
Data-Augmented Software Diagnosis

Amir Elmishali1 and Roni Stern1 and Meir Kalech1

1Ben Gurion University of the Negev
e-mail: amir9979@gmail.com, roni.stern@gmail.com, kalech@bgu.ac.il

Abstract

The task of software diagnosis algorithms is to
identify which software components are faulty,
based on the observed behavior of the system.
Software diagnosis algorithms have been studied
in the Artificial Intelligence community, using a
model-based and spectrum-based approaches. In
this work we show how software fault predic-
tion algorithms, which have been studied in the
software engineering literature, can be used to
improve software diagnosis. Software fault pre-
diction algorithms predict which software com-
ponents is likely to contain faults using ma-
chine learning techniques. The resulting data-
augmented diagnosis algorithm we propose is
able to overcome of key problems in software di-
agnosis algorithms: ranking diagnoses and distin-
guishing between diagnoses with high probability
and low probability. This allows to significantly
reduce the outputted list of diagnoses. We demon-
strate the efficiency of the proposed approach
empirically on both synthetic bugs and bugs ex-
tracted from the Eclipse open source project. Re-
sults show that the accuracy of the found diag-
noses is substantially improved when using the
proposed combination of software fault prediction
and software diagnosis algorithms.

1 Introduction
Software is prevalent in practically all fields of life, and its
complexity is growing. Unfortunately, software failures are
common and their impact can be very costly. As a result,
there is a growing need for automated tools to identify soft-
ware failures and isolate the faulty software components,
such as classes and functions, that have caused the failure.
We focus on the latter task, of isolating faults in software
components, and refer to this task as software diagnosis.

Model-based diagnosis (MBD) is an approach to auto-
mated diagnosis that uses a model of the diagnosed system
to infer possible diagnoses, i.e., possible explanations of the
observed system failure. While MBD was successfully ap-
plied to a range of domains [1; 2; 3; 4], it has not been ap-
plied successfully yet to software. The reason for this is that
in software development, there is usually no formal model
of the developed software. To this end, a scalable software
diagnosis algorithm called Barinel has been proposed [5].

Barinel is a combination of MBD and Spectrum Fault Lo-
calization (SFL). SFL considers traces of executions, and
finds diagnoses by considering the correlation between exe-
cution traces and which executions have failed. While very
scalable, Barinel suffers from one key disadvantage: it can
return a very large set of possible diagnoses for the soft-
ware developer to choose from. To handle this disadvantage,
Abreu et al. [5] proposed a Bayesian approach to compute
a likelihood score for each diagosis. Then, diagnoses are
prioritize according to their likelihood scores.

Thanks to the open source movement and current soft-
ware engineering tools such as version control and issue
tracking systems, there is much more information about a
diagnosed system than revealed by the traces of performed
tests. For example, version control systems store all revi-
sions of every source files, and it is quite common that a
bug occurs in a source file that was recently revised. Barinel
is agnostic to this data. We propose a data-driven approach
to better prioritize the set of diagnoses returned by Barinel.

In particular, we use methods from the software engi-
neering literature to learn from collected data how to pre-
dict which software components are expected to be faulty.
These predictions are then integrated into Barinel to better
prioritize the diagnoses it outputs and provide more accurate
estimates of each diagnosis likelihood.

The resulting data-augmented diagnosis algorithm is part
of a broader software troubleshooting paradigm that we call
Learn, Diagnose, and Plan (LDP). In this paradigm, illus-
trated in Figure 1(a), the troubleshooting algorithm learns
which source files are likely to fail from past faults, previ-
ous source code revisions, and other sources. When a test
fails, a data-augmented diagnosis algorithm considers the
observed failed and passed tests to suggest likely diagnoses
leveraging the knowledge learned from past data. If further
tests are necessary to determine which software component
caused the failure, such test are planned automatically, tak-
ing into consideration the diagnoses found. This process
continues until a sufficiently accurate diagnoses is found.

