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Abstract

We claim that in scenarios involving a human
operator with responsibility over systems being
monitored by diagnoser, presenting said operator
with a concise set of observations capturing the
essence of a failure improves the operator’s un-
derstanding of the diagnosis.
We take this in the context of Discrete Event Sys-
tems and demonstrate how the idea can be ap-
plied to systems utilising event-based observa-
tions, which can contain implicit information. We
introduce the notion of an abstracted event stream,
called a sub-observation, that makes the implicit
information explicit for the operator and allows a
diagnoser to arrive at the same diagnosis. We call
the most abstract of these the critical observation.
We provide relevant definitions, properties, and a
procedure for computing the critical observation
in a diagnosis problem.

1 Introduction
Diagnosis problems are concerned with the detection and
identification of occurrences of specific events in a system,
generally called faults or failures. These occurrences are
difficult to detect as the fault events are typically not di-
rectly observable, however, they can be inferred from the
system model (a description of the system behaviour) and
the observations produced by the system.

Diagnosis is the first step in the fault recovery process.
Once a fault has been detected and identified, the appropri-
ate actions can be taken to mitigate its effects. The issue,
however, is that this procedure acts as a black box; given a
model and a sequence of observations, a diagnoser asserts a
fault by claiming that there is no possible nominal execution
of the system that would produce the observation sequence.

The present work is written under the assumption that a
diagnosis procedure is fundamentally built for a human op-
erator in charge of taking actions after a fault is identified.
In this scenario, a black box approach does not allow for
the presentation of the information relevant to the diagno-
sis. We assume that providing the operators with explana-
tory evidence is useful in convincing them of the validity of
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the diagnosis, in addition to providing information as to the
causes of the fault.

Further, we assume that a more concise explanation is
strictly preferred to more verbose explanation, and conse-
quently that there is merit to isolating the “smallest” amount
of supporting evidence, or what we call the critical obser-
vations. In cognitive psychology, the seminal paper on the
topic of working memory in humans supports this view, giv-
ing the average working memory capacity as 7 ± 2 distinct
pieces of information [1]. Providing only the observations
critical to the diagnosis also has the additional benefit of
ameliorating privacy concerns in systems where privacy is
considered important.

We extend the results of Christopher et al. [2] to event-
based observations. We first present preliminary theory and
notation, before going on to show that event-based observa-
tions contain implicit information. We then introduce what
we call sub-observations that can capture this implicit in-
formation and make it available for use in diagnosis pro-
cedures. We then provide formal definitions of sufficiency
and criticality in addition to several important properties
that allow for a terminating algorithm. We present an algo-
rithm for computing the critical observation and discuss its
complexity. A discussion of alternate ways of defining sub-
observations precedes a brief discussion of related work and
a conclusion.

2 Preliminaries and Notations
The present work takes place in the context and standard
framework of discrete event systems (DES) [3]. We denote
as Σ the set of events that can take place on the system. A
system run is a finite sequence of events, w = e1e2 . . . ek,
and the system is modeled as the prefix-closed language
LM ⊆ Σ⋆ that represents all possible runs.

The set of events is partitioned into observable events
Σo—events that are recorded—and unobservable events
Σu—those that are not. The observation o generated by run
w = e1e2 . . . ek, hereafter called the trace of w, is the pro-
jection of w on the set of observable events (i.e., all unob-
servable events of the run are deleted):

o = PΣo(w) =

{
ε if k = 0
e1PΣo(e2 . . . ek) if k > 0 and e1 ∈ Σo
PΣo(e2 . . . ek) otherwise.

The observed language of a trace o, denoted Lo, is the set
of finite sequences of events that could produce the observed
sequence: Lo = P−1

Σo
(o) = {w ∈ Σ⋆ | PΣo(w) = o}.
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The set of unobservable events includes a subset of fault
events, Σf ⊆ Σu. With slight abuse of notation we write
f ∈ w as short for w ∈ Σ⋆fΣ⋆ (or “f appears in w”) and
F ∩ w as short for {f ∈ F | f ∈ w} (or “the subset of
events from F that appear in w”).

