
Abstract 

Fault diagnosis is crucial for guaranteeing safe, 
reliable and efficient operation of modern engi-
neering systems. These systems are typically hy-
brid. They combine continuous plant dynamics 
described by continuous-state variables and dis-
crete switching behavior between several operat-
ing modes. This paper presents an integrated ap-
proach for online tracking and diagnosis of hybrid 
linear systems. The diagnosis framework com-
bines multiple modules that realize the hybrid 
observer, fault detection, isolation and identifica-
tion functionalities. More specifically, a Dynamic 
Bayesian Network (DBN)-based particle filtering 
(PF) method is employed in the hybrid observer to 
track nominal system behavior. The diagnostic 
module combines a qualitative fault isolation me-
thod using hybrid TRANSCEND, and a quantita-
tive estimation method that again employs a 
DBN-based PF approach to isolate and identify 
abrupt and incipient parametric faults, discrete 
faults and sensor faults in a computationally effi-
cient manner. Finally, simulation and experimental 
studies performed on a hybrid two-tank system 
demonstrate the effectiveness of this approach. 

1 Introduction 

The increasing complexity of modern industrial systems 

motivates the need for online health monitoring and diag-

nosis to ensure their safe, reliable, and efficient operation. 

These systems are typical hybrid involving the interplay 

between discrete switching behavior and continuous plant 

dynamics. More specifically, the system configuration 

changes consist of known controlled mode transitions 

generated from external supervisory controller and auto-

nomous mode transitions triggered by internal variables 

crossing boundary values. The continuous dynamic beha-

vior is modeled by continuous-state variables that are a 

function of the particular discrete mode of operation. As a 

result, tasks like online monitoring and diagnosis have to 

seamlessly integrate continuous behaviors interspersed with 

discrete transitions that often require model switching to 

accommodate the discrete transitions [1].  

For complex hybrid systems, faults will typically affect 

the continuous behavior and the discrete dynamics of the 

system. Some faults may be parametric, and they directly 

affect the continuous behavior, others are discrete, thus they 

directly affect the mode of system operation. Both types of 

faults also have indirect effects on the other type of beha-

vior. Moreover, faults can have different time-varying pro-

files, such as abrupt faults, intermittent faults and incipient 

faults [2]. In addition, faults may occur in the plant, the 

actuators and the sensors. The diagnosis of multiple fault 

types in the same framework is challenging, because some 

faults may produce similar effects in the particular mea-

surements. Therefore, the diagnosis approach should pro-

vide more discriminatory power.    

Previous model-based diagnosis approaches of hybrid 

systems were developed separately for parametric faults or 

discrete faults. For example, [1], [3] combined system 

monitoring with an integrated approach: qualitative and 

quantitative fault isolation to generate, refine, and identify 

parametric faults. [4]-[5] are typical discrete fault diagnosis 

approaches, which modeled the discrete faults as fault 

modes, and relied on estimating the system behavior for 

diagnosis. In recent years, some integrated approaches have 

been proposed for diagnosis of parametric and discrete 

faults together. [6] introduced a global ARRs 

(GARRs)-based mode diagnoser to track discrete system 

modes, and combined it with a quantitative approach to 

diagnose discrete and abrupt or incipient parametric faults 

within a common framework. The approach presented in [7] 

monitored system behavior using a timed Petri-Net model 

and mode estimation techniques, and isolated the faults by 

means of a decision tree approach. Unfortunately, this me-

thod was application-specific, and was not generalized. 

