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Abstract

The wind energy sector grew continuously in the
last 17 years, which illustrates the potential of
wind energy as an alternative to fossil fuel. In
parallel to physical architecture evolution, the
scheduling of maintenance optimizes the yield
of wind power plants. This paper presents an
innovative approach to condition monitoring of
wind power plants, that provides a system-level
anomaly detection for preventive maintenance. At
first a data-driven modeling algorithm is presented
which utilizes generic machine learning methods.
This approach allows to automatically model a
system in order to monitor the behaviors of a
wind power plant. Additionally, this automati-
cally learned model is used as a basis for the sec-
ond algorithm presented in this work, which de-
tects anomalous system behavior and can alarm
its operator. Both presented algorithms are used in
an overall solution that neither rely on specialized
wind power plant architectures nor requires spe-
cific types of sensors. To evaluate the developed
algorithms, two well-known clustering methods
are used as a reference.

1 Introduction
According to a wind market statistic by the GWEC (Global
Wind Energy Council) [1], the global wind power capac-
ity grew continuously for the last 17 years. In 2014, the
global wind industry had a 44 % rise of annual installations
and the worldwide total installed capacity accumulated to
369553 megawatt at the end of 2014. In Europe, renewable
energy from wind power plants (WPP) covers up to 11% of
the energy demand [2]. With this rapid continuous growth,
the wind power is considered as one of the most competitive
alternative to fossil fuels.

In a case study, Nilsson [3] denotes an unscheduled down-
time with 1000 e per man-hour, with costs of up to 300000
e for replacements. This does not take into account the
reduced yield through production loss. Therefore, the ob-
jective of maintenance is to reduce WPPs downtimes and
provide high availability and reliability.

High availability is currently achieved by two different
strategies. On the one hand, maintenance is planned as regu-
lar time-interval based on the manufacturer’s data of specific
WPP parts. This is performed in order to prevent wearout

failure. On the other hand, there is the strategy of correc-
tive maintenance, which reacts to occurred failures. Both
strategies need time for actual maintenance, which lead to
non productive downtimes. Especially, when considering
offshore WPP, these downtimes produce high costs.

To reduce these downtimes a precise proactive schedul-
ing of maintenance task is needed. This is achieved through
condition monitoring (CM) systems [4]. Those systems try
to reason about the inherent system states such as wear, al-
though these conditions cannot be measured directly, but the
growing amount of sensors in modern WPP enable an ade-
quate description of the machines state. To make use of this,
CM systems need a model of the WPP, which describes the
system behavior based on observed data.

Existing CM solutions for WPP rely on specific sensors
and are specialized to monitor single parts of the system.
The gearbox [5], the bearing [6], the generator [7] or the
blades [8] have been monitored in order to perform proac-
tive maintenance. Here, specific sensors are needed as a
requirement for these specialized methods.

This article presents a system-level solution which han-
dles heterogeneous WPP architecture regardless of installed
sensor types. Also, an algorithm for modeling a WPP on
system level and another algorithm for anomaly detection
are stated. To achieve this, three challenges are tackled and
their solutions are presented:

I. Logging data from available sensors of a WPP, using
existing infrastructure independent of the architecture.
Additionally, the opportunity must be given to add new
sensors and sensor types on demand.

II. Automatic modeling of a WPP, by combining existing
and generic data-driven methods. Such a model must
be able to learn the complex sensor interdependencies
without extra manual effort.

III. Anomaly detection for a WPP regardless of its kind of
architectures, especially with no assumptions on avail-
able types of sensors.

The article is structured as follows. Section 2 deals with
state of the art technology in WPP CM. Hardware and data
acquisition for the presented solution are specified in section
3, here point I is the central issue. Data-driven models real-
izing point II and the analyzed machine learning approaches
are the purpose of section 4. Anomaly detection and its gen-
eral approach, according point III is stated in section 4.2.
The results of an evaluation of the presented methods is con-
tent of section 5. Finally, this paper concludes in section 6
and describes future aims of the presented work.
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2 Related Work
The core task of a CM system is anomaly detection. As
stated in [9], the models used for anomaly detection of
complex systems should be learned automatically and data-
driven approaches to learning such models should be moved
into the research focus.