A set δ ⊆ Σf of faults is consistent with the model LM
and the trace o if there exists a run w ∈ LM that would
produce this trace (PΣo(w) = o) and that exhibits exactly
these faults (w ∩Σf = δ). The diagnosis of trace o, denoted
∆(o), is the collection of all consistent sets of faults:

∆(o) =

{
δ ⊆ Σf

∣∣∣∣
∃w ∈ LM.
PΣo(w) = o ∧ δ = w ∩Σf

}
(1)

Hereafter we use the hat notation (ˆ) to indicate that the
given symbol represents what actually occurred. Given a
run ŵ, δ̂ = ŵ ∩ Σf is the set of faults that occurred during
the run; then the following result is trivial: ŵ ∈ LM ⇒ δ̂ ∈
∆(PΣo(ŵ)). (The premise, completeness of the model, is
assumed.)

We find it more convenient to define the diagnosis in
terms of emptiness of languages. Let Lδ be the language
that represents all sequences that contain exactly δ:

Lδ = {w ∈ Σ⋆ | w∩Σf = δ} =
⋂

f∈δ
Σ⋆fΣ⋆∩

⋂

f∈Σf\δ
(Σ\{f})⋆

That is, Lδ represents the set of all runs containing all
of the faults of δ, intersected with all possible runs where
the faults not in δ never occur—the result is a set of all
runs where the only faults that occur are those in δ. With
Lδ defined, we can equivalently express the diagnosis as an
emptiness of languages problem:

δ ∈ ∆(o) ⇐⇒ LM ∩ Lo ∩ Lδ 6= ∅. (2)

3 Sub-Observations
We first discuss event-based observations, and in particular
that event-based observations contain implicit information
that must be taken into consideration when performing di-
agnosis. We then introduce the notion of sub-observations,
providing formal definitions and an explanatory example.
Once this has been established, a procedure is given for di-
agnosing with sub-observations.

3.1 Event-Based Diagnosis and Implicit
Information

Event-based diagnosis, contrasted with state-based diagno-
sis, comes with a subtlety; specifically, there is a type of
implicit information encoded in the trace. Take for example
the repeated observation of a window being closed without
there ever being an observation of the window opening; in
this case, the fact that we never observed an open event is
distinctly relevant to a diagnosis procedure.

To further illustrate this, we provide a simple abstract ex-
ample in the form of a DES: Take Σ = {a, b, c, d, e, f1, f2},
with Σo = {a, b, c, d, e}, Σu = Σf = {f1, f2}. We provide
the system model in the form of a NFA in Figure 1 and con-
sider some example traces over it:
o1 = abababc. The model specifies that f2 must have oc-
curred in strings containing a followed by c. In this case,
the intervening sequence is long (babab), and could be much
longer. The important information, however, is that a was at
some point followed by c. Reporting in some abstract sense

1

start

2 3

4 5

6

7 8

a

{b, e}

b

a

f1

{a, d}

f2

c

{c, d}
{b, c, d}

f2

a

{b, c, d, e}

Figure 1: Example DES

that a was followed by c is enough to convince an operator
of the correctness of the diagnosis.
o2 = ababaa. The model specifies that f1 must have oc-
curred for there to be two a events that are not separated by
another observable event. More specifically, the lack of an
intervening event is the crucial piece of information that de-
termines the fault. In this case, reporting in some abstract
sense that multiple a occurred consecutively is enough to
indicate the fault convincingly.

3.2 Framework
We first present a general framework for sub-observation,
which is then further specified for our particular choice of
implementation.

General Definition
Definition 1 We define a framework for sub-observations
as a tuple: 〈O,�, sub〉:

1. A sub-observation, θ, is an abstraction over a trace that
represented an intentional relaxation (or weakening) of
the concrete knowledge contained in the trace.

2. O is the space of possible sub-observations.
3. The symbol � is a binary relation and partial order

over O and relates two sub-observations θ, θ′ such that
θ′ � θ iff θ′ is a more abstracted form of θ.

4. sub is an injective function, mapping traces to maximal
(w.r.t. �) sub-observations θ ∈ O:

sub : Σ∗
o → O

A sub-observation θ implicitly represents the set of traces
for which it is a more abstract form of:

ψ(θ) = {o ∈ Σ∗
o | θ � sub(o)}

Therefore, θ′ � θ ⇒ ψ(θ′) ⊇ ψ(θ).

