
Methodology and Application of Meta-Diagnosis on Avionics Test Benches

R. Cossé1,2, D. Berdjag2, S. Piechowiak2, D. Duvivier2, C. Gaurel1
1AIRBUS HELICOPTERS, Marseille International Airport, 13725 Marignane France

{ronan.cosse, christian.gaurel}@airbus.com
2LAMIH UMR CNRS 8201, University of Valenciennes, 59313 Valenciennes France

{denis.berdjag, sylvain.piechowiak, david.duvivier}@univ-valenciennes.fr

Abstract
This paper addresses Model Based Diagnosis for
the test of avionics systems that combines aero-
nautic computers with simulation software. Just
like the aircraft, those systems are complex since
additional tools, equipments and simulation soft-
ware are needed to be consistent with the test re-
quirements. We propose a structural diagnostic
framework based on the lattice concept to reduce
the time of unscheduled maintenance when the
tests cannot be performed. Here, we also describe
a diagnosis algorithm that is based on the formal
lattice description and designed for test systems.
The benefits is to capture the system structure and
communication specificities to diagnose the con-
figuration, the equipments, the connections, and
the simulation software.

1 Introduction
Avionics systems are complex since tens of subsystems and
components interact to achieve required functions. Exist-
ing devices for aircraft fault monitoring are based on ded-
icated avionics functions but the existing solutions are in-
sufficiently flexible for test systems and can be improved.
In [1], the framework of an health management algorithms
for maintenance is described and implemented on an air-
craft. In [2], the diagnostic of avionics equipments is per-
formed through dynamic fault trees. To prevent important
failures on the aircraft, avionics systems are checked on rigs
called Avionics Test Bench (ATB) composed of the avionics
equipments and flight simulation software.
The environment of the ATB needs to be compliant with the
configuration of the avionics equipments. Faults of the ATB
can concern the avionics equipments, their configurations,
or the ATB itself i.e the movable connections and the simu-
lation software. Since it does not exist monitoring functions
of the ATB itself, a new method needs to be applied to pre-
vent long periods of unavailability. In fact, during the devel-
opment of embedded softwares, its architecture and the test
environment surrounding the ATB are redesigned by adapt-
ing the test means to the specification’s requirements. Since
the ATB is a test system, and the main knowledge are based
on its embedded systems, we need a new approach to deal
with the ATB issues. As the embedded systems are already
tested on the ATB, and the test results are used to focus on
the ATB issues thanks to a new representation based on the
model of the test system, the diagnosis of the ATB is what

we call a meta-diagnosis.
Many diagnosis approaches have been proposed to deal with
specific avionics problems. Two different classes of repre-
sentation are applied: data-based diagnosis or model-based
diagnosis. The first one, as studied by Berdjag et al. [3] is
used to recognize faulty behaviors of an Inertial Reference
System (IRS) thanks to normal or faulty categories of in-
put/output data. In this work, data fusion of outputs sensors
is computed to eliminate faulty sources. In [2], the time
dependency is introduced in data of failure messages to im-
prove problems detection.
In Model Based Diagnosis (MBD), Kuntz et al. [4] have
studied an avionics system using minimal cuts notions. Be-
lard et al. have defined a new approach based on the MBD
hypotheses called Meta-Diagnosis in [5] dealing with mod-
els issues. Berdjag et al. [6] present an algebraic decompo-
sition of the model to reduce the complexity of the required
model-based diagnosers. Giap [7] has proposed a formalism
of an iterative process to give a solution when models are not
complete but it lacks of applications on more complex in-
dustrial systems. Nevertheless, it gives clues for an iterative
diagnosis. Another diagnostic software has been developed
by Pulido et al. in [8] to perform consistency-based diagno-
sis of dynamic system simulating diagnosis scenarios. The
architecture is quite novel and is applied to the three-tank
system.
Structural approaches as graph theory are also popular
for MBD to describe the structure of the system as with
Bayesian Networks in [9]. They enable us to incorporate
the system complexity as with the lattice concept to inte-
grate the sub-models dependencies. For example, in [10],
the lattice model represents fault modes to compute testable
subsystems from redundancy equations. We want to get the
main ideas that will serve our proposal. To our knowledge,
there is no method for the diagnostic of test systems based
on embedded softwares behaviour. Moreover, our proposi-
tion has been adapted from embedded systems to the ATB
behaviour. Its complexity is relevant to the objectives of
the avionics embedded systems certification, as for exam-
ple high levels of safety requirements, or the simulation of
specific test conditions. In our model, we must consider the
fact that our representation must put forward the ATB be-
haviour in case of failures concerning embedded systems,
connections, communications, simulation softwares and all
settings to configure the test. Considering those features, the
high number of needed ATB reconfigurations, it is proposed
a structural representation associated with hierarchical ver-
ifications that reduce the faulty candidates. The motiva-

Proceedings of the 26th International Workshop on Principles of Diagnosis

159



tion of the proposed meta-diagnosis approach was presented
in [11]. Here, we propose an extended diagnosis methodol-
ogy originally defined by De Kleer, Williams [12], [13] and
Davis [14] and we present a software implementation run-
ning on a real ATB. It differs from the Belard et al.’s meta-
diagnosis definition because the ATB is still defined as the
main system under study. Here, we extend the diagnostic-
world tools for a specific system and due to the lack of
knowledge and data in case of issues, our proposal is based
on a MBD representation with a structural and functional
decomposition without fault models.
First, we describe the diagnostic framework, the lattice-
based representation used to model the ATB system and the
diagnostic algorithm. In the third section, we provide a de-
scription of the ATB and the application of the lattice con-
cept. In the fourth section, we illustrate the approach with a
case study of the ATB. In the final section, we describe the
development of a software application to perform automati-
cally the ATB diagnosis.