In this work we implemented this paradigm and simulated
its execution on a popular open source software project – the
Eclipse CDT. Information from the Git version control and
the Bugzilla issue tracking systems was used, as illustrated
in Figure 1(b) and explained in the experimental results.

Results show a huge advantage of using our data-
augmented diagnoser over Barinel with uniform priors for
both finding more accurate diagnoses and for better select-
ing tests for troubleshooting. Moreover, to demonstrate the
potential benefit of our data-augmented approach we also

Proceedings of the 26th International Workshop on Principles of Diagnosis

247

QA Tester Developer

Server Logs

Source Code

AI Engine

Issue Tracking
System

Version
Control System

(a) Learn, Diagnos, and Plan Paradigm

QA Tester Developer

Source Code

AI Engine

(b) Our current implementation

Figure 1: The learn, diagnose, and plan paradigm and our implementation.

experimented with a synthetic fault prediction model that is
correctly identifies the faulty component. As expected, us-
ing the synthetic fault prediction model is better than using
the learned fault prediction model, thus suggesting room for
further improvements in future work. To our knowledge,
this is the first work to integrate successfully a data-driven
approach into software diagnosis.

2 Model-Based Diagnosis for Software
The input to classical MBD algorithms is a tuple
〈SD,COMPS,OBS〉, where SD is a formal description
of the diagnosed system’s behavior, COMPS is the set of
components in the system that may be faulty, and OBS
is a set of observations. A diagnosis problem arises when
SD and OBS are inconsistent with the assumption that all
the components in COMPS are healthy. The output of an
MBD algorithm is a set of diagnoses.

Definition 1 (Diagnosis). A set of components ∆ ⊆
COMPS is a diagnosis if

∧

C∈∆

(¬h(C)) ∧
∧

C′ /∈∆

(h(C ′)) ∧ SD ∧OBS

is consistent, i.e., if assuming that the components in ∆ are
faulty, then SD is consistent with OBS.

The set of components (COMPS) in software diagnoses
can be, for example, the set of classes, or all functions, or
even a component per line of code. Low level granularity of
components, e.g., setting each line of code as a component,
will result in very focused diagnoses (e.g., pointing on the
exact line of code that was faulty). Focusing the diagnoses
in such way comes at a price of an increase in the computa-
tional effort. Automatically choosing the most suitable level
of granularity is a topic for future work.

Observations (OBS) in software diagnosis are observed
executions of tests. Every observed test t is labeled as
“passed” or “failed”, denoted by passed(t) and failed(t),
respectively. This labeling is done manually by the tester or
automatically in case of automated tests (e.g., failed asser-
tions).

There are two main approaches for applying MBD to
software diagnosis, each defining SD somewhat differently.
The first approach requires SD to be a logical model of the
correct functionality of every software component [6]. This
approach allows using logical reasoning techniques to infer
diagnoses. The main drawbacks of this approach is that it

does not scale well and modeling the behavior of software
component is often infeasible.

2.1 SFL for Software Diagnosis
An alternative approach to software diagnosis has been pro-
posed by Abreu et al. (5; 7), based on spectrum-based fault
localization (SFL). In this SFL-based approach, there is no
need for a logical model of the correct functionality of every
software component in the system. Instead, the traces of the
observed tests are considered.
Definition 2 (Trace). A trace of a test t, denoted by trace(t),
is the sequence of components involved in executing t.

Traces of tests can be collected in practice with com-
mon software profilers (e.g., Java’s JVMTI). Recent work
showed how test traces can be collected with low over-
head [8]. Also, many implemented applications maintain
a log with some form of this information.

In the SFL-based approach, SD is implicitly defined in
SFL by the assumption that a test will pass if all the compo-
nents in its trace are not faulty. Let h(C) denote the health
predicate for a component C, i.e., h(C) is true if C is not
faulty. Then we can formally define SD in the SFL-based
approach with the following set of Horn clauses:

∀test (
∧

C∈trace(test)

h(C))→ passed(test)

Thus, if a test failed then we can infer that at least one of the
components in its trace is faulty. In fact, a trace of a failed
test is a conflict.
Definition 3 (Conflict). A set of components Γ ⊆ COMPS
is a conflict if

∧
C∈Γ

h(C) ∧ SD ∧OBS is inconsistent.

