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Abstract

The transitions between operational modes
(startup/shutdown) in chemical processes gen-
erate alarm floods and cause critical alarm
saturation. We propose in this paper an approach
of alarm management based on a diagnosis
process. This diagnosis step relies on situation
recognition to provide to the operators relevant
information on the failures inducing the alarms
flows. The situation recognition is based on
chronicle recognition. We propose to use the
information issued from the modeling of the
system to generate temporal runs from which the
chronicles are extracted. An illustrative example
in the field of petrochemical plants ends the
article.

1 Introduction
The petrochemical industries losses have been estimated at
20 billion dollars only in the U.S. each year, and the AEM
(Abnormal Events Management) has been classified as a
problem that needs to be solved. Hence the alarm man-
agement is one of the aspects of great interest in the safety
planning for the different plants. In the process state tran-
sitions such as startup and shutdown stages the alarm flood
increases and it generates critical conditions in which the
operator does not respond efficiently, then a dynamic alarm
management is required [1]. Currently, many fault detec-
tion and diagnosis techniques for multimode processes have
been proposed; however, these techniques cannot indicate
fundamental faults in the basic alarm system [2], in the other
hand the technical report ”Advance Alarm System Require-
ments” EPRI (The Electric Power Research Institute) sug-
gests a cause-consequence and event-based processing. In
this perspective, diagnosis approaches based on complex
events processing or situation recognition are interesting is-
sues. Therefore, in this paper, a dynamic alarm management
strategy is proposed in order to deal with alarm floods hap-
pening during transitions of chemical processes. This ap-
proach relies on situations recognition (i.e. chronicle recog-
nition). As, the efficiency of alarm management approaches
depends on the operator expertise and process knowledge,
our final objective is to develop a diagnosis approach as a
decision tool for operators. The paper is divided into 6 sec-
tions. Section 2 gives an overview on the relevant literature.
The section 3 concerns the modeling of the system. The sec-
tion 4 is about the chronicle principle and the temporal runs

used for the chronicle design. The section 5 is devoted to
the chronicle generation. Finally , an illustrative application
on real data from a petrochemical plant is given section 6.

2 State of the art: Alarm management
Alarm management has recently focused the attention of
many researchers in themes such as:

Alarm historian visualization and analysis: A combined
analysis of plant connectivity and alarm logs to reduce the
number of alerts in an automation system was presented by
[3]; the aim of the work presented is to reduce the num-
ber of alerts presented to the operator. If alarms are re-
lated to one another, those alarms should be grouped and
presented as one alarm problem. Graphical tools for rou-
tine assessment of industrial alarm systems was proposed
by [4], they presented two new alarm data visualization tools
for the performance evaluation of the alarm systems, known
as the high density alarm plot (HDAP) and the alarm sim-
ilarity color map (ASCM). Event correlation analysis and
two-layer cause-effect model were used to reduce the num-
ber of alarms in [5]. A Bayesian method has been intro-
duced for multimode process monitoring in [6]. This type
of techniques helps us to recognize alarm chattering, group-
ing many alarms or estimate the alarm limits in transition
stages, but the time and the procedure actions are not in-
cluded.

Process data-based alarm system analysis and rational-
ization: The evaluation of plant alarm systems by behavior
simulation using a virtual subject was proposed by [7]. [8]
introduced a technique for optimal design of alarm limits
by analyzing the correlation between process variables and
alarm variables. In 2009 a framework based on the receiver
operating characteristic (ROC) curve was proposed to op-
timally design alarm limits, filters, dead bands, and delay
timers; this work was presented in [9] and a dynamic risk
analysis methodology that uses alarm databases to improve
process safety and product quality was presented in [10]. In
[11] the Gaussian mixture model was employed to extract
a series of operating modes from the historical process data
and then the local statistic and its normalized contribution
chart were derived for detecting abnormalities early and for
isolating faulty variables. We can see that the use of virtual
subjects could be applied to probe the alarm system and us-
ing historical information about the alarm behavior for de-
tecting abnormalities. The problem is presented when the
simulation requires a lot time to probe the totally of scenar-
ios and when we have new plants that do not contain infor-
mation about historical data.
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Plant connectivity and process variable causality analy-
sis (causal methods): In the literature, transition monitor-
ing of chemical processes has been reported by many re-
searchers. In [12] was presented a fault diagnosis strategy
for startup process based on standard operating procedures,
this approach proposes behavior observer combined with
dynamic PCA (Principal Component Analysis) to estimate
process faults and operator errors at the same time, and in
[13] was presented a framework for managing transitions
in chemical plants where a trend analysis-based approach
for locating and characterizing the modes and transitions in
historical data is proposed. Finally, in [14] a hybrid model-
based framework was used for alarm anticipation where the
user can prepare for the possibility of a single alarm occur-
rence. For the transition monitoring, these types of tech-
niques are the most used in industrial processes and the hy-
brid model based framework could be a good representation
of our system. We can observe that a causal model allows
identify the root of the failures and check the correct evo-
lution in a transitional stage. Our proposal is closer to the
third type of approach and seeks to exploit the causal rela-
tionships as presented in the next sections.