The language of a sub-observation, denoted Lθ , repre-
sents the set of all possible runs θ could represent. How-
ever, these runs are already captured by Lo, and so Lθ can
be expressed as the union of the languages of the traces it is
a more abstract form of:

Lθ =
⋃

o∈ψ(θ)
Lo (3)

Specific Definition
For the purposes of our specific definition of sub-
observations, it is necessary to distinguish between what we
call hard and soft events. A hard event is a singleton observ-
able event, x ∈ Σo, and represents the firm occurrence of an
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event in the system. A soft event is a subset of observable
events, y ⊆ Σo, that any number (including zero) of which
may have occurred along with any number of unobservable
events.

We now explicitly characterize our construction of sub-
observations based on the general framework presented in
Definition 1:
Definition 2 A sub-observation, θ, is a strict time-ordered
alternating sequence of soft and hard events, commencing
and ending with a soft event: θ = y0x1y1 . . . xnyn. We de-
note O(o) the space of sub-observations for a given trace o.
θ ∈ O has length |θ| = n. For readability, sub-observations
may occasionally be written as a comma separated list. The
language of θ can then also be expressed:

Lθ = (y0 ∪Σu)
∗x1(y1 ∪ Σu)

∗ . . . xn(yn ∪Σu)
∗

By way of example, take the sub-observation θ =
({b, d} , a, ∅, c, {a}) – in this case, we say the singleton
events x1 = a and x2 = c are hard and occurred in the spec-
ified order. The first soft event, y0 = {b, d}, represents the
possibility of any number of b or d events in any order hav-
ing occurred before the first hard event – similarly, y1 = ∅
indicates that no events occurred between the hard events
x1 and x2, and y2 = {a} that any number of a events could
have occurred after the final hard event. There are multiple
traces ô that this could represent, ac being the simplest, but
traces such as ddacaa or bac, or indeed up to infinite (or
bounded length depending) other possibilities.
Definition 3 The function sub generates a sub-observation
in O from a given trace by inserting empty soft events at the
head of the trace, and after every hard event:

For o = e1 . . . en

sub(o) = ∅x1∅ . . . xn∅ ∈ O
Where ∀i : xi = ei

Definition 4 The relation � over O is defined such that
θ′ � θ if and only if there exists a mapping function f :

Given |θ′| = n, |θ| = m

f : {0, . . . , n+ 1} → {0, . . . ,m+ 1} such that
f(i) < f(i+ 1), f(0) = 0, f(n+ 1) = m+ 1

x′i = xf(i)

y′i ⊇
⋃

f(i)≤j≤f(i+1)−1

yj ∪
⋃

f(i)<j<f(i+1)

xj

The relation � is provably a partial order.

In words: θ′ � θ if there exists some f that maps the
hard events in θ′ to an equivalent sequence in θ, retaining the
time-ordering of both, and each y′i in θ′ captures the union
of all intervening events – yj (inclusive) and xj (exclusive),
for j ranging between f(i) and f(i+ 1)− 1.
For example take θ = ({ac} , b, {cd} , a, {c} , d, {c} , a, ∅)
and θ′ = ({abcd} , a, {bcd} , a, ∅). The hard events in θ′ are
matched to x2 and x4 in θ, and each y′i “swallows” the other
information. Specifically, f(1) = 2, f(2) = 4, satisfies the
constraints for θ′ � θ. This is illustrated in Figure 2.

To summarize, a sub-observation, in a practical sense, can
be thought of as a relaxation of the information presented
in the original trace. By including soft events in the sub-
observation, we are allowing for the “hiding” (abstraction)
of events such that an operator can be presented with only
the most relevant information.

{ac} b {cd} a {c} d {c} a ∅

{abcd} a {bcd} a ∅

Figure 2: An example map satisfying �

3.3 Diagnosis of Sub-Observations
We now formalize the usage of sub-observations in a diag-
nosis procedure by extending the procedure introduced for
event-based diagnosis presented in §2. This involves check-
ing the consistency of a set of possible faults.