Many MBD algorithms use conflicts to direct the search
towards diagnoses, exploiting the fact that a diagnosis must
be a hitting set of all the conflicts [9; 10; 11]. Intuitively,
since at least one component in every conflict is faulty, only
a hitting set of all conflicts can explain the unexpected ob-
servation (failed test).

Barinel is a recently proposed software MBD algo-
rithm [5] based on exactly this concept: considering traces
of tests with failed outcome as conflicts and returning their
hitting sets as diagnoses. With a fast hitting set algorithm,
such as the STACATTO hitting set algorithm proposed by
Abreu et al. [12], Barinel can scale well to large systems.
The main drawback of using Barinel is that it often outputs
a large set of diagnoses, thus providing weaker guidance to
the programmer that is assigned to solve the observed bug.

Proceedings of the 26th International Workshop on Principles of Diagnosis

248

2.2 Prioritizing Diagnoses
To address this problem, Barinel computes a score for every
diagnosis it returns, estimating the likelihood that it is true.
This serves as a way to prioritize the large set of diagnoses
returned by Barinel.

The exact details of how this score is compute is given
by Abreu et al. [5]. For the purpose of this paper, it is im-
portant to note that the score computation used by Barinel
is Bayesian: it computes for a given diagnosis the posterior
probability that it is correct given the observed passes and
failed tests. As a Bayesian approach, Barinel also requires
some assumption about the prior probability of each com-
ponent to be faulty. Prior works using Barinel has set these
priors uniformly to all components. In this work, we pro-
pose a data-driven way to set these priors more intelligently
and demonstrate experimentally that this has a huge impact
of the overall performance of the resulting diagnoser.

3 Data-Augmented Software Diagnosis
The prior probabilities used by Barinel represent the a-priori
probability of a component to be faulty, without considering
any observed system behavior. Fortunately, there is a line of
work on software fault prediction in the software engineer-
ing literature that deals exactly with this question: which
software components is more likely to have a bug. We pro-
pose to use these software fault predictions as priors to be
used by Barinel. First, we provide some background on soft-
ware fault prediction.

3.1 Software Fault Prediction
Fault prediction in software is a classification problem.
Given a software component, the goal is to determine its
class – healthy or faulty. Supervised machine learning algo-
rithms are commonly used these days to solve classification
problems. They work as follows. As input, they are given a
set of instances, in our case these are software components,
and their correct labeling, i.e., the correct class for each in-
stance. They output a classification model, which maps an
instance to a class.

Learning algorithm extract features from a given instance,
and try to learn from the given labeled instances the relation
between the features of an instance and its class. Key to
the success of machine learning algorithms is the choice of
features used. Many possible features were proposed in the
literature for software fault prediction.

Radjenovic et al. [13] surveyed the features used by ex-
isting software prediction algorithms and categorizes them
into three families. Traditional. These features are tradi-
tional software complexity metrics, such as number of lines
of code, McCabe [14] and Halstead [15] complexity mea-
sures.
Object Oriented. These features are software complex-
ity metrics that are specifically designed for object oriented
programs. This includes metrics like cohesion and coupling
levels and depth of inheritance.
Process. These features are computed from the software
change history. They try to capture the dynamics of the soft-
ware development process, considering metrics such as lines
added and deleted in the previous version and the age of the
software component.

It is not clear from the literature which combination of
features yields the most accurate fault predictions. In a

preliminary set of experiments we found that the combina-
tion of features that performed best is a combination of 68
features from the features listed by Radjenovic et al. [13]
worked best. This list of features included the McCabe [14]
and Halstead [15] complexity measures, several object ori-
ented measures such as the number of methods overriding
a superclass, number of public methods, number of other
classes referenced, and is the class abstract, and several pro-
cess features such as the age of the source file, the number
of revisions made to it in the last release, the number of de-
velopers contributed to its development, and the number of
lines changed since the latest version.