Our goal in this paper is to propose an integrated mod-

el-based approach to diagnose single and persistent inci-

pient or abrupt parametric faults, discrete faults and sensor 

faults in hybrid linear systems. This extends our earlier 

work [8] from continuous systems to hybrid systems. A PF 

technique using switched DBN is adopted for tracking 

nominal hybrid system behavior. When a non-zero residual 

value is detected using a statistical hypothesis testing me-

thod, this fault detection scheme triggers the fault isolation 

and identification modules. We combine a fast qualitative 

fault isolation (Qual-FI) scheme using the hybrid TRAN-

SCEND approach [1] with quantitative fault isolation and 

identification (Quant-FII) scheme based on a PF-based 

parameter estimation technique to support the diagnosis of 

multiple faults types in hybrid linear systems. The 
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Quant-FII scheme derives a switched faulty DBN model for 

each fault hypothesis that remains when the switch from 

Qual-FI to Quant-FII is initiated. In addition, Quant-FII is 

also designed to estimate possible parameter values [8].  

The rest of this paper is organized as follows. Section 2 

briefly presents the different models employed in our di-

agnosis approach and some basic definition of the different 

types of faults. A hybrid two-tank system is used as a run-

ning example to explain the hybrid bond graph modeling 

method and the derivation of temporal causal graph and 

DBN from hybrid bond graph models. Section 3 gives a 

brief overview of our diagnosis architecture, and then 

presents our online tracking and fault detection, qualitative 

fault isolation and quantitative fault isolation and identifi-

cation schemes in some detail. Section 4 discusses the re-

sults of the application of our algorithm to the hybrid 

two-tank system. Finally, the discussion and conclusions of 

this paper are presented in the last section. 

2 Theoretical Background 

In this section, we formalize the basic definitions, concepts 

and notation of the modeling approach that goes in con-

junction with our diagnosis architecture. 

2.1 Hybrid Bond Graphs 

Bond graphs (BGs) are a domain-independent topologi-

cal-modeling language that captures energy-based interac-

tions among the processes that make up a physical system 

[9]. The nodes in bond graphs represent components of 

dynamic systems including energy storage elements (ca-

pacities, C and inertias, I), energy dissipation elements 

(resistors, R), energy sources (effort source, Se and flow 

source, Sf) and energy transformation elements (gyrators, 

GY and transformers, TF). Bonds, drawn as half arrows, 

represent the energy exchange paths between the bond 

graph elements. Two junctions (1 and 0), also modeled as 

nodes, represent the equivalent of series and parallel to-

pologies respectively.  
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Tank1 Tank2
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Valve2 Valve3

C1 C2
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Figure 1 Schematics of hybrid two-tank system 

Hybrid bond graphs (HBGs) extend BGs by introducing 

switched junctions to enable discrete changes in the system 

configuration [10]. The switched junctions may be dy-

namically switched on and off as system behavior evolves. 

When a switched junction is on, it behaves as a normal 

junction. When off, the 1 and 0 junctions behave as sources 

of zero flow and zero effort, respectively. The dynamic 

behavior of switched junctions is implemented by a finite 

state machine control specification (CSPEC). A CSPEC 

defines finite number of states, and captures controlled and 

autonomous changes.   

The hybrid two-tank system, shown in Figure 1, is the 

running example we employ in this paper. This system 

consists of two tanks connected by a pipe, a source of flow 

into the first tank, and drain pipes at the bottom of each tank. 

Three valves valve1, valve2 and valve3 can be turned on 

and off by commands generated from the supervisory con-

troller. When the liquid level in tanks 1 ( 1h ) and/or 2 ( 2h ) 

reaches the height at which pipe 12R is placed ( h ), a flow is 

initiated through pipe 12R . The autonomous mode changes 

associated with this pipe are triggered when the liquid level 

in tank1 and/or tank 2 goes above or below the height of the 

pipe 12R . We assume five sensors: 1M and 2M  measure the 

outflow from tank 1 and tank 2, respectively. 3M  measures 

the flow through the autonomous pipe 12R , and 4M  and 

5M  measure the liquid pressure in tank 1 and tank 2, re-

spectively. 
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Figure 2 Hybrid bond graph of the plant 

Figure 2 illustrates the HBG model for the plant in Figure 

1 (The HBG model for autonomous pipe 12R  is shown 

separately at the bottom part of Figure 2). The tanks and 

pipes are modeled as fluid capacitances C and resistances R, 

respectively. Measurement points occur at junctions. They 

are denoted by elements with symbols De for effort variable 

measurements and Df for flow variable measurements. 