2 Diagnostic framework

2.1 System representation

The system is composed of several subsystems that inter-
act together to achieve a global function. The decomposi-
tions into subsystems is guided by the communication be-
tween components to fulfill this goal. Partitions are used
to decompose the system into functional and communica-
tions categories. So, there are two classes of partitions: the
partitions that represent the structure and the connections of
the system; and the partitions that represent the functions of
the system. As an example, P1 is associated with a func-
tionality of the system P1 = {σ1;σ2}, σ1 = {C1} and
σ2 = {C2, C3}. If a problem appears, i.e the functionality
is not performed, then a fault is detected for this partition P
and symptoms are seen and linked to subsystems σ.
In the following paragraphs, we use the following notation:
P for a partition, σ for a subsystem and ci for a compo-
nent. S = {ci, i ∈ [1, n]} is the set of all the n components
of a system. We note Σ the set of all subsystems, i.e the
power set of components. A partition P is a set of np sub-
systems σi ∈ Σ: P = {σi, i ∈ [1, np]|∀i 6= j;σi ∩ σj =

∅, and
np⋃
i=1

σi = S}. We note P the set of all partitions.

We recall the definition 1 of inclusion relation between par-
titions and the definition 2 of multiplication.

Definition 1. Two partitions P1 and P1 are said to be in
inclusion relation P1 ⊆ P2 if and only if every subsystems
of P1 is contained in a subsystem of P2. The relation ⊆
means that P1 is a sub-partition of P2.

Definition 2. The subsystems σk of the multiplication of two
partitions P = {σi, i ∈ [1, np]} and Q = {σj , i ∈ [1, nq]}
are defined by: ∀σk ∈ P × Q,∃σi ∈ P,∃σj ∈ Q, σk =
σi ∩ σj .

This operation is used to order subsystems with respect to
the proposed diagnostic algorithm. The inclusion relation⊆
is used to organize the components with the lattice concept
L (Σ,⊆) with a partial ordering relation. It is different from
the concept of partially ordered set (poset) because the ar-
rangement of elements is not based on sets but on partitions.

2.2 Diagnostic function
A basic diagnostic function is defined to help the diagno-
sis: the check function. Depending on the granularity, the
check function is applied on a component, a subsystem or
a partition. First, the checkC function is used to deter-
mine if a component is faulty or not. However, we do not
know precisely how a unique component behaves regarding
a fault. So we need to define the checkS function of a sub-
system. The behaviour of a faulty subsystem may also not
be sufficient to explain a fault. In fact, subsystems are inter-
connected making the system structure and the partitioning
concept allows us to focus on different levels of abstrac-
tion that we call granularities. In our study, we only focus
on faults with observable and measurable symptoms. These
faults can only be localized by testing a functionality on a
specific architecture. That is why, functional and structural
partitions are used to decompose the system into testable
partitions.

Definition 3. The checkC function of a component ci is
defined by:
checkC : COMPS → {0, 1,−1} s.a checkC(c) = 0 if
the component c is faulty, checkC(c) = 1 if the component
c is unfaulty and checkC(c) = −1 if the component state is
unknown.

Definition 4. The checkP function of a partition P is de-
fined by:
checkP : P → {0, 1,−1} s.a checkP (P ) = 1 ⇔
∀σi ∈ P, checkS(σi) = 1, checkP (P ) = 0 ⇔ ∃σi ∈
P, checkS(σi) = 0, and checkP (P ) = −1 ⇔ the checked
value is unknown.
Some partitions cannot be checked. The set of pos-
sible checked partitions is Cons. It defined a con-
straint. A constraint Cons is a subset of P s.a: ∀P ∈
Cons, checkP (P ) 6= −1.

Once the checkP value of a partition is known, we have
to define the checkS function of subsystems that are not sin-
gletons σi 6= {ci}. If the partition is faulty, either it exists
a component ci ∈ σi such as checkC(ci) = 0, or the com-
munication between the components in σi is faulty. This
is modeled by checkCom(σi) = 0. If the partition is un-
faulty, then all communications between the components in
σi 6= {ci} are unfaulty and all singletons σi = {ci} are
unfaulty.

Definition 5. The checkCom function of a subsystem σi ⊆
COMPS is defined by:
checkCom : Σ→ {0, 1,−1} s.a checkCom(σi) = 1⇔
the communication between components in σi is unfaulty;
checkCom(σi) = 0⇔
the communications between components in σi is faulty.