As shown in the experimental results section, the result-
ing fault prediction model was accurate enough so that the
overall data-augmented software diagnoser be more effec-
tive than Barinel with uniform priors. However, we are not
sure that a better combination of features cannot be found,
and this can be a topic for future work. The main novelty of
our work is in integrating a software fault prediction model
with the Barinel.

3.2 Integrating the Fault Prediction Model
The software fault prediction model generated as described
above is a classifier, accepting as input a software compo-
nent and outputting a binary prediction: is the component
predicted to be faulty or not. Barinel, however, requires
a real number that estimates the prior probability of each
component to be faulty.

To obtain this estimated prior from the fault prediction
model, we rely on the fact that most prediction models also
output a confidence score, indicating the model’s confidence
about the classified class. Let conf(C) denote this con-
fidence for component C. We use conf(C) for Barinel’s
prior if C is classified as faulty, and 1−conf(C) otherwise.

4 Experimental Results
To demonstrate the benefits of the proposed data-augmented
approach, we implemented it and evaluated it as follows.

4.1 Experimental Setup
As a benchmark, we used the source files, tests, and
bugs reported for the Eclipse CDT open source software
project (eclipse.org/cdt). Eclipse CDT is a popular
open source Integrated Development Environment (IDE) for
C/C++. The first release dates back to December 2003 and
the latest release we consider, labeled CDT 8.2.0, was re-
leased in June 2013. It consists of 8,502 source code files
and have had more than 10,129 bugs reported so far (for all
releases). In addition, there are 3,493 automated tests coded
using the JUnit unit testing framework.

Determining Faulty Files
Eclipse CDT is developed using the Git version control sys-
tem and the Bugzilla issue tracking system. Git maintains
all versions of each source file in a repository. This en-
ables computing process metrics for every version of every
source file. Similarly, Bugzilla is used to maintain all re-
ported bugs. Some source file versions are marked in the
Git repository as versions in which a specific bug was fixed.
The Git repository for Eclipse CDT contained matching ver-
sions of source files for 6,730 out of 10,129 bugs reported as
fixed in Bugzilla. We performed our experiments on these
6,730 bugs.

Proceedings of the 26th International Workshop on Principles of Diagnosis

249

For both learning and testing a fault prediction model, we
require a mapping between reported bug and the source files
that were faulty and caused it. One possible assumption is
that every source file revision that is marked as fixing bug
X is a faulty file that caused X . We call this the “All files”
assumption. The “All files” assumption may overestimate
the number of faulty files as some of these files may have
been modified due to other reasons, not related to the bug.
Even if all changes in a revision are related to fixing a bug,
it still does not mean that all these files are faulty. For ex-
ample, properties files and XML configuration files. As a
crude heuristic to overcome this, we also experiment with
an alternative assumption that we call the “Most modified”
assumption. In the “Most modified” assumption, for a given
bug X we only consider a single source file as faulty from
all the files associated with bug X , We chose from these
source file the one in which the revision made to that source
file was the most extensive. The extensiveness of the re-
vision is measured by the number of lines added, updated,
and deleted to the source file in this revision. Below we
present experiments for both “All files” and “Most modi-
fied” assumptions. Śliwerski et al. [16] proposed a more
elaborate method to heuristically identify the source files
that are caused the bug, when analyzing a similar data set.

Training and Testing Set
The sources files and reported bugs from 5 releases, 8.0.0–
8.1.1, were used to train the model of our data-augmented
diagnoser, and the source files and reported bugs from re-
lease 8.1.2 were used to evaluate it.

4.2 Comparing Fault Prediction Accuracy
As a preliminary, we evaluated the quality of the fault pre-
diction models used by our data-augmented diagnoser on
our Eclipse CDT benchmark.

