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Abstract
Autonomous systems’ dependability can be im-
proved by performing diagnosis during run-time.
This can be achieved through model-based diag-
nosis (MBD) techniques. The required models of
the system are for the most part handcrafted. This
task is time consuming and error prone. To over-
come this issue, we propose a framework to gen-
erate formal models out of natural language doc-
uments, such as technical requirements or FMEA,
using natural language processing (NLP) tools
and techniques from the knowledge representa-
tion and reasoning (KRR) domain. Therefore, we
aim to enable the usage of MBD in autonomous
systems with few extra burden. So doing, we ex-
pect a significant increase in the usage of MBD
techniques on real-world systems.

1 Introduction
Dependability is a key feature of modern autonomous sys-
tems. It can be achieved by sound design and implemen-
tation, thorough testing and runtime diagnosing. To date,
all these processes are still not completely automated and
need substantial manual work. However, all these fields can
greatly benefit from the use of model-based techniques. De-
sign and implementation can be greatly improved through
model-driven engineering, as stated in [1]. Model-based
testing (MBT) has been demonstrated [2] to outperform tra-
ditional testing techniques in both invested time and number
of errors found. Model-based diagnosis (MBD) is the main
target of this work. It has been successfully used in indus-
trial settings [3], reducing the need for human intervention.
Although it has being increasingly adopted in recent years,
we believe that its full potential is still to be developed.

All model-based techniques require appropriate models
of the system. As stated in [4; 5], creating these models
is the most prevalent limiting factor for their adoption. To
overcome this barrier, we propose a method that automates
models creation from the documents used during the sys-
tem design. These comprise requirements documents, ar-
chitectural designs, FMEA and FTA, among others. The
content of these documents is often given in natural lan-
guage and in semi-structured form and lacks a common
semantics. Thus, the contained information is not acces-
sible for a computer. However, advances in natural lan-
guage processing (NLP) and the availability of common
sense and domain-specific knowledge bases (e.g. Cyc [6],

RoboEarth [7]) make semi-automated derivation of mod-
els possible. Despite recent advances on this area [8; 9;
10], most techniques focus on very specific applications of
the generated formal models. Thus, we pose the problem
of generating a common knowledge base as an interme-
diate representation with a well defined semantics out of
documents used during the system design process. From
this central repository, different algorithms can extract dif-
ferent formal models for particular needs. We believe that
this work can increase the acceptance of model-based tech-
niques and broaden their use.

The motivation for this work came during the develop-
ment of a model-based diagnosis and repair (MBDR) sys-
tem for an industrial application. The aim is to improve the
dependability of a fleet of robots that automatically deliver
goods in a warehouse. As stated in [11], even minor fail-
ures often prevent a robot from accomplishing its task, de-
creasing the overall performance of the system. Moreover,
the frequent need of human intervention increases costs and
customer dissatisfaction. Using MBDR techniques, many
of these failures can be automatically handled, allowing the
robot to remain on service, perhaps with its capabilities
gracefully degraded [12; 13]. In extreme cases, diagnos-
ing a failure on time can prevent robot behaviors harmful
for humans, itself or other elements in the environment.

Confronted with the lack of any formal model of the
system, we were forced to manually code the models we
need. However, this is both a time-consuming and error
prone task, and also impose a maintaining burden as the
system evolves. Accordingly, we believe that a mostly au-
tomated approach is not only convenient for the intended
project but can also help extending the use of MBDR
techniques to other projects and domains. Following this
idea, we propose a framework that, in a first step, gath-
ers the information from the project together with domain
and common-sense knowledge in a machine-understandable
knowledge base. Then, a suit of algorithms can extract for-
mal models from this knowledge base for particular pur-
poses. Though our aim is to automate the process as much
as possible, human assistance will be requested whenever
some pieces of information are missing or contradictory [14;
15].

The novelty of our proposal is two-fold: first, we empha-
sizes the usability of the resulting models for MBD. Second,
we aim to integrate all the sources of information typically
available in an industrial development process, such as re-
quirements, architecture, and failure modes. As a result, we
expect to boost the range and applicability of the automat-
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ically generated models. To better illustrate the proposed
framework, we will use a small running example extracted
from a real-world application. It comes to the robot’s box
loading operation, performed by the robot’s load handling
device (LHD).