Moreover, the two-tank system has five switched junctions: 

the CSPEC1, CSPEC2 and CSPEC3 describe the control 

logic for the three valves. CSPEC4 and CSPEC5 together 

capture the autonomous mode transitions of the connecting 
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pipe between the two tanks. Figure 3 (a) shows the CSPEC 

for a valve controlled by the switching signal sw. Figure 3 

(b) shows CSPEC4 that describes the state of the left tank. 

When the liquid height in tank1 is below that of the auto-

nomous pipe 12R , that state is OFF. If the liquid level ex-

ceeds the height of the pipe, this CSPEC transitions to the 

ON state. Similarly, CSPEC5 denotes the state of the right 

tank, and the mode of the autonomous pipe depends on the 

combination of these two CSPECs. Table 1 shows the dis-

crete mode for pipe 12R  and the corresponding state of 

CSPEC4 and CSPEC5 in detail. The corresponding bond 

graph configurations are described in [15]. 
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Figure 3 (a) Controlled transition; (b) Autonomous transi-

tion for CSPEC4 

Table 1 Four different possible configurations for auto-

nomous pipe 12R  

Mode Constraint Function CSPEC4 CSPEC5 

1 
1 2h h h h 

 
ON OFF 

2 
1 2h h h h 

 
OFF ON 

3 
1 2h h h h 

 
OFF OFF 

4 
1 2h h h h 

 
ON ON 

 

The temporal causal graph (TCG) is a signal flow dia-

gram that captures the causal and temporal relations be-

tween system variables, and can also be systematically 

derived from a BG [11]. In our work, we can efficiently 

reason about the qualitative behavior of each continuous 

mode of hybrid system behavior using the TCG when a 

fault is detected. Formally, a TCG is defined as follows [2]: 

Definition 1 (Temporal Causal Graph): A TCG is a di-

rected graph that can be denoted by a tuple <V, L, D>. 

V E F S M     is a set of vertices involving effort 

variables E, flow variables F, discrete fault event S and 

measurement M in hybrid bond graph model. L is a label set 
1 1{1, 1, , , , , , , }p p N Z p dt p dt     . The propagation type 

of first seven labels is instantaneous, and the last two are 

temporal. D V L V    is a set of edges. 

For lack of space, the TCG for hybrid two-tank system is 

not shown in this paper, but the algorithms for deriving 

TCGs directly from bond graph model can be found in [2]. 

It should be noted that for each mode of operation, the TCG 

may need to be re-derived to capture the changes in the BG 

model configuration when mode transitions occur. 

2.2 Dynamic Bayesian Networks 

Assuming that the system is Markovian and time-invariant, 

we can model the system as a two-slice temporal Bayes net 

that illustrates not only the relations between system va-

riables at any time slice t, but also the across-time relations 

between the variables [12]. The system variables consists of 

four different set of variables  , , ,t t t tX Z U Y , which de-

notes the continuous state variables, other hidden variables, 

input variables and measured variables for dynamic system, 

respectively. The relations between these variables can be 

generated as equations in the state space formalism. The 

across-time links between the successive times slice t and 

t+1 are derived as transition equations between the state 

variables in the system. Since the TCG describes the causal 

constraints between system variables, the DBN can be 

easily constructed from TCG. More details of this process 

are presented in Lerner, et al. [13]. 
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Figure 4 Nominal DBN 