All files Precision Recall F-Measure AUC
Random Forest 0.56 0.09 0.16 0.84
J48 0.44 0.17 0.25 0.61
Naive Bayes 0.27 0.31 0.29 0.80

Most modified Precision Recall F-Measure AUC
Random Forest 0.44 0.04 0.08 0.76
J48 0.15 0.03 0.05 0.55
Naive Bayes 0.08 0.31 0.12 0.715

Table 1: Faulty prediction performance.

We used the Weka software package (www.cs.
waikato.ac.nz/ml/weka) to experiment with several
learning algorithms and compared the resulting fault predic-
tion models. Specifically, we evaluated the following learn-
ing algorithms: Random Forest, J48 (Weka’s implementa-
tion of a decision tree learning algorithm), and Naive Bayes.
Table 1 shows the precision, recall, F-measure, and AUC
of the fault prediction models generated by each of these
learning algorithms. These are standard metrics for evaluat-
ing classifiers. In brief, precision is the ratio of faulty files
among all files identified by the evaluated model as faulty.
Recall is the number of faulty files identified as such by the
evaluated model divided by the total number of faulty files.
F-measure is a known combination of precision and recall.
The AUC metric addresses the known tradeoff between re-
call and precision, where high recall often comes at the price
of low precision. This tradeoff can be controlled by setting
different sensitivity thresholds to the evaluated model. AUC

is the area under the curve plotting the accuracy as a func-
tion of the recall (every point is a different threshold value).

All metrics range between zero and one (where one is
optimal) and are standard metrics in machine learning and
information retrieval. The unfamiliar reader can find more
details in Machine Learning books, e.g. Mitchell’s classical
book [17].

The results for both “All files” and “Most modified” as-
sumptions show that the Random Forest classifier obtained
the overall best results. This corresponds to many recent
works. Thus, in the results reported henceforth, we only
used the model generated by the Random Forest classifier
in our data-augmented diagnoser. The precision and espe-
cially recall results are fairly low. This is understandable,
as most files are healthy, and thus the training set is very
imbalanced. This is a known inhibitor to performance of
standard learning algorithms. We have experimented with
several known methods to handle this imbalanced setting,
such as SMOTE and random under sampling, but these did
not produce substantially better results. However, as we
show below, even this imperfect prediction model is able
to improve the existing data-agnostic software diagnosis al-
gorithm. Note that we also experimented with other popular
learning algorithms such as Support Vector Machine (SVM)
and Artificial Neural Network (ANN), but their results were
worse than those shown in Table 1.

Next, we evaluate the performance of our data-augmented
diagnoser in two diagnostic tasks: finding diagnoses and
guiding test generation.

4.3 Diagnosis Task
First, we compared the data-agnostic diagnoser with the
proposed data-augmented diagnoser in the task of finding
accurate diagnoses. The input is a set of tests, with their
traces and outcomes and the output is a set of diagnoses,
each diagnosis having a score that estimates its correctness.
This score was computed by Barinel as desribed earlier in
the paper, where the data-agnostic diagnoser uses uniform
priors and the proposed data-augmented diagnoser uses the
predicted fault probabilities from the learned model.

Most modified All files
Diagnoser Precision Recall Precision Recall
Data-agnostic 0.72 0.27 0.55 0.26
Data-augmented 0.90 0.32 0.73 0.35
Syn. (0.6,0.01) 0.97 0.39 0.96 0.45
Syn. (0.6,0.1) 0.84 0.35 0.89 0.42
Syn. (0.6,0.2) 0.77 0.34 0.83 0.39
Syn. (0.6,0.3) 0.73 0.33 0.78 0.37
Syn. (0.6,0.4) 0.69 0.32 0.74 0.36

Table 2: Comparison of diagnosis accuracy.

To compare the set of diagnoses returned by the differ-
ent diagnosers, we computed the weighted average of their
precision and recall. This was computed as follows. First,
the precision and recall for every diagnoses was computed.
Then, we averaged these values, weighted by the score given
to the diagnoses by Barinel. This enables aggregating the
precision and recall of a set of diagnoses while incorporat-
ing which diagnoses are regarded as more likely according
to Barinel’s. For brevity, we will refer to this weighted av-
erage precision and weighted average recall as simply pre-
cision and recall.