3 Representation of the system
3.1 Hybrid Causal Model
The hybrid system is represented by an extended transition
system [15], whose discrete states represent the different
modes of operation for which the continuous dynamics are
characterized by a qualitative domain. Formally, a hybrid
causal system is defined as a tuple:

� = (#, D, Conf, Tr,E,CSD, Init) (1)

Where
• # = {vi} is a set of continuous process variables

which are function of time t.
• D is a set of discrete variables. D = Q [ K [ VQ. Q

is a set of states qi of the transition system which repre-
sent the system operation modes. The set of auxiliary
discrete variables K = {Ki, i = 1, ...nc} represents
the system configuration in each mode qi as defined
below by Conf(qi). VQ = {Vi} is a set of qualitative
variables whose values are obtained from the behavior
of each continuous variable vi.

• Conf(qi): Q ! ⌦i D(Ki) where ⌦ is the Cartesian
product and D(Ki) is the domain of Ki 2 K that
provides the configuration associated to the mode. i.e.
the modes of the underlying multimode components
(typically, a valve has two normal modes, opened and
closed)

• E = ⌃[⌃c is a finite set of event types noted �, where:
– ⌃ is the set of event type associated to the proce-

dure actions in a startup or shutdown stages.
– ⌃c is the set of event type associated to the behav-

ior of the continuous process variables.
• Tr : Q⇥ ⌃ ! Q is the transition function. The tran-

sition from mode qi to mode qj with associated event
� is noted (qi,�, qj) or qi ��! qj . We assume that the
model is deterministic, without loss of generality i.e.
whenever qi ��! qj and qi ��! qk then qj = qk for each
(qi, qj , qk) 2 Q3 and each � 2 ⌃.

• CSD ◆ S
i CSDi is the Causal System

Description or the causal model used to repre-
sent the constraints underlying in the continuous
dynamic of the hybrid system. Every CSDi asso-
ciated to a mode qi, is given by a graph (Gc = #
[ K, I). I is the set of influences where there is
an edge e(vi, vj) 2 I from vi 2 # to vj 2 # if the
variable vi influences variable vj . Then, the vertices
represent the variables and the edges represent the
influences between variables and for each edge exists
an association with a component in the system. The
set of components is noted as COMP .

• Init is the initial condition of the hybrid system,

3.2 Qualitative abstraction of continuous
behavior

In each mode of operation, variables evolve according to
the corresponding dynamics. This evolution is represented
with qualitative values. The domain D(Vi) of a qualitative
variable Vi 2 VQ is obtained through the function fqual :
D(vi) ! D(Vi) that maps the continuous values of variable
vi to ranges defined by limit values (High Hi and Low Li).

f(vi)qual =

8
>>>>><
>>>>>:

V H
i if vi � Hi ^ dvi

dt > 0

V M
i if vi < Hi ^ dvi

dt < 0

_
vi � Li ^ dvi

dt > 0

V L
i if vi < Li ^ dvi

dt < 0

(2)

dvi

dt > 0 represents that the continuous variable vi is increas-
ing and dvi

dt < 0 that it is decreasing. The behavior of these
qualitative variables is represented in Figure 1. by the graph
GVi = (VQ,⌃c, �) where VQ is the set of the possible qual-
itative states (V L

i : Low, V M
i : Medium, V H

i : High) of
the continuous variable vi, ⌃c is the finite set of the events
associate to the transitions and � : VQ ⇥ ⌃c ! VQ is the
transition function. The corresponding event generator is

Figure 1: Qualitative values of the process variables

defined by the abstraction function fVQ!�

fVQ!� : VQ ⇥ �(VQ,⌃c) ! ⌃c

8Vi 2 VQ, (V n
i , V m

i ) !