To help the diagnosis of the system, we decompose it
into subsystems and we introduce the checkS function of a
subsystem σi ⊆ COMPS defined by:

Definition 6. checkS : Σ → {0, 1,−1} s.a checkS(σi) =
1 ⇔ ∀ci ∈ σi, checkC(ci) = 1 ∧ checkCom(σi) =
1 ; checkS(σi) = 0 ⇔ ∃ci ∈ σi, checkC(ci) = 0 ∨
checkCom(σi) = 0 and checkS(σi) = −1 ⇔ ∃ci ∈
σi, checkC(ci) = −1 ∧ checkCom(σi) = −1.

With the above definitions, it is now time to define the
diagnosis problem. Given a system representation with the
lattice concept L (Σ,⊆) and the set of constraints Cons =

Proceedings of the 26th International Workshop on Principles of Diagnosis

160



{P ∈ P, checkP (P ) 6= −1}, the problem is defined by
the consistency between L (Σ,⊆) that contains the system
representation, and Cons that describes system issues.
Definition 7. The problem formulation is to find the faulty
components whose current state may explain the con-
straints. It is defined as a function DIAG(L (Σ,⊆)) under
the constraints Cons.

There are two kinds of faults: the fault of a component
Ci modeled with checkC(Ci) = 0, and the communica-
tion fault of a subsystem σi = {Ci, Cj , ...} modeled with
checkCom(σi) = 0. With the P1 partition, suppose that C2

and C3 are linked with an ARINC 429 link that is not work-
ing. The constraint is checkP (P1) = 0 because the global
function is broken. The reason is that checkCom(σ2) = 0.
Knowing that checkCom(σ2) = 0 for the P1 functionality
is giving the information to fix the system.

2.3 Diagnostic algorithm
It is now necessary to introduce a diagnostic method whose
aim is to solve the above problem. The algorithm is based on
the following proposition that extends the verification from
the multiplication of partitions to partitions, see Proposi-
tion 1. Then, a functional verification is propagated from
partitions to subsystems, and from subsystems to compo-
nents.
Proposition 1. ∀P,Q ∈ P2, checkP (P × Q) = 0 ⇒
checkP (P ) = 0 ∧ checkP (Q) = 0.

In order to increase the readability of the algorithm, it has
been split into three: DIAG(L (Σ,⊆)) is the main algo-
rithm, it initializes the framework with the partitions of the
system {pi, i ∈ [1, n]} and the constraints Cons = {P ∈
P, checkP (P ) 6= x}.
FindFaultyElements checks the partitions that are de-
fined as a constraint. If the checked value of a partition
pmult is faulty (resp. unfaulty), we add it to the faulty (resp.
unfaulty) partitions set P− (resp. P+), and every subsystem
σi of the partition is possibly faulty (resp. unfaulty), we add
it in Σ+, (resp. Σ−). If another partition pmult can help to
get more faulty or unfaulty components, a new constraint is
proposed and added to NCons.
V erification is used to check the possible components that
may be faulty, i.e include in Fc with the checkC function,
and the communication of the subsystems in Σ− with the
checkCom function.

Two functions have been introduced: the checkP (pi)
value of a partition pi and the CheckCom(σi) of a subsys-
tem. Their values can be automatically computed thanks to a
program developed on the system to automate the diagnosis.
This is performed by the GET function whose purpose is to
model the computation of checkP (pi) or CheckCom(σi).

2.4 Formal example
In order to illustrate the problem formulation and the diag-
nostic algorithm, a formal example is provided. It is com-
posed of eight components {Ci, i ∈ [1, 8]} organized into
three partitions:
P1 = { {C1,C2, C3,C4}, {C5,C6, C7,C8}},
P2 = { {C1,C2}, {C3,C4,C5,C6,C7,C8}},
P3 ={{C1}, {C2,C4,C6,C8}, {C3,C5,C7}}.
P3 describes the topology of the system. P1 and P2 describe
functionalities. We set theC2 component as faulty. The idea
is to combine the topology of the system with its function-
alities to find the faulty component or subsystem. A choice

Algorithm 1: DIAG(L (Σ,⊆))

Input: d = {pi, i ∈ [1, n]}, Cons = {consi}
Output: ∆(Diagnosis)
Global variables: End
Fc(faulty components), Uc(unfaulty components),
Σ−(faulty subsystems),Σ+(unfaulty subsystems),
P−(faulty partitions), P+(unfaulty partitions)
∆, Fc, Uc, P