Proceedings of the 26th International Workshop on Principles of Diagnosis

250

Table 2 shows the precision and recall results of the data-
agnostic diagnoser and our data-augmented diagnoser, for
both “Most modified” and “All files” assumptions. Each
result in the table is an average over the precision and re-
call obtained for 50 problem instances. A problem instance
consists of (1) a bug from one of the bugs reported for re-
lease 8.1.2. of Eclipse CDT, and (2) a set of 25 tests, chosen
randomly, while ensuring that at least one tests would pass
through the faulty files.

Both precision and recall of the data-augmented and data-
agnostic diagnosers support the main hypothesis of this
work: a data-augmented diagnoser can yield substantially
better diagnoses that a data-agnostic diagnoser. For exam-
ple, the precision of the data-augmented diagnoser under the
“Most modified” assumption is 0.9 while that of the data-
agnostic diagnoser is only 0.72. The superior performance
of the data-augmented diagnoser is shown for both “Most
modified” and “All files” assumptions. Another observation
that can be made from the results in Table 2 is that while the
precision of the data-augmented diagnoses is very high and
is substantially better than that of the data-agnostic diag-
noser, the improvement in recall is relatively more modest.
This can be explained by the precision and recall results of
the learned model, shown in Table 1 and discussed earlier.
There too, the recall results was far worse than the preci-
sion results (recall that we are using the model learned by
the Random Forest learning algorithm). It is possible that
learning a model with higher recall may result in higher re-
call for the resulting diagnoses. We explore the impact of
learning more accurate fault prediction model next.

Synthetic Priors
The data-augmented diagnoser is based on the priors gen-
erated by the learned fault prediction model. Building bet-
ter fault prediction models is an active field of study [13]
and thus future fault prediction models may be more accu-
rate than the ones used by our data-augmented diagnoser.
To evaluate the benefit of a more accurate fault prediction
model on our data-augmented diagnoser, we created a syn-
thetic fault prediction model, in which faulty source files
get Pf probability and healthy source files get Ph, where
Pf and Ph are parameters. Setting Ph = Pf would cause
the data-augmented diagnoser to behave in a uniform distri-
bution exactly like the data-agnostic diagnoser, setting the
same prior probability for all source files to be faulty. By
contrast, setting Ph = 0 and Pf = 1 represent an optimal
fault prediction model, that exactly predicts which files are
faulty and which are healthy.

The lines marked “Syn. (X,Y)” in Table 2 mark the
performance of the data-augmented diagnoser when using
this synthetic fault prediction model, where X = Pf and
Y = Ph. Note that we experimented with many values of
Pf and Ph, and presented above a representative subset of
these results.

As expected, setting lowering the value of Ph results in
more better diagnoses being found. Setting a very low Ph

value improves the precision significantly up to almost per-
fect precision (0.97 and 0.96 for the “Most modified” and
“All files”, respectively). The recall results, while also im-
proving as we lower Ph, do not reach a very high value. For
Ph = 0.01, the obtained recall is almost 0.39 and 0.45 for
the “Most modified” and “All files”, respectively.

A possible explanation for these low recall results lays in
the fact that all the evaluated diagnosers use the Barinel di-

agnosis algorithm with different fault priors. Barinel uses
these priors only to prioritize diagnoses, but Barinel consid-
ers as diagnoses hitting sets of faulty traces. Thus, if two
faulty components are used in the same trace, only one of
them will be detected even if both have very high likelihood
of being faulty according to the fault prediction model.

Considering More Tests
Next, we investigate the impact of adding more tests to the
accuracy of the returned diagnoses.

Figure 2 shows the precision and recall results (Figures 2
(a) and (b), respectively), as a function of the number of
observed tests. We compared the different diagnosers, given
25, 40, 70, 100, and 130 observed tests.