8
>><
>>:

l+(vi) if V L
i ! V M

i

l�(vi) if V M
i ! V L

i

h+(vi) if V M
i ! V H

i

h�(vi) if V H
i ! V M

i

V n
i , V m

i 2 {V L
i , V M

i , V H
i }

(3)
⌃c =

S
vi2#{l+(vi), l

�(vi), h
+(vi), h

�(vi)} (4)
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3.3 Automatic derivation of the causal model
To obtain the causal model of a system in a given operat-
ing mode implies to collect the equations that represent the
behavior of the system in this mode. The theory of causal
ordering issued from the Qualitative Reasoning community
can be well applied to obtain automatically the causal struc-
ture associated to a set of equations. Now, associating acti-
vation conditions to the equations extend the causal order-
ing to systems with several operating modes [16]. Then
these activation conditions can be related in the influences
of the resulting causal graph.The proposed algorithm, im-
plemented in the Causalito software makes use of condi-
tions that avoid recomputing a totally new perfect matching
for every operating mode, thus reducing the computational
cost. In this work, the Causal System Description is given
by CSD = (#, I), where each influence I is labeled with:

• An activation condition indicating the modes in which
it is active (or no label if it is active in all modes),

• The corresponding equation,
• The component whose behavior is expressed by the

equation.
In the follow section we expose the principle of the chroni-
cle generation where concepts such as event, chronicle and
temporal run are described.

4 Chronicles
4.1 Events and chronicles
Let us consider time as a linearly ordered discrete set of in-
stants. The occurrence of different events in time represents
the system dynamics and a model can be determined to di-
agnose the correct evolution. An event is defined as a pair
(�i, ti), where �i 2 E is an event type and ti is a variable of
integer type called the event date. We define E as the set of
all event types and a temporal sequence on E is an ordered
set of events denoted S = h(�i, ti)ij with j 2 Nl where l
is the size of the temporal sequence S and Nl is a finite set
of linearly ordered time points of cardinal l. A chronicle is
a triplet C = (⇠, CT , G) such that ⇠ ✓ E, CT is the set of
temporal constraints. G = (N, It) is a directed graph where
N represent event types of E and the arcs It represent the
relationship between events � 2 E, if the event �1 occurs t
time units after �2, then it exists a directed link from �1 to
�2 associated with a time constraint. Considering the two
events (�i, ti) and (�j , tj), we define the time interval as
the pair ⌧ij = [t�, t+], ⌧ij 2 CT corresponding to the lower
and upper bounds on the temporal distance between the two
event dates ti and tj [17]. The idea of our proposal is to
design the chronicles from the hybrid causal model of the
system. Indeed the evolution of the system can be captured
with temporal runs from which chronicles can be learn (See
Figure 2). More precisely, the system initiates in the state q0

and it evolves according to the transitions resulting from the
events defined by the procedure actions for specific scenar-
ios (startup/shutdown). For a given system modes qi 2 Q,
the associated CSDi is used to generate the set of event
types corresponding to the evolution of the continuous pro-
cess variables. A run is defined by a sequence of event types
↵1,↵2, ....↵n where ↵i 2 E generated for each scenario us-
ing the startup/shutdown procedures. These runs with time
constraints permit to construct the chronicle database of the
system. In this preliminary approach, time constraints are
obtained by simulation.

Figure 2: Principle of chronicle generation

4.2 Temporal runs

We denote a temporal run as h R, T i where R is a run and T
is the time graph of the run that includes the time constraints
CT between each pair of time points where must occurs the
events type. Figure 3 gives time graph examples and the
possible composition of time graphs. In our approach the

Figure 3: Time graphs example

runs are issued from the system evolution from one oper-
ation mode to another. The interleaved sequence of event
types ↵1,↵2, . . .↵n represents the procedure actions and the
behavior evolution of the process variables. The time con-
straints between each pair of event types are determined by
simulation of the continuous behavior for each process vari-
able, responding to the procedure actions.