+, P−,Σ−,Σ+ ← {}; End← false;
NCons← {};
while ¬End do

FindFaultySubsystems(d,Cons);
V erification(Fc,Σ

−);
if ¬End then

foreach pi ∈ NCons do
GET checkP (pi)
Cons← Cons ∪ {pi}

Algorithm 2: FindFaultyElements
Input: d = {pi}, Cons = {consi}
Outputs: Fc, P−, Σ−, Σ+

foreach (pj , pk) ∈ P 2 : pi 6= pj do
pmult ← pj × pk
if pmult ∈ Cons then

if checkP (pmult) = 0 then
P− ← P− ∪ {pi}
foreach σi ∈ pi do

foreach ck ∈ Uc do
σi ← σi \ {ck}

if σi = {ci} then
Fc ← Fc ∪ σi

else if σi /∈ Σ+ then
Σ− ← Σ− ∪ {σi}

if checkP (pmult) = 1 then
P+ ← P+ ∪ {pi}
foreach σi ∈ pi do

if σi = {ci} then
Uc ← Uc ∪ σi

else
Σ+ ← Σ+ ∪ {σi}

if pmult /∈ Cons then
if ∃{ci} ∈ pmult then

if ¬(ci ∈ Uc ∪ Fc) then
NCons← NCons ∪ {pmult}

function is introduced to choose the next topology and the
next functionality to be tested. It is guided by the minimum
of tests to perform in order to fix the system. For a set of
partitions P , we define Choose : {P} →P ×P .
As the two functionalities are modeled by P1 and P2, and
the the topology is modeled by P3, we have two possi-
bilities. We assume that P2 is prior to P1, the first itera-
tion is defined with Choose(P)=(P1, P3). We begin with
checkP (P1×P3) = 0, s.a P1 × P3 = { { C1 }, {C2,C4},
{C3}, {C6,C8}, {C5,C7}}. The possible faulty component
are C1 and C3. We check the C1 and C3 components and

Proceedings of the 26th International Workshop on Principles of Diagnosis

161



Algorithm 3: V erification
Inputs: Fc

Outputs: ∆ Fc, Uc, End
Initialization: σ+, σ− ← I;
foreach ci ∈ Fc do

if checkC(ci) = 0 then
∆← ∆ ∪ {ci}
End← true

else
Fc ← Fc \ {ci}
Uc ← Uc ∪ {ci}

foreach Σi ∈ Σ− do
GET checkCom(Σi)
if checkCom(Σi) = 0 then

∆← ∆ ∪ {Σi}
End← true

else
Σ− ← Σ− \ {Σi}
Σ+ ← Σ+ ∪ {Σi}

find them as unfaulty, see Tables 1. The possible faulty sub-
systems are {C2, C4}, {C6, C8} and {C5, C7} and they are
unfaulty. The diagnosis is not sufficient, we must relax the
constraint P2 × P3.
The second iteration is defined with Choose(P)=(P2, P3),
s.a P2 × P3 = {{C1}, {C2}, {C4,C6,C8}, {C3,C5,C7}}.
We get checkP (P2 × P3) = 0, the possible faulty compo-
nents are C1 and C2 but C1 has already been checked in the
previous iteration. So, the possible faulty subsystems are
{C3,C5,C7} and {C4,C6,C8}. We check the C2 component
and find it as faulty. For this example, the computed faulty
or unfaulty components is, see Table 2, C2 in P2 × P3.
If no components has been found faulty, the upper topo-
logical level is treated i.e subsystems: {C2,C4}, {C6,C8},
{C5,C7}, {C4,C6,C8} and {C3,C5,C7}}. Here, they are
unfaulty.

Components CheckC
C1 1
C2 −1
C3 1
C4 −1
C5 −1
C6 −1
C7 −1
C8 −1

Table 1: Diagnostic results for components in P1 × P3

The method has permitted to detect quickly the faulty
component using functional partition and a structural par-
titioning. Thanks to this result, possible faults regarding ei-
ther the topology or the functionality are checked.

3 The Automatic Test Benchmark
3.1 Avionics system
The avionics system of the NH90 helicopter is designed
to support multiple hardware and software platforms from

Components CheckC
C1 1
C2 0
C3 1
C4 −1
C5 −1
C6 −1
C7 −1
C8 −1

Table 2: Diagnostic results for components in P2 × P3

more than twelve national customers in over twenty dif-
ferent basic helicopter configurations. The NH90 Avionics
System consists of two major subsystems: the CORE Sys-
tem and the MISSION System. A computer is the bus con-
troller and manages each subsystem communications: the
Core Management Computer (CMC) for the CORE Sys-
tem and the Mission Tactical Computer (MTC) for the MIS-
SION System. Each computer is connected to one or both
subsystems via a multiplex data bus (MIL-STD-1553), point
to point connections (ARINC429) and serial RS-485 lines.
Additional redundant computers are used as backup. One
of the two CMC is the Bus Controller (BC) of the CORE
multiplex data bus. The avionics system of the ATB is
composed of fourteen computers and the above connec-
tions: two CMC: c1 = CMC1 and c2 = CMC2; two
Plant Management Computer (PMC): c3 = PMC1 and
c4 = PMC2; five Multifunction Display (MFD): c5 =
MFD1, c6 = MFD2, c7 = MFD3, c8 = MFD4,
c9 = MFD5; two Display and Keyboard Unit (DKU):
c10 = DKU1, c11 = DKU2; two IRS: c12 = IRS1,
c13 = IRS2; one Radio Altimeter (RA): c14 = RA. For-
mally, COMPSATB = {ci, i ∈ [1, 14]}.
The avionics system under test COMPSSUT is a sub-
system of COMPSATB . It is described Figure 1.
COMPSSUT = {c1, c2, c3, c4, c5, c10, c12, c14}. For the
rest of the article, COMPSSUT will be the primary system
under study.

