle this. The first approach is to
only consider subset of components with up to k compo-
nents, where k is a parameter. This approach is referred to
as Powerset-based search.

The second approach we considered is to consider only
supersets of the diagnoses in Ω. This has the intuitive rea-
soning that at least one of these diagnoses is supposed to be
true (according to the known observation), and thus a repair
algorithm should try to aim for fixing the problem in the
next repair action. Thus, in this approach, we considered
in the search for the best repair action every set of compo-
nents that are unions of at most k diagnoses, where k is a
parameter. This approach is referred to as the Union-based
search.

For both powerset-based search and union-based search,
increasing k results in a larger search space. This means
higher computational complexity, but also increases the
range of repair actions considered, and thus using higher
k can potentially find better repair actions than using lower
k values. This provides an often desired tradeoff of com-
putation vs. solution quality. Experimentally, we observed
that the union-based search approach yields much better re-
sults and thus we only show results for it in the experimental
results below.

5 Experimental Results
We evaluated the proposed batch selection algorithms on
two standard Boolean circuits: 74283 and 74182. We exper-
imented on 21 observations for system 74283 and 23 obser-
vations for system 74182. These observations were selected
randomly from Feldman et al.’s [13] set of observations. For
each observation, all subset minimal diagnoses were found
using exhaustive search.

5.1 Baseline Repair Algorithms
The main hypothesis of this line of work is that performing
a batch repair action can save repair costs. To evaluate if
the proposed batch repair algorithms are able to do so, we
compare them with two repair algorithms that do not con-
sider batch repair actions. These baseline repair algorithms,
named “Best Diagnosis” (BD) and “Highest Probability”
(HP), are inspired by previous work on test planning [14]
and work as follows. BD chooses to repair a single com-
ponent from the most preferred diagnosis in Ω (that with
the highest p(·) value). From the set of components in the
most probable diagnosis, BD chooses to repair the one with
the lowest repair costs. The HP repair algorithm chooses
to repair the component that is most likely to be faulty, as
computed by the system’s health state (F [·]).

Another baseline repair algorithm we evaluated experi-
mentally that serves as a baseline is to repair all components
of the most likely diagnosis in a single batch repair action.
Note that this algorithm, denoted Batch Best Diagnosis, ig-
nores repair costs, and serves as an extreme alternative to
the BD algorithm that repairs a single component from the
most likely diagnosis.

Table 1 shows the average repair costs incurred until the
system was fixed for the proposed repair algorithms. The
average was over all the observations we used for system
74182. The rows labeled BD, HP, 2-HP, and 3-HP show the

Proceedings of the 26th International Workshop on Principles of Diagnosis

116

Overhead cost
Algorithm 10 15 20 25
BD & HP 83.5 111.3 139.1 167.0
2-HP 61.5 77.8 94.1 110.4
3-HP 53.0 65.0 77.0 88.9
Opt.(1) 55.2 68.9 82.6 96.3
Opt.(2) 53.0 65.0 75.2 86.7
Opt.(3) 55.2 66.5 72.6 83.7
Pes.(1) 55.0 68.9 81.3 96.1
Pes.(2) 52.8 59.8 63.7 70.0
Pes.(3) 49.6 50.4 55.9 64.6

Table 1: Average repair costs for the 74182 system.

Overhead cost
Algorithm 10 15 20 25
BD 116.4 155.2 194.0 232.9
HP 109.3 145.7 182.1 218.6
2-HP 81.2 102.1 123.1 144.0
3-HP 70.5 85.7 101.0 116.2
Opt.(1) 76.0 95.7 115.2 134.8
Opt.(2) 72.9 89.8 102.4 111.7
Pes.(1) 75.2 95.7 114.0 134.8
Pes.(2) 72.4 84.8 93.6 96.0

Table 2: Average repair costs for the 74283 system.

results for the BD, HP, and k-HP repair algorithms (for k=2
and 3). The rows Opt.(1), Opt.(3), and Opt.(3) show the re-
sults for the union-based search repair algorithm using the
wasted cost utility function with ĉostFP to estimate costFP
and costoFN to estimate costFN . The rows Pes.(1), Pes.(2),
and Pes.(3) show results for the same configuration, except
for using costpFN to estimate costFN instead of costoFN .
The repair costs of a single component was arbitrary set
to 5 and the cost of the overhead (costrepair) was varied
(10,15,20,25). Each column represents results for different
values of costrepair. In this domain, the results of HP and
BD were virtually the same, and thus we grouped them to a
single row.

The results clearly show the benefit of considering batch
repair actions. The best performing repair algorithm is
Pes.(3), which required more than half the repair costs
needed for BD and HP, which do not consider batch repair.
This supports the main hypothesis of this paper: batch re-
pair actions can save significant amount of repair costs. As
expected, the gain of batch repair actions increases as the
repair overhead (costrepair) increases. Also note that for
Pes.(k) we observe the desired trend of increasing k result-
ing in lower repair costs. This is also observed for the k-HP
repair algorithm (note that the HP algorithm is in fact 1-HP),
but is not always the case for Opt.(k), where for lower over-
head cost k = 2 yielded lower repair costs than k = 3. This
suggests that the optimistic estimate of costFN is not robust.
Computationally, increasing k required much more runtime,
and we could not run experiments with k = 4 on our cur-
rent machines in reasonable time. Table 2 shows the results
for the 74283 system. The trends observed are the same as
those discussed above for the results of 74182 system.