The remainder of the paper is organized as follows: Re-
lated research on model generation is discussed in Section
2. Section 3 provides an overview of the proposed process.
Section 4 describes the inputs used, while Section 5 de-
scribes the proposed NLP and KRR tool-chain to interpret
them. Section 6 provides an example of an output model
and its use for MBD. Finally, Section 7 summarizes the pre-
sented framework and discusses future work.

2 Related research

We start the brief discussion of related research with the
work using NLP methods to derive models. The work of
[9] uses NLP methods to derive a formal model out of re-
quirements. This formal model can afterwards be trans-
formed into different representations to test or synthesize
the system. The method proposed in [10] uses NLP meth-
ods to derive design documents (class diagrams, etc.) out
of requirements. These design documents can afterwards be
used to implement the system. The authors of [8] proposes
a method to extract action receipts from websites. These
action receipts comprises the desired behavior in order to
achieve a given goal. The method use how-to instructions
and NLP tools to derive an action receipt which can be ex-
ecuted by a robot. Missing parts are inferred with the help
of common sense knowledge about actions. In contrast to
all these approaches, we propose a framework which incor-
porates different information sources to get a better under-
standing of the system. Furthermore, our framework gen-
erates different models out of an internal formal description
depending on the needs of the intended diagnosis and testing
tasks.

Beside NLP methods, machine learning can also be used
to generate a model of the system. The work in [4] pre-
sented a method to statistically learn the model of the sys-
tem under nominal conditions. The model describes the
static interaction of the system components. In contrast, the
method proposed in [5] learns the behavior of a system. The
method infers from observed events similar/different states
and merges similar ones. Furthermore, the variables in the
system for each state are estimated. Both methods are only
applicable if the system is already built. Instead, we create
a model during the design phase, and so the model can be
used right at the first stages of the life-cycle.

Missing or contradicting information must be detected
and handled when generating models. The method in [15]
tries to avoid faults in the requirements document. This is
done through the transformation of the requirements into so
called boilerplates. Through this semi-structured text, am-
biguities are removed and a consistent naming is enforced.
A different approach was proposed in [14] to diagnose a
knowledge base for consistency. If the knowledge base is
inconsistent, the user is asked as an oracle to pinpoint the
problem. Afterwards, the user needs to fix this issue. In our
framework, we will use ideas from both methods to derive a
consistent knowledge base of the system.

3 Framework overview
We propose the framework depicted in Figure 1 to transform
informal documents and knowledge into models suitable for
MBD. The informal inputs (white squares with solid lines)
are processed into intermediate representations (light gray
squares with dashed lines) using techniques from NLP and
KRR, as well as ontologies (e.g. Cyc). We condense them
into a knowledge base together with all our knowledge about
the system and its domain. Finally, a variety of algorithms
can produce formal models suitable for MBD (gray squares
with dot-dash lines).

4 Sources of information
The proposed framework takes artifacts from the design
phase as inputs. We propose the use of the following four in-
puts, though additional sources can be incorporated if avail-
able:

1. Requirements document: The technical requirements
document describes the expected system behavior.
Therefore, it is a mandatory input. The models’ quality
and so the resulting MBD will heavily depend on the
quality of the requirements. Thus, iterative improve-
ment of the requirements and models is used, as pro-
posed in [15]. For our running example, we have taken
four requirements that describe the box loading process
of a robot:
(a) When the robot is docked, it lowers the barrier.
(b) When the robot is ready to load, the load handling

device starts rotating backward.
(c) The load handling device stops rotating back-

wards when the laser beam is triggered.
(d) After stopping the load handling device the barrier

is raised.
2. Domain knowledge: This is the most fuzzy input, as

it is available not as an artifact but as the knowledge
and experience of the engineers involved. We dis-
tinguish three kinds of knowledge. Common sense
knowledge can be provided by existing ontologies as
Cyc [16]. Generic knowledge about the autonomous
systems domain can be provided by dedicated ontolo-
gies as KnowRob [17]. Particular knowledge about the
targeted system itself can be partially inferred from the
system architecture, though other parts must be pro-
vided by the project engineers. The use of ontologies
range from providing meaning to natural language con-
cepts to inferring missing pieces of information.