Figure 1: Architecture of the avionics subsystem

From To Messages Subsystems
DKU1 CMC1 Mode on σSerial1

CMC1 IRS1 Mode on σMIL

IRS1 RA Mode on σNAV ;σARINC

RA IRS1 Alert σNAV ;σARINC

IRS1 CMC1 Alert σMIL;σNAV

CMC1 DKU1 Alert σSerial1;σNAV

Table 3: Messages

Proceedings of the 26th International Workshop on Principles of Diagnosis

162



The PMC is used to monitor the status of all the avion-
ics computers. It displays the alert informations on the
MFD. We define the performances partition pPERF =
{σPERF ,σ¬PERF } with:
σPERF = {PMC1,PMC2,RA,IRS1,MFD1}
σ¬PERF = {CMC1,CMC2,DKU1} and the navigation
partition pNAV = {σNAV ,σ¬NAV } with:
σNAV = { RA,IRS1,MFD1}
σ¬NAV = {CMC1,CMC2,DKU1,PMC1,PMC2}.
The test consists in the simulation of a high roll. Normally
the RA should be deactivated above the value of forty de-
grees. The procedure contains the following actions: en-
gage the RA with the DKU1; simulating a roll of 50 de-
grees; check that the RA functionality is deactivated on the
DKU1. Several messages are sent to achieve this func-
tionality, see Table 3, defining a data-flow for two mes-
sages : "Mode on" and "Alert" messages: from DKU1
to CMC1 via serial communication to activate the radioal-
timeter’s specific mode ("Mode on" message); fromCMC1
to IRS1 via MIL-STD-1553 communication to relay the
activation information; from IRS1 to RA via ARINC com-
munication to send a request to the RA to get the roll angle;
from RA to IRS1 via ARINC communication to send the
response to the IRS that compute the angle; from IRS1 to
CMC1 via ARINC communication, from CMC to DKU
via serial communication to display the alert and disable the
functionality ("Alert" message).

3.2 System Under Test (SUT) decomposition
The ATB is used to perform the realization of the avionics
functions with the necessary equipments and a simulated en-
vironment needed to check the system specification.

The ATB is described as a structural decomposition with
components subsets. These sets provide partitions of the
whole system. We define subsystems σi and the partitions
pi with regards to the connections of the avionics system of
Figure 1, the serial communication:
σSerial1 = {CMC1, CMC2, DKU1}
σSerial2 = {PMC1, PMC2}
σ¬Serial = {MFD1, IRS1, RA}
pSerial = {σSerial1;σSerial2;σ¬Serial}

the ARINC communications:
σARINC = {CMC1,CMC2,PMC1,PMC2,

MFD1,IRS1,RA}
σ¬ARINC = {DKU1}
pARINC = {σARINC ; σ¬ARINC}

the MIL-STD-1553 communications:
σMIL = {CMC1, CMC2, PMC1, PMC2, IRS1}
σ¬MIL = {MFD1, DKU1, RA}
pMIL = {σMIL; σ¬MIL}

The above partitions describe the topology of the problem.
We classify the partitions into two categories: functional
partitions and communication partitions. The functional
partitions contain the subsystems that compute and send
the informations. The communication partitions contain the
subsystems that relay these informations. In our example,
the navigation functionality is tested. Functional partition
are: {pNAV ,pPERF }, connection partitions are: {pMIL,
pSerial, pARINC}. We need to define additional partitions
that can be checked with the check function on the system
thanks to this representation:
pNAV.MIL = pNAV × pMIL = {{MFD1,RA};{IRS1};
{CMC1,CMC2,PMC1,PMC2};{DKU1}};
pNAV.Serial = pNAV × pSerial = {{CMC1, CMC2,

Figure 2: Navigation func-
tion decomposition with
dprotocol

Figure 3: Performance
function decomposition
with dprotocol

DKU1}; {PMC1, PMC2}; {MFD1, IRS1, RA}};
pNAV.ARINC = pNAV × pARINC = {{MFD1, IRS1,
RA}; {CMC1, CMC2, PMC1, PMC2}; {DKU1}}.

The performance function can give insights about the
fault. We compute the partitions with this functionality:
pPERF.MIL = pPERF×pMIL = { {MFD1,RA};
{DKU1}; {CMC1,CMC2}; {PMC1,PMC2,IRS1} }
pPERF.Serial=pPERF×pSerial = { {CMC1,CMC2,
DKU1}; {PMC1,PMC2}; {MFD1,IRS1,RA} }
pPERF.ARINC = pPERF×pARINC = { { PMC1, PMC2,
MFD1, IRS1, RA};{CMC1, CMC2}; {DKU1} }.

Those partitions will serve to improve the diagnosis.

3.3 Outlooks about the decompositions
We describe an iterative method to update the diagnostic re-
sult by providing new topologies of the system. We need to
get precise observations to find the faulty components. The
subsystems are computed with the framework of the previ-
ous section.
Given the components, the messages sent between them,
and the protocol of these messages, we can obtain an
overview of the system decomposition: pSUT can be
decomposed into dprotocol = {pSUT × pMIL; pSUT ×
pSerial; pSUT × pARINC}. This hierarchical structure is
provided with a dependency graph, see Figures 2 and 3.