We therefore provide the construction of the diagnosis
of θ, ∆(θ), the set of faults consistent with a given sub-
observation:
Definition 5 The diagnoses of a sub-observation θ is the
union of the diagnoses of the traces for which θ is the more
abstract form of, represented by ψ(θ) as given in Defini-
tion 1:

∆(θ) =
⋃

o∈ψ(θ)
∆(o)

From Definition 5 we note that, given δ̂ ∈ ∆(ô), that if
θ � sub(ô) then δ̂ ∈ ∆(θ). That is, the actual diagnosis δ̂
of the actual trace ô, will by definition be in ∆(θ) if θ is an
abstraction of ô.

First, we observe the following lemma:
Lemma 3.1 The possible traces permitted by the language
of a more abstracted sub-observation strictly contains all
the permitted traces of all its ascendants:

θ′ � θ =⇒ Lθ ⊆ L′
θ

Proof This is a direct consequence of Equation 3

Equation 2 provided a formulation of the diagnosis as a
question of emptiness in the intersection of languages – that
is, is there some run that is simultaneously possible accord-
ing to the system model, the observations, and the faults that
occurred during the run. This can similarly be extended to
a similar question for sub-observations. As Lθ is defined in
Definition 2, then ∆(θ) can be equivalently extended:

∆(θ) ≡ {δ | LM ∩ Lδ ∩ Lθ 6= ∅} (4)

Definition 5 and Equation 4 provide a formal definition
and a characterization of the diagnosis of a sub-observation,
but do not specify how to implement the procedure, in par-
ticular given that ψ(θ) may be infinitely large.

The scientific literature is rich in works dealing with ab-
stract traces. These approaches were developed to handle
situations where observations can be lost [4]; sensors can
fail [5; 4]; the order between observations may be only par-
tially known [6; 4; 7; 8]; the observability can vary [9]; etc.

It is possible to interpret Equation 4 quite literally—build
three finite-state machines representing all three languages
LM, Lδ , and Lθ, synchronize them, and verify emptiness.
Similarly, this emptiness verification can be reduced to a
planning problem [10; 11] or a model-checking one [12].

When the model is represented by a finite-state machine,
the specific definition of sub-observations makes it possible
to solve the problem by tracking the belief state (the set of
states that the system could be in) after each soft and hard
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event in the sub-observation. Assuming the system state
incorporates the diagnosis information, then the diagnosis
can be inferred from the belief state at the end of the sub-
observation. This procedure can be used on-line [13] or pre-
processed in a fashion akin to the diagnoser [14].

4 Critical Observations
The primary objective of this work is to compute a mini-
mal sub-observation that preserves the assertiveness of the
diagnosis: a critical observation. We first give a formal def-
inition of this notion, followed by a discussion of some rel-
evant properties and a procedure for computing the critical
observation.

4.1 Definition of a Critical Observation
We say a sub-observation is sufficiently precise if it allows
us to infer a given diagnosis:

Definition 6 Given a diagnosis D, a sub-observation θ is
sufficient to prove D if ∆(θ) = D. Given a trace ô, a sub-
observation θ � sub(ô) is sufficient for ô if ∆(θ) = ∆(ô).

A corollary of Definition 5 gives us ∆(θ) ⊇ ∆(ô). As
previously noted, abstracting away details to produce a sub-
observation sacrifices some information about the system
behavior—sufficiency, then, is the property that this infor-
mation loss did not affect the diagnosis by making feasible
other potential diagnoses:

∆(θ) \∆(ô) = ∅ (5)

Our goal, then, is to return a sub-observation that is suffi-
cient for the actual trace, ô. By Definitions 1, and 5, we see
that the naı̈ve sub-observation, sub(ô), satisfies the criteria
to be sufficient for ô, and means that at least one solution
can be found:

∆(sub(ô)) =
⋃

o∈ψ(sub(ô))
∆(o) = ∆(ô)

Given two sub-observations θ and θ′, a human operator
will, from our initial assumptions, better understand and as-
similate a diagnosis with θ′ if θ′ is more abstract than θ.
We therefore search for a “most abstract”, or critical, sub-
observation, defined as follows:

Definition 7 Given a trace ô, a sub-observation θ � sub(ô)
is critical for ô if it is sufficient for ô and there is no strict
sub-observation of θ that is also sufficient:

∀θ′ ∈ O. (θ′ � θ) ∧ (∆(θ′) = ∆(ô)) ⇒ (θ′ = θ) . (6)

A critical sub-observation (more simply called a critical
observation) is therefore a sufficient sub-observation that
cannot be abstracted more without damaging (complicating)
the precision of the diagnosis.