3. Architecture: The architecture of the system defines its
composing elements plus the relations between them.
It is typically described as a set of diagrams generated
during the design phase of the system. For our run-
ning example, we use the architecture excerpt depicted
in Figure 2. It states that a robot consists of a LHD
and other unspecified elements. Furthermore, the LHD
consists of a laser beam, rollers and a barrier.

4. Failure Modes and Effects Analysis: FMEA looks at
all potential failure modes, their effects and causes and
determines a risk priority factor. FMEA can be used to
determine which potential errors are critical, how they
can be pinpointed, and how the effects thereof can be
avoided [18]. We incorporate the failure modes into
the resulting behavior models to diagnose these known
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Figure 1: Abstract work-flow for the proposed framework. Starting from left with inputs in natural language, we generate
models that can be applied for diagnosis (right).

Figure 2: Robot architecture excerpt. The figure shows re-
lations of the type part of for components of the Robot.

failures. For our running example, we include the two
failure modes that can occur during the load operation,
depicted in Table 1.

The biggest challenge for handling all these inputs is to
understand semi-structured information. So, we will depict
a NLP/KRR tool-chain using state-of-the-art techniques in
the following section.

5 NLP/KRR tool chain
The process generates three intermediate artifacts: semi-
formal text (boilerplates), syntax trees and semantic cate-
gories. As a showcase, we will concentrate on the require-
ments of our running example, though these techniques can
be extended to other textual inputs, as we will see at the end
of this section.

5.1 Boilerplates
This is a semi-formal representation where most of the
spelling errors, poor grammar and ambiguities have been
removed. Boilerplates also enforce the use of a consistent
naming scheme. There exist tools such as [19] to perform
this task semi-automatically. In our example, the four re-
quirements become the four equivalent boilerplates:

(a) when the robot is docked, it lower the barrier.
(b) when the robot is ready to load, the lhd start rotating

backward.
(c) when the lb is triggered, the lhd stop backward rotation.
(d) after stopping the lhd, the barrier is raised.

Figure 3: Sample syntax tree of the first sentence (a) of the
running example.

Note for example that the 3rd person “s” has been removed
from the verbs. Furthermore complex terms such as “load
handling device” have been replaced by lhd. Finally, the
propositions order is rearranged in a consistent structure.

5.2 Syntax trees
A syntax tree comprises the information of the type of each
word in the sentence, e.g. ”lower“ is a verb. Furthermore,
the tree specifies how the sentence is constructed with these
words. For example, the syntax tree of the first require-
ment in our running example is depicted in Figure 3. In this
syntax tree we can identify that “robot” is a noun and “the
robot” is a so called noun phrase. An example of a tool to
extract syntax trees is the probabilistic context free grammar
parser, described in [20].

5.3 Semantic categories
The semantic categories conceptually describe our system,
e.g. a transition describing the motion of an actuator. These
semantic categories are hierarchical in nature, as more com-
plex and abstract concepts are composed of simpler ones,
e.g. a transition is composed by an action, pre and post
conditions, etc. We obtain the semantic categories by pars-
ing the syntax trees and applying transformation rules in a
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Component Failure Observations
Failure 1 Barrier Barrier stuck up Barrier stuck up regardless commands
Failure 2 Load Handling Device (LHD) Rotation fail Laser beam not triggered

Table 1: FMEA from the running example.