The following partitions are used:
σcom1

= {{DKU1, CMC1, IRS1, RA}};
σ¬com1

= {{MFD1, CMC2, PMC1, PMC2}};
pcom1 = {σcom1 , σ¬com1}.

The path of the informations "RA mode on" and "RA
alert" on copilot side defines another decomposition: σcom2

= {{CMC2, IRS1, RA, DKU1}}; σ¬com2
= {{MFD1,

CMC1, PMC1, PMC2}}; pcom2
= {σcom2

, σ¬com2
}.

We describe the decomposition dcom = {pcom1, pcom2}
on Figures 4 and 5. We compute partitions with the
navigability functionality and this structural decomposition:
pNAV.com1 = pNAV × pcom1 = {{RA, IRS1}; {MFD1};
{CMC1, DKU1}; {CMC2, PMC1, PMC2}};
pNAV.com2 = pNAV × pcom2 = {{RA, IRS1}; {DKU1,
CMC2}; {MFD1}; {CMC1, PMC1, PMC2}};
pPERF.com1 = pPERF × pcom1 = {{RA, IRS1};
{CMC2}; {CMC1, DKU1}; {MFD1, PMC1,
PMC2}};
pPERF.com2 = pPERF × pcom2 = {{RA, IRS1}; {DKU1,
CMC2}; {CMC1}; {MFD1, PMC1, PMC2}}.

4 Illustration of the Meta-Diagnostic
Approach

4.1 Application of the meta-diagnosis approach
An iterative approach is very helpful in this case of dis-
tributed systems since diagnosis can use new subsys-
tems and partitions. The results of the diagnosis are
re-injected in the upper system to refine the results.

Proceedings of the 26th International Workshop on Principles of Diagnosis

163



Figure 4: Navigation func-
tion decomposition with
dcom

Figure 5: Performance
function decomposition
with dcom

The first symptom is the misbehavior of the navigation
functionality. We describe the iterations of the algo-
rithms with two topologies. We have launched the meta-
diagnostic algorithm with the topology: dNAV.protocol =
{pNAV.MIL,pNAV.ARINC ,pNAV.SERIAL} and dNAV.com

= {pNAV.com1, pNAV.com2}. The constraint is CONS =
{checkP (pi),∀pi ∈ dNAV.protocol ∪ dNAV.com}. The iter-
ations of the algorithms are described in Tables 4, and 5.

pi checkP (pi) Uc Fc

p
NAV.ARINC

0 ∅ {DKU1}
p

NAV.SERIAL
1 ∅ {DKU1}

p
NAV.MIL

0 ∅ {IRS1,
DKU1}

Table 4: Iterations of CheckMultiplicationPartition
with dprotocol

The third step gives a state of the components in Fc set
that can be faulty: DKU1 and IRS1 in Table 5. If the com-
ponents are faulty, this may explain the system behavior and
the algorithm ends. At the same time, the communications
of subsystems in Σ− can be faulty. They are checked in
Table 6.

ci checkC(ci) Fc Uc

DKU1 1 {IRS1} {DKU1}
IRS1 0 {IRS1} {DKU1}

Table 5: Iterations of the CheckComponents with
dprotocol

Subsystems checkCom Partition
{MFD1, RA} 1 pNAV.ARINC

{CMC1, CMC2, 1 pNAV.ARINC

PMC1, PMC2}

Table 6: Diagnostic results for subsystems

The IRS1 is not faulty, the algorithm is relaunched
with Uc = {DKU1, IRS1} and the other decomposition
dcom = {pNAV.com1, pNAV.com2}. The algorithm itera-
tions are described in Tables 7 and 8.

Once checkP (pNAV.com2) = 1, we deduce that MFD1
is not faulty, see Table 7. At this step, the unfaulty com-
ponents are {DKU1, IRS1,MFD1}, and the diagnosis is
{RA}.

Here the RA is faulty with pNAV.com1, and the algorithm
ends. The solution is RA for pNAV.com1. The data flow
of the messages are checked as the impacted connections,
wiring and, routing. The system specificities of the com-
munication modeled with com1 five clues of the possible

pi checkP (pi) Uc Fc

p
NAV.com1

0 {DKU1, {RA,
IRS1} MFD1}

p
NAV.com2

1 {DKU1, {RA}
IRS1,
MFD1}

Table 7: Iterations of CheckMultiplicationPartition
with dcom

Subsystems checkCom Partition
{RA, IRS1} 1 pNAV.com1

{CMC1, DKU1} 1 pNAV.com1

{CMC2, PMC1, PMC2} 1 pNAV.com1

Table 8: Diagnostic results of subsystems with pNAV.com1

faults. Thanks to the impacted functionality, we know that
only messages concerning the IRS roll are concerned. At
this stage, the simulation of the message or the bad connec-
tion of the IRS are the two main solutions.