As � is only a partial order, it is possible that there could
be several critical sub-observations. For instance, using the
example in Figure 1, both θ1 = ΣocΣoaΣo (the system
emitted a c and later an a) and θ2 = (Σo \ {a})dΣoaΣo
(the system emitted anything bar an a, then a d and later an
a) are critical observations for the trace ô = cda.

4.2 Computing the Critical Observation
We now outline a procedure for computing a critical obser-
vation for a given problem. We rely on two fundamental
properties: the finiteness of the set of sub-observations of
interest, and the monotonicity of sufficiency.

Lemma 4.1 (Finiteness) Given a trace ô, the set O(ô) of
sub-observations of ô ({θ ∈ O | θ � sub(ô)}) is finite.

Proof This can be demonstrated by the fact that, by defini-
tion of �, the length of a sub-observation of ô must be equal
to or smaller than that of ô. This can only decrease until
|θ| = 1, at which point the set is exhausted.

Lemma 4.2 (Monotonicity) Given a trace ô and two sub-
observations θ1, θ2 such that θ1 � θ2 � sub(ô), if θ1 is
sufficient for ô, then so is θ2.

Proof This is a straightforward consequence of the fact that
ψ(θ1) ⊇ ψ(θ2).

Monotonicity guarantees that there is no unreachable “is-
land” of sufficient sub-observations.

Finiteness provides us three decisive properties: One—
that there always exists at least one critical observation (infi-
nite domains can prevent the existence of minimal elements;
e.g., there is no minimal real number strictly greater than 0),
Two—that for any sufficient sub-observation θ, there exists
a critical observation that is a sub-observation of θ (possi-
bly θ itself), Three—the depth of a critical observation (the
maximal number k of different sub-observations θi such that
θ � θ1 � · · · � θk � sub(ô)) is finite.

As a consequence of these properties, as soon as a suf-
ficient sub-observation θ is found the search for a critical
observation can be limited to the set of sub-observations of
θ (we call this a greedy approach). Another consequence
of the above is that we can define a search algorithm that
can find a sufficient, strict sub-observation of a given sub-
observation (or return that no such sub-observation exists),
that is guaranteed to terminate.

Finally, monotonicity together with finiteness, provides
a practical characterization of criticality: a sufficient sub-
observation θ is critical if and only if none of its children
(defined next) are sufficient.
Definition 8 A child of sub-observation θ is a strict sub-
observation θ′ of θ such that no sub-observation sits “be-
tween” θ′ and θ.

θ′ ∈ children(θ) ⇐⇒ (θ′ ≺ θ)∧ (∄θ′′ ∈ O. θ′ ≺ θ′′ ≺ θ) .

If, on the other hand, we find that one child of θ is suffi-
cient, then, according to the greedy approach described pre-
viously, we can iteratively check criticality of this child.

The set of children for our definition of sub-observation is
readily computable. We can prove that the children of a sub-
observation are exactly the sub-observations obtained by ap-
plying one of two operations which we will now define: the
event-softening operation and the collapse operation.

Definition 9 Given a sub-observation θ = y0x1 . . . xkyk,
the event-softening operation θ′ = es(θ, i, e) adds event e
to the ith soft event of the sub-observation: es(θ, i, e) =
y′0x

′
1 . . . x

′
ky

′
k (defined if e 6∈ yi) such that

• ∀j ∈ {1, . . . , k}. x′j = xj ,

• ∀j ∈ {0, . . . , k} \ {i}. y′j = yj , and

• y′i = yi ∪ {e}.
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Procedure FINDCRITICALOBSERVATION
input: trace ô; output: critical observation
diag := ∆(ô)
θ := sub(ô)
candidates := children(θ)
while candidates 6= ∅ do

θ′ := pop(candidates)
if ∆(θ′) = diag then

θ := θ′

candidates := children(θ)
end if

end while
return θ

Figure 3: Finding a critical observation

Definition 10 Given a sub-observation θ = y0x1 . . . xkyk,
the collapse operation θ′ = coll(θ, i) “forgets” the concrete
occurrence of a hard event xi. This operation requires the
soft events before and after xi to be equal and to allow for
xi: coll(θ, i) = y′0x

′
1y

′
1 . . . x

′
k−1y

′
k−1 (defined if xi ∈ yi

and yi−1 = yi) such that

• ∀j ∈ {1, . . . , i− 1}. x′j = xj and y′j−1 = yj−1 and

• ∀j ∈ {i+ 1, . . . , k}. x′j−1 = xj and y′j−1 = yj .