When all the valves are ON and the liquid level in tank1 

and tank2 are above the height of the autonomous pipe 12R , 

the nominal DBN model for hybrid two-tank system is 

shown in Figure 4. This DBN model derived from the TCG 

as the following random variables: the continuous state 

variables  4 12,X e e  presents the pressures at the bottom 

of each tank, input variables  1U f  denotes the input 

flow into tank 1, and measured variables  6 9 14, ,Y f f f  

indicates the outflow from tank1, the flow through the au-

tonomous pipe 12R  and the outflow from tank 2. 
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Figure 5 Single DBN model for both abrupt and incipient 

parametric fault 

Since the discrete faults only influence the system mode, 

but not parameter variables, the DBN fault model corres-

ponding to discrete fault will be constructed from the TCG 

in the particular discrete mode. For parametric faults, the 

DBN fault model is generated on the basis of nominal DBN 

model by augmenting a new random variable for each fault 

candidate. Figure 5 shows DBN model with parametric 

faults represented explicitly for the hybrid two-tank system. 
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The abrupt fault 1

aR  and incipient fault 
1

iR  are 

represented in the same model. When the fault occurs, fault 

parameter 1R  becomes the additional state variable that 

need to be tracked.  

2.3 Modeling Faults 

In this paper, we focus on the diagnosis of persistent single 

faults. We consider incipient or abrupt parametric faults and 

discrete faults occurring in hybrid linear systems, as well as 

sensor faults. The precise definition for these faults can be 

given as follow. 

Definition 2 (Incipient parametric fault): An incipient 

fault profile is defined by a gradual drift in the corres-

ponding component parameter value p(t) from the fault 

occurrence time ft . The incipient fault parameter ( )ip t  

can be described by: 

( )
( )

( ) ( ) ( ) ( )

fi

i

p f f

p t t t
p t

p t d t p t t t t t


 

    

         (1) 

where ( ) ( )i

p fd t t t   is a linear function with a con-

stant slope i

p  that added to the nominal parameter value 

from the time point of fault occurrence. Our approach to 

isolation and identification of incipient fault parameters is 

to calculate this constant slope i

p [8]. 

Definition 3 (Abrupt parametric fault): An abrupt para-

metric fault is characterized by step changes in nominal 

component parameter value p(t) from the fault occurrence 

time ft . The abrupt fault parameter ( )ap t  is given by: 

( )
( )

( ) ( ) ( ) ( )

fa

a

p f

p t t t
p t

p t b t p t p t t t


 

    

           (2) 

where ( ) ( )a

pb t p t  is a step function that gets added to 

the parameter value from the time point of fault occurrence. 
a

p  is the percentage change in the parameter expressed as a 

fraction, and our goal is to estimate this value [8].  

Definition 4 (Discrete fault): A discrete fault manifests as 

a discrepancy between the actual and expected mode of a 

switching element in the model [2]. 

Discrete faults occur in discrete actuators, like valves and 

switches that operate in discrete modes (e.g., on and off). 

Consider the example of a valve, it may be commanded to 

close, but remain stuck open. Also, it may unexpectedly 

open or close without a command. This type of fault ma-

nifests as an unexpected system mode change, unlike pa-

rametric faults, which cause deviations in continuous be-

havior. 

Definition 5 (Sensor fault): A sensor fault is a discre-

pancy between the measurement and actual value in the 

model.  

In this paper, we only consider sensor bias fault, which 

can be represented as: 

( )
( )

( )

fb

b

m f

m t t t
m t

m t t t


 

 

                        (3) 

where m(t) is the true value, and b

m is the sensor bias 

term. 

3 Diagnosis Approach of Hybrid Linear 

Systems 

Our integrated diagnosis approach for hybrid linear systems 

(See Figure 6) combines the Hybrid TRANSCEND ap-

proach [2] with switched DBN-based PF scheme [14] to-

gether, which diagnoses abrupt or incipient parametric 

faults, discrete faults and sensor faults in a common 

framework. It includes three main parts: system monitoring, 

qualitative fault isolation (QFI) and quantitative fault iso-

lation and identification (QFII). These three steps are 

summarized below. 

Initially, a nominal DBN is constructed from the current 

TCG model. A hybrid observer uses a PF-based nominal 

DBN model to track the system behavior in individual 

modes of operation. At the same time, a finite automata 

method in hybrid bond graph scheme implements the 

CSPECs, executes controlled and autonomous mode 

changes, and determines the system model for hybrid ob-

server. 