5 Generation of Chronicles

5.1 Chronicle database

An industrial or complex process Pr is composed of differ-
ent areas Pr = {Ar1, Ar2, ...Arn} where each area Ark

has different operational modes such as startup, shutdown,
slow march, fast march, etc. The set CArk of chronicles Ck

ij
for each area Ark is presented in the matrix below, where
the rows represent the operating modes (i.e. O1 : Startup,
O2 : Shutdown, O3 : Startuptype, O4 : Startuptype, etc)
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and the columns the different faults.

CArk =

O1

O2

O3

O4

. . .

. . .
Oj

N f1 f2 . . . . . . fn2
66666664

Ck
01 Ck

11 Ck
21 . . . . . . Ck

i1

Ck
02 Ck

12 Ck
22 . . . . . . Ck

i2

Ck
03 Ck

13 Ck
23 . . . . . . Ck

i3

Ck
04 Ck

14 Ck
24 . . . . . . Ck

i4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ck

0j Ck
1j Ck

2j . . . . . . Ck
ij

3
77777775

(5)
The chronicle database used for diagnosis is composed by
the entries of all the matrices {CArk}. This chronicle
database is submitted to a chronicle recognition system that
identifies in an observable flow of events all the possible
matching with the set of chronicles from which the situation
(normal or faulty) can be assessed.

5.2 Chronicle learning

As explained previously when the system changes mode of
operation, a set of event types occurs forming a run R. As
this evolution is due to procedure actions. Not only a unique
temporal run can occur. Hence, we need to set up the maxi-
mal number of temporal runs that it could occur in each sce-
nario represented in the matrix (5). To obtain the chronicle
in each scenario is necessary to obtain the larger time graph
with as many event types and with the minimal values of the
constraints. [18] proposes to determine the chronicles from
the temporal runs. They define a partial order relation be-
tween two temporal runs as hR, T i  h R0, T 0i when the set
of event types in R0 is a subset of event type in R and the
time graphs T and T 0 are related by T � T 0 determining the
result graph where exists a unique equivalent constraint that
is the minimal. The relation � expresses that the set of con-
straints in the time graph T 0 is a subset of constraints in T ,
CT (t, t0) ✓ CT 0(t, t0). Therefore, we apply the composition
(see Figure 3) between the time graphs in order to merge the
constraints obtaining the larger and constrained time graph
that represents the chronicle in that scenario. Figure 4 gives
an example of a chronicle generation from a maximal tem-
poral run. In the next section a case study is presented in

Figure 4: Chronicle example

which the chronicle generation from the temporal runs is il-
lustrated.

6 Case study
6.1 HTG (Hydrostatic Tank Gauging) system
In the Cartagena Refinery currently are being implemented
news units and elements. In the startup stage they will need
a tool to help the operator to recognize dangerous condi-
tions. We will analyze the startup and shutdown stages in the
unit of water injection. This process is a HTG (Hydrostatic
Tank Gauging) system composed by the following compo-
nents: one tank (TK), two normally closed valves (V 1 and
V 2), one pump (Pu), a level sensor (LT ), a pressure sensor
(PT ), inflow sensor (FT1) and an outflow sensor (FT2), see
Figure 5.

Figure 5: Process diagram

Assuming this system as a hybrid causal model, the un-
derlying discrete event system and the different process
operation modes are described in Figure 6 where we can
see a possible correct evolution for the startup procedure.
The events V 1c,o, V 2c,o represents that the valves V 1,V 2
move from the state closed to the state opened, the events
V 1o,c,V 2o,c represents on the contrary the valves moving
from the state opened to the state closed. The event Puf�n

indicates that the pump Pu is turned on and the event
Pun�f indicates that the pump Pu is turned off.