• y′i−1 = yi−1 = yi

Lemma 4.3 The children of a sub-observation θ are exactly
all the sub-observations that can be obtained by applying
either event-softening or collapse to θ.
(See appendix for proof).

An algorithm for finding a critical observation is given in
Figure 3. Starting from θ = sub(ô), the algorithm verifies
whether any child of θ is sufficient. If this is the case, then
θ is replaced with this child and the verification continues
iteratively.

Theorem 4.4 Algorithm FINDCRITICALOBSERVATION al-
ways terminates and returns a critical observation.

This theorem is a direct consequence of the properties de-
rived from the finiteness of O(sub(ô)) and the monotonicity
of the property, as described before.

4.3 Complexity
We now discuss the difficulty of finding a critical observa-
tion, defined in term of the number of ∆(·) calls. Letn = |ô|
be the length of ô (the number of observed events) and let
m = |Σo| be the number of observable events.

The maximal depth,D, of a sub-observation, namely that
of θ0 = {Σo}, is provablyD = (n+ 1)m+n: It is reached
by softening m times each of the n + 1 soft events fol-
lowed by collapsing the n hard events. Furthermore each
sub-observation (of length k ≤ n), can be shown to have a
bounded number of children, C, as given by Definition 8:
At worst each soft event can be softened in any one of m
ways ((k + 1)m), and a potentially up to k hard events can
be collapsed, giving C = (k + 1)m + k, which we see is
the same as D.

Consequently, the maximum number of ∆(·) calls of Al-
gorithm FINDCRITICALOBSERVATION is bounded by D ×
C, and therefore in O(n2m2). It can even be shown that,
for some traces, a naı̈ve implementation may indeed call the

diagnoser a number of times in Θ(n2m2) with different sub-
observations every time (see appendix for proof).

Fortunately it is possible to reduce this number drastically
with heuristics. Indeed it is generally possible to prove that
some children of θ′ are not sufficient simply because some
children of the parent of θ′ were proven not sufficient, thus
pruning the search tree significantly.

Consider for instance the sub-observation θ =
∅a∅b∅a∅a∅ in the example of Figure 1 (with diagnosis: fault
f1). The softening by b of the soft event y3 = ∅ between
x3 = x4 = a leads to a sub-observation (∅a∅b∅a{b}a∅) that
is not sufficient, as the nominal diagnosis N becomes pos-
sible. Consider now the sub-observation θ′ = Σoa∅aΣo of
θ. We can deduce automatically that the softening of y′1 = ∅
by b in θ′ leads to a non sufficient sub-observation, simply
because the mapping function f of Definition 4 associates
y′1 with y3.

It is therefore possible to “carry over” to the children of
any sub-observation the information regarding which soft-
ening and collapse operations complicate the diagnosis and
reduce precision. By doing so, the number of necessary calls
provably drops to Θ(nm).

5 Other Definitions of Sub-Observations
In this article we presented one definition of sub-observation
that, by no means, is the only viable one. We briefly discuss
a few possible variants and then present the necessary ele-
ments that the reader would need to consider to use another
definition.

In many circumstances the order between certain ob-
served facts is irrelevant. In the example of Figure 1, the
occurrence of both c and a, in any order, is symptomatic of
fault f2. Reminiscent of chronicles [15], a sub-observation
could be a directed graph of hard events where a directed
path between two hard events expresses a temporal prece-
dence. This bears a similarity to temporal uncertainty in
observations as described by Zanella and Lamperti [4].