The fault detection continually monitors the statistically 

significant deviations between the observation y(t) and 

estimation ˆ ( )y t  generated by hybrid observer. Once a fault 

is determined, QFI is triggered to generate the initial fault 

hypothesis, and refine them as additional deviations are 

observed. When remaining fault hypothesis set satisfies 

particular condition, the QFII scheme is invoked to run in 

parallel with QFI. The goal of this scheme is to refine the 

fault hypothesis further and estimate the value of the fault 

parameter. The following subsections describe these steps 

in more detail. 

3.1 Online Tracking and Fault Detection 

Since the hybrid system is piecewise continuous, discrete 

mode changes of the hybrid system have to be detected 

accurately as the continuous behavior of the system 

evolves. In our work, we have designed hybrid observers 

that are based on the nominal DBN-based PF scheme to 

track the continuous behavior in individual modes of oper-

ation. PF is a general purpose Markov chain Monte Carlo 

method that approximates the belief state using a set of 

samples or particles, and keeps the distribution updated as 

new observations are made over time. Moreover, the PF 

approach for DBNs exploits the sparseness and compact-

ness of the DBN representation to provide computationally 

efficient solutions, because each measured variable in a 

DBN typically depends on some but not all continuous state 

variables. 

For discrete mode changes, the finite state machine 

(FSM) for each switched junction determines mode transi-

tions. Since the continuous behavior and discrete mode 

changes will interact with each other as system evolves, the 

FSM needs to execute controlled or autonomous mode 

changes. Explicit controlled changes are relatively simple, 

but the autonomous mode changes depend on the internal 

continuous variables. If mode changes occur, the hybrid 

observer will regenerate the nominal DBN model from 

TCG in new mode, and use the PF to continuously track 

system dynamic behavior. The online tracking algorithm 

for hybrid systems is shown in Algorithm 1. 
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Figure 6 The diagnosis architecture 

Algorithm 1: Online tracking algorithm 

Input: Number of particles, N; a initial DBN model 

{ , , , }D X Z U Y  

For each particle i, from 1 to N do 

       Sample 0

iX  from the prior probability distribution 

       Assign 0

iY  as the measurement at time step 0 

 End For 

 For each time-step t>0 do 

       If the controlled or autonomous mode change oc-

curs 

           Regenerate a DBN model 
'D  from TCG in new 

system configuration 

       End If 

       Prediction: Sample each particle in DBN model 
'D  

       Weighting: Compute the weight considering the 

observation 

       Resampling: Normalize the weighted samples, and 

resample N new samples 

       Calculate the estimated continuous state variables 

tX and tY  at time step t 

End For 

   

The fault detection module compares the measured va-

riable y(t) from sensors with its estimate, ˆ ( )y t  computed 

by the hybrid observer at each time-step t. Ideally, any 

inconsistency ˆ( ) ( ) ( )r t y t y t   implies a fault, and in-

vokes the qualitative fault isolation module. However, to 

account for noise in the measurements and modeling errors, 

statistical techniques are employed to determine significant 

deviations from zero for the residual. In this paper, a Z-test, 

which uses a sliding window to compute the residual mean 

and variance, is adopted by reliable fault detection with low 

false-alarm rates [3]. 

3.2 Qualitative Fault Isolation 

The QFI scheme is based on qualitative fault signature 

(QFS) method, which was proposed by Mosterman and 

Biswas [11] and then extended by Narasimhan and Biswas 

[1] to hybrid systems. Daigle, et al. [2] extended this me-

thod to model discrete and sensor faults in continuous and 

hybrid systems. All of these methods are based on a formal 

definition of fault signature as follows: 

Definition 6 (Qualitative Fault Signature): Given a fault f 

and measurement m, the qualitative fault signature can be 

denoted by 1 2 3 1 2 3( , ) {( , ), , ( , ,0,*),QFS f m s s s s s s      

( , , ,*)}N Z X ; where   and 0 indicate an increase, de-

crease, and no change for residual magnitude or slope. N, Z 

and X imply zero to nonzero, nonzero to zero, and no dis-

crete change behavior in the measurement from the esti-

mate. * denotes the ambiguity in the signatures. 