Figure 4: Concepts created from the syntax tree in Figure 3.
The word in quotes is the word as it appears in the sentence.
The word in parenthesis is the Cyc concept it belongs to.

bottom up fashion, following [8]. We start at the leafs of
the syntax tree, containing single words. Each word has
assigned a part-of-speech (POS) label describing its gram-
matical role in the sentence. Furthermore, each word has an
additional label with its WordNet [21] synset, used to de-
rive its semantics from the common sense knowledge base.
From the leafs, higher level transformations can be applied
to create more complex semantic categories. For example,
on our running example we create a semantic category for
each word in the sentence “lower the barrier”. Then, we
can derive that “lower” is an action acting on something.
We can after that use the semantic category of the word to-
gether with its position in the syntax tree to apply further
transformation rules. This process is repeated till the root
node is reached. Then, a new semantic category is assigned
to the sentence capturing its semantics. For the running ex-
ample, the semantic category for “lower the barrier” is a
transition. A transition must contain a precondition, a post
condition, an action and optionally an object of the action.
The semantic category specifies that the action “lower” is
performed on the object “barrier”. With the help of com-
mon sense (Cyc ontology [16]) we can reason that this ac-
tion causes the “barrier” from state “up” to state “down”.
Thus, we can infer the pre and post conditions of “lower”.
Finally, the semantic category together with the reasoning
results are packed into statements on our knowledge base,
as it is depicted in Figure 4.

We can incorporate other documents into the knowledge
base by using a similar NLP tool chain. However, how the
information is treated depends heavily on the context inher-
ent to each document type.

6 Model generation for behavior diagnosis
To illustrate how the framework can be used to diagnose
the behavior of the robot, we create an automaton as output
model. To use techniques such as [22], the automaton must
describe both nominal and faulty behaviors of the system.
To generate this automaton from the knowledge base, we
use four different relations stated on it as transitions:

1. Relations representing a direct transition, as depicted
in Figure 4. Such a transition can be directly mapped
into a transition on the automaton, as can be seen in
Figure 5 through the transitions from state 1 to 2.

2. Relations representing an action with a duration. Such
a relation must be translated into several transitions:
the start of the action, the termination event and a tran-
sition to a final state. Such transformed relation is de-
picted in Figure 5 through the transition from state 2 to
5.

3. Relations representing a failure of the system. The
failure event is represented as a divergent path from
a normal transition. Thus, the start state is the same
as the one of the normal transition. Afterwards, we
need a state representing the failure. Finally, we need
an observation transition that leads to a final state rep-
resenting a general failure of the system. The observ-
able transition is cased due to the fact that use a fault
model which is derived from the FMEA. Thus every
fault has an observable discrepancy to the real system.
Additionally it is important to notice that the state rep-
resenting the general failure is state where the system
can exhibit arbitrary behavior. Thus we can model the
lack of knowledge which impact the fault has on the
system. The transformed failure is is depicted in Fig-
ure 5 through the transitions from state 2 to 9.

4. Relations representing a failure of a system compo-
nent. The failure event is represented as a divergent
path from a normal transition. To determine all the
possible affected transitions, we must perform an infer-
ence of the effects each transition has. This inference is
based on common sense and domain knowledge. In our
running example, we can infer that lowering the barrier
causes the barrier to be finally down. A failure such
as barrier_stuck_up can prevent this transition, and so
they can share a common source state. Then, as before
we need an observation transition that leads to a final
state representing a general failure of the system. Such
a sequence is depicted in Figure 5 though the transi-
tions from state 1 to 9 through the states 7 and 8.

7 Conclusion and future work
In this paper we propose a framework to automatically gen-
erate formal models out of documents represented in semi-
structured form and natural language (requirements, domain
knowledge, architecture, failure modes, etc.). The parsed in-
formation is gathered together with domain knowledge in a
knowledge base. Accessing this common repository, a va-
riety of algorithms can generate different kinds of models
for different purposes. Our main target is to derive models
suitable for state-of-the-art MBD techniques applied to au-
tonomous systems. We plan to implement this framework
to assist us on creating the models required for MBD. Do-
ing so, we expect to improve the dependability in the indus-
trial application of a fleet of transport robots in a warehouse.
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Figure 5: Automaton generated from the running example.
Shaded states are reached through some fault. Double cir-
cled states represent final states. State number 9 is the gen-
eral failure state for readability the self loops with all possi-
ble labels are omitted.

Besides this immediate result, we expect that the proposed
framework will ease the creation of formal models for other
applications. Thus, we hope to contribute to the widespread
use of MBD techniques, with the consequent improve of au-
tonomous systems dependability.
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