The hard events are currently defined as a single specific
observable event; one could alter the definition to allow for
it could be replaced by a set of events. Indeed in the example
of Figure 1, a fault can be diagnosed when observing either
c or d before e. A reason for not distinguishing c from d in
this specific scenario is that these events could represent the
same message emitted by different components, or different
messages emitted by the same component: the exact emit-
ter of the message or the exact content may be irrelevant to
diagnose the fault. This is similar to logical uncertainty in
observations [4].

One more elaborate abstraction could be to use first-order
representations. For instance, a fault may be identified by
demonstrating that some user who was to be explicitly re-
fused access to some data was actually given access to that
data; the identity of the actual user may be irrelevant.

Defining New Sub-Observations
To apply the theory presented in this paper to a differ-
ent definition of sub-observations, one needs to define the
sub-observation space as given in Definition 1, i.e., the set
of sub-observations O, the partial order relation �, and
an inductive sub function that associates each observation
with an equivalent maximal sub-observation in O. This
also needs to be additionally equipped with a procedure to
compute ∆(θ). Algorithm FINDCRITICALOBSERVATION
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is guaranteed to return a critical observation if the sub-
observation space is finite and if the children function exists
and is specified.

We demonstrate a scenario where these conditions may
not be satisfied: Assume that the set of observable events is
infinite with each observable event associated with a rational
number (modeling some continuous property, e.g., temper-
ature). A natural abstraction would replace each event by a
closed interval where the value associated with the event lies
(the wider the interval, the most abstract the observation).
There could, however, be no maximal interval in a situation
where the relevant information about the observation is that
the temperature measure is strictly positive. Furthermore,
there is no notion of child in this particular sub-observation
space since Q is a dense set. Special attention must there-
fore be taken when defining new types of sub-observations.

6 Related Work
Finding critical observations is a different issue from opti-
mizing sensor placement [16] and dynamic observers [9].
These two problems aim at reducing the cost of monitoring
a system (by reducing the number of sensors or switching
them off). This reduction, however, needs to be conserva-
tive because the decision is made before any observations
are available. Critical observations, on the other hand, can
be computed after all observations are available.

Consider again the trace o = abaa in the example of Fig-
ure 1 whose critical observation is θ = Σoa∅aΣo. Con-
sider the question of whether the first observable event of
the trace is a c. The sub-observation θ does not provide this
information since it is not necessary to infer the diagnosis.
A dynamic observer however, has to check this information
because it is necessary to dismiss fault f2.

There has also been work on abstraction of event-based
observations, as mentioned at the end of section 3. The sub-
sumption (�) between uncertain or partial observations has
been studied by Lamperti et al. [17], although their moti-
vation is different from ours: by identifying that the current
uncertain observation θ is a refinement of a previous obser-
vation θ′ � θ, it is possible to reuse the diagnosis of θ′ (that
is, ∆(θ) ⊆ ∆(θ′)).

7 Conclusion & Future Work
In this work we defined a notion of critical observations for
the diagnosis of discrete event systems. A critical observa-
tion is a maximally abstracted observation that allows only
the same diagnosis to be inferred as was from the complete
observation. Critical observations are beneficial in that they
contain the core proof that supports the diagnosis. An im-
portant assumption of this work is that more abstract ob-
servations are easier for a human operator to understand
and act on; an important extension will be to minimize the
amount of information from the model—and not only from
the observations—necessary to infer the diagnosis.

We also want to be able to handle incremental and on-
line diagnosis. Currently we assume that the critical obser-
vation is extracted once the diagnosis has been performed;
however observations that are not critical for a given trace
might become critical when more observations are produced
by the system. We would like to identify as early as possi-
ble what abstraction of the currently received observations
can be safely made without impairing the future diagnosis.
Kurien and Nayak tried to address a similar problem [18]

of removing intermediate (state-based) observations that do
not provide additional information.

Critical observations are also good at reducing the amount
of information disclosed about the system behaviour. In fu-
ture work we want to explore this line of research and, in
particular, examine the problem of finding sub-observations
that satisfy a privacy criterion, for instance, one defined by
opacity [19].
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8 Appendix
We provide proof sketches that will not be included in the
final version of the paper.

Proof of Lemma 4.3
The proof is three-part:

a) proving that the event-softening operation produces
only children;

b) proving that the collapse operation produces only chil-
dren;

c) proving that there is no other child.