Table 2 Selected fault signature for hybrid two-tank system 

for the mode when all the valves are open and liquid level in 

both tanks are above the height of the autonomous pipe 

Fault 
6f  9f  14f  

1

aC 

 
( , )X

 
( , )X

 
(0 , )X

 

1

iC 

 
(0 , )X

 
(0 , )X

 
(0 , )X

 

1

aR

 
( , )X

 
(0 , )X

 
(0 , )X

 

1

iR

 
(0 , )X

 
(0 , )X

 
(0 , )X

 
1.v off

 
(0 , )X

 
(0 , )X

 
(0 , )X

 
2.v off

 
( , )X

 
(0 , )X

 
(0 , )X

 

6f
  ( 0, ) 

 
(00, )X

 
(00, )X

 

6f
  ( 0, ) 

 
(00, )X

 
(00, )X

 
 

When measurement deviations are detected, the symbol 

generator module in QFI scheme is triggered to calculate 

the QFS for the current mode of operation. However, since 

the fault may have occurred but not detected in an earlier 

mode, the fault hypothesis generation module rolls back to 

find the previous modes in which fault may have occurred, 

and generate fault hypothesis set {( , , )}i i iF f q , where 

i  denotes the deviation of fault parameter value, and iq  

indicates the possible modes. The progressive monitoring 

module applies the forward propagation algorithm to con-

tinually refine the fault candidates in the fault hypotheses 

set. For hybrid systems, the progressive monitoring also has 
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to include forward propagation through mode changes, 

which makes the tracking algorithm much more complex. 

Narasimhan and Biswas [1] discuss the details of the roll 

back and roll forward algorithms used to support the pro-

gressive monitoring task. When a fault signature is no 

longer consistent with the observed measurements, and the 

changes cannot be resolved by autonomous mode transi-

tions, this fault candidate is dropped.  

The selected qualitative fault signature for hybrid 

two-tank system in particular mode is shown in Table 2. For 

incipient parametric faults, the QFS is shown as 3(0 , )s , 

where  is the first nonzero symbol in the QFS for the 

abrupt faults with same system parameter. Sensor faults 

only affect the measurement provided by the sensor, so 

other measurements that are not affected are denoted by 00. 

3.3 Quantitative Fault Isolation and Identifica-

tion 

Quant-FII scheme will be activated when any of the fol-

lowing conditions are fulfilled: 1) All the measurements 

have deviated from nominal, so the remaining fault candi-

dates cannot be refined further only by the Qual-FI scheme; 

2) The number of fault candidates has been reduced to a 

predefined value k; 3) A predefined time l has elapsed. We 

restrict the length of Quant-FII scheme as a pre-specified 

value, and assume that no autonomous change occurs dur-

ing this period. 

The steps describing this scheme are illustrated as fol-

lows: First, a separate DBN faulty model will be con-

structed for each remaining fault candidate in the hypothe-

sis set. Second, we combine each switched DBN faulty 

model with PF method to estimate the system behavior. 

Similar to fault detection scheme, a Z-test method is em-

ployed to detect the inconsistency between estimated values 

from PF and measurements. Ideally, only the correct true 

fault model will converge to the observed values of the 

measurements. Once the deviation is determined, the cor-

responding fault candidate will be dropped. This scheme 

runs in parallel with the qualitative fault isolation scheme, 

and if a controlled mode change occurs, these two schemes 

need to reload the DBN model for new system mode. This is 

the big difference between continuous systems and hybrid 

systems. 

If the fault hypothesis cannot be refined further or only a 

single parametric or sensor fault candidate is left, fault 

identification scheme will be activated to identify the abrupt 

or incipient parametric fault in the same model and estimate 

the fault parameter value. We can use the PF result of the 

fault parameter to calculate the abrupt parameter fault 

magnitude
a

p , incipient parameter fault slope 
i

p  or sensor 

fault bias term b

m . 