The results show two interesting trends in both precision
and recall. First, as expected, the data-agnostic diagnoser
performs worse than the data-augmented diagnoser, which
in terms performs worse than the diagnoser using a synthetic
fault prediction model, with Ph = 0.01. This supports our
main hypothesis — that data-augmented diagnosers can be
better than a data-agnostic diagnoser. Also, the better per-
formance of Syn. (0.6, 0.01) demonstrates that future re-
search on improving the fault prediction model will results
in a better diagnoser.

The second trend is that adding more tests reduces the
precision and recall of the returned diagnoses. This, at
first glance, seem counter-intuitive, as we would expect
more tests to allow finding more accurate diagnoses and
thus higher recall and precision. This non-intuitive results
can be explained by how tests were chosen. As explained
above, the observed tests were chosen randomly, only veri-
fying that at least one test passes through each faulty source
file. Adding randomly selected tests adds noise to the di-
agnoser. By contrast, intelligent methods to choose which
tests to add can improve the accuracy of the diagnoses [18].
This is explored in the next section. Another reason for the
degraded performance when adding more tests is that more
tests may pass through more fault source files, in addition
to those from the specific reported bug used to generate the
problem instance in the first place. Thus, adding more tests
increases the amount of faulty source files to detect.

4.4 Troubleshooting Task
Efficient diagnosers are key components of troubleshoot-
ing algorithms. Troubleshooting algorithms choose which
tests to perform to find the most accurate diagnosis. Za-
mir et al. [18] proposed several troubleshootings algorithms
specifically designed to work with Barinel for troubleshoot-
ing software bugs. In the below preliminary study, we eval-
uated the impact of our data-augmented diagnoser on the
overall performance of troubleshooting algorithms. Specif-
ically, we implemented the so-called highest probability
(HP) troubleshooting algorithm, in which tests are chosen
in the following manner. HP chooses a test that is expected
to pass through the source file having the highest probability
of being faulty, given the diagnoses probabilities.

We run the HP troubleshooting algorithm with each of
the diagnosers mentioned above (all rows in Table 2). We
compared the HP troubleshooting algorithm using different
diagnosers by counting the number of tests were required to
reach a diagnoses of score higher than 0.7.

Table 3 shows the average number of tests performed by
the HP troubleshooting algorithm until it halts (with a suit-
able diagnosis). The results show the same over-arching

Proceedings of the 26th International Workshop on Principles of Diagnosis

251

0

0.2

0.4

0.6

0.8

1

25 40 70 100 130

P
re

ci
si

o
n

Tests

Syn. (0.6,0.01) Syn. (0.6,0.2)
Syn. (0.6,0.4) Data-agnostic
Data-augmented

(a) Precision results

0

0.2

0.4

0.6

0.8

1

25 40 70 100 130

R
ec

al
l

Tests

Syn. (0.6,0.01) Syn. (0.6,0.2)
Syn. (0.6,0.4) Data-agnostic
Data-augmented

(b) Recall results

Figure 2: Diagnosis accuracy as a function of # tests given to the diagnoser.

Algorithm Most modified All files
Data-agnostic 20.24 18.06
Data-augmented 10.80 15.45
Syn. (0.6,0.01) 3.94 14.91
Syn. (0.6,0.1) 15.44 17.83
Syn. (0.6,0.2) 19.78 18.99
Syn. (0.6,0.3) 20.90 19.24
Syn. (0.6,0.4) 20.74 19.18

Table 3: Avg. additional tests for troubleshooting.

theme: the data-augmented diagnoser is much better than
the data-agnostic diagnoser for this troubleshooting task.
Also, using the synthetic fault prediction model can result
in even further improvement, thus suggesting future work
for improving the learned fault prediction model.