Event-Softenings It is easy to see that θ2
def
=

es(θ1, i, e) ≺ θ1.
Assume now that θ2 � θ3 � θ1 and let f23 and f31 be the

two mapping functions—as presented in Definition 4—used
to verify the two ordering relations.

By definition of �, |θ2| ≤ |θ3| ≤ |θ1|. However since
|θ2| = |θ1| (by definition of event-softening), the size of
all three sub-observations are equal and f23 = f31 are the
identity function.

As a consequence, x3j = x2j = x1j for all j. Furthermore
y2j ⊇ y3j ⊇ y1j for all j. In particular, if j 6= i, since y2j = y1j ,
then y3j = y2j = y1j . For i, y2i = y1i ∪ {e}, meaning that
either y3i = y2i or y3i = y1i .

Therefore either θ3 = θ2 or θ3 = θ1.

Collapse Similarly, it is easy to see that θ2
def
=

coll(θ1, i) ≺ θ1.
Again assume that θ2 � θ3 � θ1 and let f23 and f31 be

the functions defined as before.
The size of θ3 now either equals that of θ2 or θ1; let ℓ ∈

{1, 2} denote the index such that |θ3| = |θℓ|. Notice that
either f23 or f31 is the identity function.

By definition of �, we know that x3j = xℓj . Furthermore
the set inclusions as well as the relations between y2j and y1k
allow us to infer that y3j = yℓj for all j.

Therefore θ3 = θℓ.

No Other Children Assume now that θ′ is a child of θ that
cannot be obtained by event-softening or collapse. Let f be
the mapping function used to verify the ordering relation.

By definition of the partial order �, the size of θ′ is
smaller or equal to θ.

If |θ′| < |θ| (“multiple collapse”), then let i be an index
such that f(i+1) > f(i)+1 (such an index exists if the two
sizes differ). If yi+1\yi 6= ∅, then let θ′′ = es(θ, i, e) (where
e ∈ yi+1 \ yi) be the sub-observation obtained by softening
yi with e; then, θ′ ≺ θ′′ ≺ θ. Similarly if yi ⊇ yi+1 with
θ′′ = es(θ, i + 1, e) (where e ∈ yi \ yi+1). Lastly the same
applies if yi = yi+1 with θ′′ = coll(θ, i).

If θ and θ′ have same size, then all x′is equal the cor-
responding xis, and all the y′is are supersets of the corre-
sponding yis. Let i be an index such that y′i 6= yi (if no
such index exists, then θ′ = θ). Let θ′′ = es(θ, i, e) where
e ∈ y′i \ yi. Then θ′ ≺ θ′′ ≺ θ.

Complexity of FINDCRITICALOBSERVATION
We show that the number of ∆(·) calls in FINDCRIT-
ICALOBSERVATION could be in the order of n2m2

4 where
n is the length of the trace and m the number of observable
events.

1

start

2 34
b b

cc
A

A
A

f

c

Figure 4: Example of a system: a fault is diagnosed if there
are more cs than bs after the occurrence of the last ai (A
stands for {a1, . . . , am−2}).

We use the example of Figure 4 which involves faulty
event f and observable events {a1, . . . , am−2, b, c}. Con-
sider the trace of (odd) length n: ô = a1 . . . a1︸ ︷︷ ︸

n/2

bc . . . bc︸ ︷︷ ︸
n/2

c.

Clearly the trace reveals a faulty system since the number
of cs exceeds the number of bs in this instance. The critical
observation here is:

Σoa1{c}b{c}c{c} . . .{c}b{c}c{c}cΣo,

i.e., all the second half of the trace needs to be kept.
We assume that FINDCRITICALOBSERVATION always

tries to perform event-softening from the end of the sub-
observation first, and only tries to collapse when no soft-
ening is possible. Neglecting the first steps where the c
softenings are successful, the algorithm will need to make
U = n

2 × (m − 1) calls to ∆(·), unsuccessfully trying to
softening the second half of the sub-observation. The num-
ber of successful softenings however is S = n

2 ×m (all the
first half of the sub-observation), meaning that the number
of ∆(·) calls will be at least U × S = n2m(m−1)

4 calls.
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