6 Related Work
BRP is a troubleshooting problem, where the goal is to per-
form repair actions so as to fix a system. Algorithms for au-

tomated troubleshooting were proposed in previous works.
Heckerman et al. [1] proposed the decision-theoretic trou-
bleshooting (DTT) algorithm, that uses a decision theoretic
approach for deciding which components to observe in or-
der to identify the faulty component. Later work also ap-
plied a decision theoretic approach that integrated planning
and diagnosis to a real world troubleshooting application [3;
15]. Torta et al. [4] proposed using model abstractions for
troubleshooting while taking into account the cost of repair
actions. All these works did not consider the possibility of
repairing a set of components together, allowing only repair
actions that repair a single component at a time.

Our current paper on BRP do not consider applying
further diagnostic actions such as probing and testing,
which are considered by previous troubleshooting algo-
rithms. Thus, our work on BRP could be integrated in previ-
ous troubleshooting frameworks so as to consider both batch
repair actions and diagnostic actions. This is left to future
work.

Friedrich and Nedjl [2] discussed the relation between di-
agnoses and repair, in an effort to minimize the breakdown
costs. Breakdown costs roughly correspond to a penalty in-
curred for every faulty output in the system, for every time
step until the system is fixed. In BRP, the goal is to mini-
mize costs until the system if fixed, and there is no partial
credit for repairing only some of the system outputs.

7 Conclusion and Future Work
We addressed the problem of troubleshooting with the pos-
sibility of performing a batch repair action — a repair action
in which more than a single component is repaired. Batch
repair makes sense only if repairing a set of components
in a single repair action is cheaper than repairing each of
them separately. We proposed several algorithms for select-
ing which batch of components to repair. Experimental re-
sults clearly show the benefit of batch repair over single re-
pair actions, and the benefit of the algorithms we suggested
for choosing these set of components to repair. Future work
will investigate when should batch repair be considered, and
how to detect such cases upfront. Additionally, expanding
beyond Boolean circuits is also needed, as well as address-
ing uncertainty on the outcome of repair actions.

References
[1] David Heckerman, John S Breese, and Koos Rom-

melse. Decision-theoretic troubleshooting. Commu-
nications of the ACM, 38(3):49–57, 1995.

[2] Gerhard Friedrich and Wolfgang Nejdl. Choosing ob-
servations and actions in model-based diagnosis/repair
systems. KR, 92:489–498, 1992.

[3] Anna Pernestål, Mattias Nyberg, and Håkan Warn-
quist. Modeling and inference for troubleshooting with
interventions applied to a heavy truck auxiliary brak-
ing system. Engineering Applications of Artificial In-
telligence, 25(4):705–719, June 2012.

[4] Gianluca Torta, Luca Anselma, and Daniele Theseider
Dupré. Exploiting abstractions in cost-sensitive abduc-
tive problem solving with observations and actions. AI
Commun., 27(3):245–262, 2014.

[5] Marie-Odile Cordier, Yannick Pencolé, Louise Travé-
Massuyès, and Thierry Vidal. Self-healablity = diag-

Proceedings of the 26th International Workshop on Principles of Diagnosis

117

nosability + repairability. In the International Work-
shop on Principles of Diagnosis (DX), pages 251–258,
2007.

[6] Roni Stern and Meir Kalech. Repair planning with
batch repair. In International Workshop on Principles
of Diagnosis (DX), 2014.

[7] Brian C Williams and Robert J Ragno. Conflict-
directed A* and its role in model-based embedded sys-
tems. Discrete Applied Mathematics, 155(12):1562–
1595, 2007.

[8] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van
Gemund. Simultaneous debugging of software faults.
Journal of Systems and Software, 84(4):573–586,
2011.

[9] O.J. Mengshoel, M. Chavira, K. Cascio, S. Poll,
A. Darwiche, and S. Uckun. Probabilistic model-based
diagnosis: An electrical power system case study. Sys-
tems, Man and Cybernetics, Part A: Systems and Hu-
mans, IEEE Transactions on, 40(5):874–885, 2010.

[10] Stuart J. Russell and Peter Norvig. Artificial Intelli-
gence - A Modern Approach (3. internat. ed.). Pearson
Education, 2010.

[11] Stefan Edelkamp and Stefan Schroedl. Heuristic
search: theory and applications. Elsevier, 2011.

[12] Roni Stern, Meir Kalech, Shelly Rogov, and Alexan-
der Feldman. How many diagnoses do we need? In
AAAI, 2015.

[13] Alexander Feldman, Gregory Provan, and Arjan van
Gemund. Approximate model-based diagnosis using
greedy stochastic search. Journal of Artificial Intelli-
gence Research (JAIR), 38:371, 2010.

[14] Tom Zamir, Roni Stern, and Meir Kalech. Using
model-based diagnosis to improve software testing. In
AAAI (to appear), 2014.

[15] Håkan Warnquist, Jonas Kvarnström, and Patrick Do-
herty. Planning as heuristic search for incremental
fault diagnosis and repair. In Scheduling and Planning
Applications Workshop (SPARK) at the International
Conference on Automated Planning and Scheduling
(ICAPS), 2009.

Proceedings of the 26th International Workshop on Principles of Diagnosis

118