6.2 Identification of causal relationships
The level (L) in the tank is related to the weight (m) of
the liquid inside, its density (⇢) and the tank area (A). The
density (⇢) is the relationship of the pressures (Pmed,Pinf )
in separated points (h). Based on the global material bal-
ance, we define that the input flow is equal to the outlet flow.
Then, the variation of the weight (dm(t)/dt) in the tank is
proportional to the difference between the inflow (QiTK)
and the outflow (QoV 2). The differential pressure in the
pump and in V 2 are specified as � PPu and � PV 2. The
outlet pressure in the pump (Po) is related with the outlet
flow tank (QoTK), the revolutions per minute in the pump
(RPMPu), his capacity (C) and the radio of the outlet pipe
(r). The outflow (QoV 2) and inflow (QiTK) control are re-
lated to the percentage aperture of the valves V 1 (LV 1) and
V 2 (LV 2) and differential pressures (�PV 1,�PV 2). In Fig-
ure 7 we can see the CSD of the system in the modes q1,
q5 and q7. For example, the mode q1 activates the influence
of QiTK to L. The mode q5 activates the influence of QiTK

to L and the influence of L to Po and finally the mode q7

activates the influence of QiTK to L, L to Po and Po to
QoV 2.
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Figure 6: Underlying DES of the HGT system

Figure 7: CSD in the modes q1, q5 and q7

6.3 Event identification
One of the most important steps for fault diagnosis based
on chronicle recognition is to determine the set of events
that can carry the system to a failure. Each situation pat-
tern (normal or abnormal) is a set of events and temporal
constraints between them; then a situation model may also
specify events to be generated and actions to be triggered
as a result of the situation occurrence. For a startup proce-
dure in the example process, the set of event types ⌃ that
represent the procedure actions is:

⌃ = {V 1c,o, V 2c,o, Puf�n, V 1o,c, V 2o,c, Pun�f} (6)

According to the causal graphs associated to the modes in-
volved in the sequence of procedure actions (i.e q1, q5 and q7

indicated by red arrows on Figure 6), the event types of ⌃c

correspond to the behavior of the variables L,Po and QoV 2.

⌃c =

{l+(L), l
�
(L), h

+
(L), h

�
(L),

l+(Po), l
�
(Po), h

+
(Po), h

�
(Po),

l+(QoV 2)
, l�(QoV 2)

, h+
(QoV 2)

, h�
(QoV 2)

}
(7)

From the startup/shutdown procedures the different tempo-
ral runs are determined and these temporal runs are related
to the normal and abnormal situations. The chronicle result-
ing from a normal startup procedure is presented in Figure
8. The model system was developed in Matlab including

Figure 8: Chronicle C01 for normal behavior startup

the injection water process area. The continuous behavior
is related to the evolution of the level L, outlet pump pres-
sure Po and the outlet flow QoV 2 in the system. The dis-
crete evolution is related to the event evolution of the pro-
cedures in the startup and shutdown stages. From the dif-
ferent failure modes of the process, the dynamic behavior
of the variables is shown with a detection for the possible
process states, including the normal procedure without fail-
ure. The simulation includes 3 types of startup procedures
(OK, fail1 and fail2) with 4 types of fault modes (V1, V2,
Pump and Drainopen) and 3 types of Shutdown proce-
dure (OK, Non � actived and Fail). The evolution of the
continuous variables in the startup procedure without failure
is shown in Figure 9. The events are generated by the pro-
gram through the evolution of the differential equations, the
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variable conditions and the procedural actions. Recognition
of the chronicles was done using the tool stateflow.

Figure 9: Normal behavior in startup procedure without fail-
ure. Blue: Level, Green:Pressure, Red: ouletflow

7 Conclusion
A preliminary method for alarm management based on au-
tomatically learned chronicles has been proposed. The pro-
posal is based on a hybrid causal model of the system and a
chronicle based approach for diagnosis. An illustrative ex-
ample of an hydrostatic tank gauging has been considered
to introduce the main concepts of the approach. In this pa-
per the design of the temporal constraints of the chronicles
were performed from simulation results, but further research
aim to generate the chronicles from the model of the system.
Learning approaches are currently considered for acquiring
the chronicle base directly from the sequences of events rep-
resenting the situations. For this propose the algorithm HC-
DAM (Heuristic Chronicle Discovery Algorithm Modified
[17]) may be used. The use of HIL (Hardware in the loop)
to simulate and validate the proposal is also in our prospects.
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