4 Experimental Results 

To demonstrate the effectiveness of our approach, we apply 

it to the hybrid two-tank system in Figure 1. In this plant, 

the incipient parametric faults are modeled as gradual de-

crease in tank capacity and gradual increases in pipe resis-

tances and denoted as 1 2 1 2, , ,i i i iC C R R     and 12

iR  respec-

tively. The abrupt parameter faults are modeled as step 

decrease in tank capacity and step increases in pipe resis-

tances and represented as 1 2 1 2, , ,a a a aC C R R     and 12

aR re-

spectively. We consider discrete faults in each controlled 

valves including the valve gets stuck and valve changes 

mode without a command. For sensor faults, bias faults 

causing abrupt changes in the measurement are considered.  
We assume that the tanks are initially empty, and start to 

fill in at a constant rate. The initial configuration of the 

system is all the valves are set to open. We will denote the 

system mode as ijkmq , where i, j and k are the modes of 

valve1, valve2 and valve3 respectively, and m is the mode 

of autonomous pipe 12R . More specifically, the mode of 

valves includes 1 2 3: , : , : _S on S off S Stuck on and 4 :S  

_Stuck off . Therefore, the initial mode of the system is 

1113q . At time step t=6.7s, the liquid level in tank 1 reaches 

the height of autonomous pipe 12R . The system mode tran-

sitions from 1113q  into 1111q . Now the autonomous pipe 12R  

acts as an outflow pipe for the tank 1 but as flow source for 

the tank 2. As system evolves, the liquid level in tank 2 will 

also reach the autonomous pipe at time step t=53s. After 

that, system mode changes into 1114q . The experiments 

have been run for a total of 400s using a sampling period 

0.1s. Gaussian white noise with zero mean and variances 

0.018 is added to measurements. 

4.1 Incipient Parametric Fault in R1 

In this first experiment, we present our diagnosis approach 

for a fault scenario. A 10% rate of increase in pipe 1R  is 

injected as the incipient fault at time step t = 60s. 

 

Figure 7 Observed and estimated result for nominal DBN 

model 

We only consider the measurement 3M  and 2M  for the 

flow 9f  through the autonomous pipe 12R  and the output 

flow 14f  from tank 2. At time step t=82s, the fault detection 

scheme detects an increase in the flow 9f , resulting in the 

initial fault hypothesis 1 1114 1 1114 1{( , ), ( , ), ( ,a i aF C q C q R    

1114 1 1114 1414 9 1114),( , ), ( 2. , ), ( , )}iq R q v off q f q 
. At 88.4s, the 

flow 14f  shows an increase above nominal (+). A possible 

autonomous transition is executed for the current inconsis-

tent candidate 9 1114( , )f q . After that, the first order change 

of flow 9f  is determined to decrease and increase in mode 
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1414q  and 1114q  at time steps t=94.8s and 97.7s, respective-

ly, and finally the possible fault hypotheses are 

1 1114{( , ),iF C q  
1 1114 1 1114( , ), ( , )}a iR q R q  . According to 

the fault signatures in mode 1114q , these three candidates 

cannot be refined further using observed deviations. Figure 

7 represents observed and estimated result generated by the 

nominal DBN model. 

 

Figure 8 Estimated observation using fault model 1

iC   

 

Figure 9 Estimated observation using fault model /

1

a iR  

 

Figure 10 Estimated value of true fault parameter 1

iR  

The QFII scheme is initiated at time step t=72s, and two 

separate DBN fault model using 1

iC   and /

1

a iR  are con-

structed. As more measurements are obtained, the Z-tests 

indicate a deviation in the measurement estimates obtained 

by the fault model 1

iC  , and the estimation generated by 

possible true fault model /

1

a iR  is consistent with mea-

surement. The quantitative fault identification part esti-

mates the value of 1R , and determines that 1R  indeed has an 

incipient fault. While the actual fault slope is 0.1, the esti-

mated slope is 0.1009. The estimation using two faulty 

models are shown in Figure 8 and Figure 9 respectively, and 

the plot for estimated value for 1R  is presented in Figure 10.  