5 Conclusion, and Future Work
We presented a method for using information about the di-
agnosed system to improve Barinel, a scalable, effective,
software diagnosis algorithm [7]. In particular, we incor-
porated a software fault prediction model into Barinel. The
resulting data-augmented diagnoser is shown to outperform
Barinel without such a fault prediction model. This was
verified experimentally using a real source code system
(Eclipse CDT), real reported bugs and information from
the software’s source control repository. Results also sug-
gests that future work on improving the learned fault pre-
diction model will result in an improved diagnosis accuracy.
In addition, it is worthwhile to incorporate the proposed
data-augmented diagnosis methods with other proposed im-
provements of the based SFL-based software diagnosis, as
those proposed by Hofer et al. [19; 20].

References
[1] Brian C. Williams and P. Pandurang Nayak. A model-based

approach to reactive self-configuring systems. In Conference
on Artificial Intelligence (AAAI), pages 971–978, 1996.

[2] Alexander Feldman, Helena Vicente de Castro, Arjan van
Gemund, and Gregory Provan. Model-based diagnostic
decision-support system for satellites. In IEEE Aerospace
Conference, pages 1–14. IEEE, 2013.

[3] Peter Struss and Chris Price. Model-based systems in the
automotive industry. AI magazine, 24(4):17–34, 2003.

[4] Dietmar Jannach and Thomas Schmitz. Model-based diag-
nosis of spreadsheet programs: a constraint-based debugging
approach. Automated Software Engineering, 1:1–40, 2014.

[5] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Si-
multaneous debugging of software faults. Journal of Systems
and Software, 84(4):573–586, 2011.

[6] Franz Wotawa and Mihai Nica. Program debugging using
constraints – is it feasible? Quality Software, International
Conference on, 0:236–243, 2011.

[7] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund.
Spectrum-based multiple fault localization. In Automated
Software Engineering (ASE), pages 88–99. IEEE, 2009.

[8] Alexandre Perez, Rui Abreu, and André Riboira. A dynamic
code coverage approach to maximize fault localization effi-
ciency. Journal of Systems and Software, 2014.

[9] Johan de Kleer and Brian C. Williams. Diagnosing multiple
faults. Artif. Intell., 32(1):97–130, 1987.

[10] Brian C. Williams and Robert J. Ragno. Conflict-directed
A* and its role in model-based embedded systems. Discrete
Appl. Math., 155(12):1562–1595, 2007.

[11] Roni Stern, Meir Kalech, Alexander Feldman, and Gre-
gory M. Provan. Exploring the duality in conflict-directed
model-based diagnosis. In AAAI, 2012.

[12] Rui Abreu and Arjan JC van Gemund. A low-cost approx-
imate minimal hitting set algorithm and its application to
model-based diagnosis. In SARA, volume 9, pages 2–9, 2009.

[13] Danijel Radjenovic, Marjan Hericko, Richard Torkar, and
Ales Zivkovic. Software fault prediction metrics: A system-
atic literature review. Information & Software Technology,
55(8):1397–1418, 2013.

[14] Thomas J. McCabe. A complexity measure. IEEE Trans.
Software Eng., 2(4):308–320, 1976.

[15] Maurice H. Halstead. Elements of Software Science (Operat-
ing and Programming Systems Series). Elsevier Science Inc.,
New York, NY, USA, 1977.

[16] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller.
When do changes induce fixes? ACM sigsoft software engi-
neering notes, 30(4):1–5, 2005.

[17] Tom Mitchell. Machine learning. McGraw Hill, 1997.
[18] Tom Zamir, Roni Stern, and Meir Kalech. Using model-

based diagnosis to improve software testing. In AAAI Con-
ference on Artificial Intelligence, 2014.

[19] Birgit Hofer, Franz Wotawa, and Rui Abreu. Ai for the win:
Improving spectrum-based fault localization. ACM SIGSOFT
Software Engineering Notes, 37:1–8, 2012.

[20] Birgit Hofer and Franz Wotawa. Spectrum enhanced dy-
namic slicing for better fault localization. In ECAI, pages
420–425, 2012.

Proceedings of the 26th International Workshop on Principles of Diagnosis

252