4.2 Application with updated constraints
We describe a new problem: the navigation func-
tionality and the performance function do not be-
have normally. The new constraint is CONS =
{checkP (pi), ∀ pi ∈ dNAV.protocol ∪ dNAV.com ∪
dPERF.protocol ∪ dPERF.com}. The algorithm is loaded
from CheckMultiplicationPartition with the decompo-
sition dcom. The algorithm iterations are described in Ta-
ble 9. Once checkP (pPERF.com2) = 1, we deduce that
CMC1 is not faulty.We continue with dprotocol knowing
the CMC1 is not faulty in Table 10. We deduce that we
have to check DKU1 and CMC2.

pi checkP (pi) Uc Fc

pPERF.com1 0 ∅ {CMC2}
pPERF.com2 1 {CMC1} {CMC2}

Table 9: Algorithm 2’s iterations with dcom

pi checkP (pi) Uc Fc

pPERF.ARINC 0 {CMC1} {DKU1,
CMC2}

pPERF.SERIAL 1 {CMC1} {DKU1
CMC2}

pPERF.MIL 0 {CMC1} {DKU1,
CMC2}

Table 10: Iterations of CheckMultiplicationPartition
with dprotocol

At this state, we check the components on the system.
Since the reparation of CMC2 has fixed the problem, we
conclude that CMC2 has been faulty. We also check the
DKU1 configuration, and find nothing. The diagnosis is
∆ = {CMC2}.

The evolution of the number of faulty and unfaulty com-
ponents is reviewed on figure 6. As expected, the number of
unfaulty components is increasing with new tests, i.e tests

Proceedings of the 26th International Workshop on Principles of Diagnosis

164



Figure 6: Evolution of the number of faulty and unfaulty
components

of partitions. It reveals that the algorithm is converging to a
solution because the number of components is limited.

5 Software implementation
5.1 Diagnostic software architecture
The algorithms are implemented in a spy software of AR-
INC and MIL-STD-1553 buses, see Figure 7. They are de-
veloped using C++ for effective diagnosis, and to be im-
plemented in the AIRBUS software. The user interfaces are
developed with Java 1.7 and the Swing Graphical User Inter-
face (GUI) widget toolkit. The architecture of the diagnostic

Figure 7: Data flow of the diagnosis software

framework has been adapted to the ATB specificities as de-
scribed with the Model-View-Controller (MVC) paradigm
on Figure 8. Three main objects are defined for the Model:
the Component, the Set, and the Partition objects. Four main
objects are defined in the View to define specific panels: the
diagnosisPanel, the constraintsPanel, the initialStatePanel
and the resultsPanel objects. The model is implemented
with the ArrayList class. It is used to define the list of com-
ponents, the subsystems and the list of partitions. eXtensible
Markup Language (XML) files have been used to describe
the system structure. The Controller dispatches the user re-
quests and selects the panels for presentation. The diagnosis
algorithm is implemented in it. A GUI is provided for han-
dling user inputs such as partitions check values and com-
ponents observations values.

Figure 8: Architecture of the diagnosis software

5.2 User interfaces
The panels are displayed one after the others for each
step of the algorithm defined in the Controller. The

Figure 9: Initial state of the
diagnosis

Figure 10: State of the con-
straints

initialStatePanel panel, Figure 9 defines the status of
equipments before launching the diagnosis and a button the
run the algorithm. The check values computed by the al-
gorithm defined in the Controller are provided to the oper-
ator in Figure 11. The constraintsPanel panel lets to edit
and update constraints, see Figure 10. The result of the di-
agnostic algorithm is provided on Figures 11. It gives the
faulty components (observation equal to zero) and the im-
pacted functionality. If a component is suspected, the data

Figure 11: Diagnosis results

flow of the functional chain described by the partition must
be checked. As described in the case study, it gives insights
about the possible connections, wiring and, routing that can
be wrong.

We compute the results ∆ = { IRS1, DKU1, CMC2,
RA } and display them on Figure 11. If some components
are unfaulty, we can update their status in Figure 9. The al-
gorithm is relaunched using the "GO" button in Figure 9.
The good diagnosis rate is evaluated on Figure 12. It is de-
fined by the number of faulty components that the operator
has to fix over the number of proposed faulty components.

5.3 Discussion
We have proposed a solution for the diagnosis of a complex
system in aeronautics based on the MBD paradigm and the

Proceedings of the 26th International Workshop on Principles of Diagnosis

165



Figure 12: Good diagnosis rate

lattice concept. It is an other solution for the meta-diagnosis
problem as described in [5] since we consider the test sys-
tem environment as the main system. Belard has extended
the framework, here we use the original one with the lat-
tice concept to represent the system description. It is also
provided a diagnostic algorithm implemented on the system
to evaluate our method. Since hundreds of diagnosis are
possible on the ATB, since it is not possible to check all
those possibilities, we have introduced a methodology for
the ATB diagnosis that reduce the number of iterations to get
the diagnosis. We have upgraded the applications of MBD
for avionics systems evaluated in [4] and [2]. It is proposed
the integration and evaluation of a diagnostic algorithm for
an ATB, taking the test systems environment into account.
It differs from other applications of MBD like [8] because
the model decomposition is driven by the test systems speci-
ficities that are represented with the lattice concept.