4.2 Discrete Fault in Valve 2 

In this subsection, we investigate an unexpected switch 

fault: valve 2 closes without a command at time step t=80s. 

We only consider the flow 6f  and flow 9f  in this experi-

ment. 
Figure 11 shows the observed and estimated outputs us-

ing nominal DBN model. The fault is detected at time step 

t=80.1s, and the symbol generator reports a decrease in 

flow 6f . QFI scheme generates the fault hypothesis set 

1 1114 1 1114 4114 1414{( , ), ( , ),( 1. , ),( 2. , ),a iF R q R q v off q v off q   

6 1114( , )}f q . At time step t=80.6s, the symbol generator 

determines the flow 6f  to Z in mode 1114q  and 4114q , be-

cause of estimated flow 
6
ˆ 0f   and the observation 6 0f  . 

This symbol eliminates all the parametric faults and discrete 

fault 1.v off from current trajectory. At 83.6s, the flow 10f  

shows a positive deviation (+), so the fault candidate 

1414( 2. , )v off q  is correctly isolated. In this experiment, the 

real fault candidate is isolated by the QFI scheme, so the 

QFII scheme is not invoked. 

 

Figure 11 Observed and estimated result for nominal DBN 

model 

We also perform several additional experiments with 

different fault types, fault magnitude, noise level and fault 

occurrence time, and obtain satisfactory results. For lack of 

space, we do not discuss these results in detail. 

5 Conclusion 

In this paper, we presented an integrated approach for on-

line monitoring and diagnosis of incipient or abrupt para-

metric faults, discrete faults and sensor faults in hybrid 

linear systems. First of all, we adopt the HBGs to model the 

system, and construct the diagnosis models, i.e., the TCGs 

and the DBN models from the HBG model in different 

modes. A PF method based on the switched DBN model is 

employed for online monitoring of the system dynamic 

behavior. Once the discrete finite automaton in the HBGs 

detects the controlled or autonomous mode changes, HBGs 

will regenerate the TCGs and DBN model in new mode. 

These modeling approaches guarantee that the hybrid sys-

tems can be tracked correctly.  
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Then, we demonstrate that we can accommodate discrete 

faults and sensor fault models into the TCG and DBN 

models that represent dynamic system behavior. As a result, 

our model-based approach can diagnose parametric, dis-

crete and sensor faults within the same modeling and 

tracking framework. Finally, QFI scheme using Hybrid 

TRANSCEND approach and QFII scheme by means of 

switched DBN-based PF approach are combined together 

into a common framework, which provides more discri-

minatory power and less computational complexity.  

This work builds on approaches presented in 

[1][2][11][14]. [1] extends our previous work [11] from 

continuous systems to hybrid systems, but previous diag-

nosis framework could only handle abrupt parametric faults. 

Soon after, Daigle [2] further extended the work in [1] to 

capture discrete faults and sensor faults. Roychoudhury 

[8][14] combined a qualitative fault isolation scheme with 

an efficient DBN approach to diagnose both abrupt and 

incipient parametric faults for continuous systems. This 

paper proposes a comprehensive diagnosis methodology, 

which extends DBN-based PF observer [8][14] to track 

behavior of linear hybrid systems within and across mode 

changes, and combines qualitative fault isolation scheme in 

[2] with PF-based quantitative fault isolation and identifi-

cation scheme in  [8][14] to diagnose multiple fault types.       

This method has been successfully applied to a hybrid 

two-tank system, and experimental results demonstrate the 

effectiveness of the approach. However, since the applica-

tion in this paper is only a relatively simple hybrid linear 

system, our future work will scale up this methodology for 

more realistic linear and nonlinear hybrid systems. More-

over, distributed diagnostics techniques can efficiently 

decrease the computational complexity for complex real 

systems, so this is also a research direction in future [16]. 
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