6 Conclusion
This paper extends the MBD approach to propose a diagnos-
tic software that is developed for the diagnosis of test sys-
tems. The current framework is based on the lattice decom-
position and is used to model a test system. First, the lat-
tice decomposition has been used to decompose the system
into its functionalities and connections. The second contri-
bution consists in the proposal of an algorithm that reduce
the diagnostic ambiguity. The lattice description has been
implemented with JAVA native packages. The software ar-
chitecture and diagnostic iterations are provided for a formal
example and an industrial case study. The diagnostic algo-
rithm has shown to reduce the number of faulty candidates.
The results is either faulty equipment or a group of equip-
ments with the associated system functionality that is unable
to meet its goal. Together, they are sufficient to point out the
reparations that will fix the system. The tests on the Avion-
ics Test Systems in AIRBUS HELICOPTERS have shown
good results. The development of models may confront our
solution to many others real problems. In future works, al-
gorithms will be improved with adaptable decompositions
and automatic tests. Furthermore, as the method is generic,
we want to demonstrate the validity of our method for others
test systems used in AIRBUS HELICOPTERS.

References
[1] Canh Ly, Kwok Tom, Carl S. Byington, Romano

Patrick, and George J. Vachtsevanos. Fault Diagno-
sis and Failure Prognosis for Engineering Systems: A
Global Perspective. In Proceedings of the Fifth An-
nual IEEE International Conference on Automation
Science and Engineering, CASE’09, pages 108–115,
Piscataway, NJ, USA, 2009. IEEE Press.

[2] Arnaud Lefebvre, Zineb Simeu-Abazi, Jean-Pierre
Derain, and Mathieu Glade. Diagnostic of the avionic

equipment based on dynamic fault tree. In Proceed-
ings of the IFAC-CEA conference, October 2007.

[3] Denis Berdjag, Jérôme Cieslak, and Ali Zolghadri.
Fault detection and isolation of aircraft air data/inertial
system. pages 317–332. EDP Sciences, 2013.

[4] Fabien Kuntz, Stéphanie Gaudan, Christian San-
nino, Éric Laurent, Alain Griffault, and Gérald Point.
Model-based diagnosis for avionics systems using
minimal cuts. DX 2011 22nd International Workshop
on Principles of Diagnosis, 2011.

[5] Nuno Belard, Yannick Pencole, and Michel Comba-
cau. A theory of meta-diagnosis: reasoning about
diagnostic systems. In Proceedings of the Twenty-
Second international joint conference on Artificial In-
telligence, IJCAI’11, pages 731–737, Barcelona, Cat-
alonia, Spain, 2011.

[6] Denis Berdjag, Vincent Cocquempot, Cyrille
Christophe, Alexey Shumsky, and Alexey Zhirabok.
Algebraic approach for model decomposition:
Application for fault detection and isolation in
discrete-event systems. International Journal of
Applied Mathematics and Computer Science (AMCS),
21(1):109–125, March 2011.

[7] Quang-Huy Giap, Stephane Ploix, and Jean-Marie
Flaus. Managing Diagnosis Processes with Interac-
tive Decompositions. In Artificial Intelligence Appli-
cations and Innovations III, IFIP International Federa-
tion for Information Processing, pages 407–415. 2009.

[8] Belarmino Pulido, Carlos Alonso-González, Anibal
Bregon, Alberto Hernández Cerezo, and David Ru-
bio. DXPCS: A software tool for consistency-based di-
agnosis of dynamic systems using Possible Conflicts.
25st Annual Workshop Proceedings, DX-14, 2014.

[9] Veronique Delcroix, Mohamed-Amine Maalej, and
Sylvain Piechowiak. Bayesian Networks versus Other
Probabilistic Models for the Multiple Diagnosis of
Large Devices. International Journal on Artificial In-
telligence Tools, 16(3):417–433, 2007.

[10] Mattias Krysander, Jan Aslund, and Erik Frisk. A
Structural Algorithm for Finding Testable Sub-models
and Multiple Fault Isolability Analysis. 21st Annual
Workshop Proceedings, DX-10, 2010.

[11] Ronan Cossé, Denis Berdjag, David Duvivier, Sylvain
Piechowiak, and Christian Gaurel. Meta-Diagnosis for
a Special Class of Cyber-Physical Systems: the Avion-
ics Test Benches. In The 28th International Confer-
ence on Industrial, Engineering & Other Applications
of Applied Intelligent Systems, [Accepted], IEA/AIE
2015, Seoul, Corea, 2015.

[12] Johan de Kleer and B.C. Williams. Diagnosing multi-
ple faults. Artificial Intelligence, 32(1):97–130, 1987.

[13] Johan de Kleer, Alan K. Mackworth, and Raymond
Reiter. Characterizing diagnoses and systems. Artifi-
cial Intelligence, 56(2-3):197–222, 1992.

[14] Randall Davis and Walter C. Hamscher. Model-Based
Reasoning: Troubleshooting. pages 297–346, July
1988. San Francisco, CA, USA.

Proceedings of the 26th International Workshop on Principles of Diagnosis

166