A wide range of data-driven algorithms that deal with
modeling the system behavior for anomaly detection are
available in the literature.

Because of its simplicity in processing huge amounts of
data, the Principal Component Analysis (PCA) based algo-
rithms are widely applied in the condition monitoring of
WPP [10][11].

As one of the classic density based clustering method,
DBSCAN shows its advantages over the statistical method
on anomaly detection in temperature data [12].

Piero and Enrico proposed a spectral clustering based
method for fault diagnosis where fuzzy logic is used to mea-
sure the similarity and the fuzzy C-Means is used for clus-
tering the data [13].

Due to the high complexity of a WPP and its harsh work-
ing environment, the modeling of WPPs on system level is
very challenging. Most data-driven solutions to WPP con-
dition monitoring concentrate on the errors of one partic-
ular component (in component level) [4]. These methods
are designed to detect specific faults (e.g. fault in gearbox,
generator).

The application of such methods is available in differ-
ent studies. In [6], a shock pulse method is adapted for
bearing monitoring. A multi-agent system is developed in
[5] for condition monitoring of the wind turbine gearbox
and oil temperature. In [8], the ultrasonic and radiographic
techniques are used for non-destructive testing of the WPP
blades. Using these methods can prevent the WPP break-
downs caused by the particular faults. For enhancing the
availability and the reliability of the whole WPP, a method
for monitoring the WPP on system-level is desired.

In this work, a PCA-based algorithm for condition mon-
itoring of WPP is presented. This approach is aimed to
model a WPP on system-level in order to perform auto-
matic anomaly detection. As a comparison, DBSCAN and
spectral clustering are utilized for the same purpose. To the
best of our knowledge, no application of either DBSCAN or
spectral clustering in condition monitoring of WPP exists.

3 Data Acquisition Solution
A WPP includes different types of sensors, actuators and
controllers installed to monitor and control the different de-
vices and components as shown in Figure 1. To monitor the
condition of a WPP, it is necessary to collect process data
from its sensors and components accurately and continu-
ously feed this data to the diagnosis algorithms. To max-
imize accuracy, data should be acquired directly from the
sensors and components or via the existing communication
systems. Despite the fact that IEC 61400-25 [14] addresses
a variety of standards and protocols in WPP, lots of propri-
etary solutions exist today. A general approach to accurate
data acquisition in an uniform way implies protocol adapters
or data loggers (DL) to connect the diagnosis framework.
This is done not only for IEC 61400-25 conformant WPP,
but also for proprietary ones using e.g. the MODBUS pro-
tocol or a direct connection via general-purpose input/output
(GPIO) [15]. Also the data logger should model data based

Figure 1: Diagram showing the inside of a nacelle and main
components [4]

on generic industrial standards (IEC 61400-25) and trans-
fer them to a database for storage and processing. Such a
data logger meets point I (see section 1). In addition, the
timestamp of the data should be synchronized between data
loggers, database and application accurately.

In this work we followed a three layer architecture for
data acquisition as shown in Figure 2 which covers all of
the CM system components. In layer 1, the physical ma-
chine components are connected to the data logger hardware
using different industrial connections and protocols e.g. dig-
ital GPIO, RS485, MODBUS, etc. The data loggers are time
synchronized using global positioning system (GPS) or net-
work time protocol (NTP) time references via an embed-
ded time client running in the data logger. Collected sensor
data is attached to their accurate timestamps by an embed-
ded OPC UA server inside the data logger. The sensor data
is categorized based on an OPC unified architecture (OPC
UA) data model (e.g. conformant to IEC 61400-25) for a
standalone WPP.

The communication between data logger, OPC UA server
and layer 2 is realized with a secure general packet radio ser-
vice network (GPRS) or a virtual private network (VPN),
while it can be accessed for widely distributed WPPs in
different geographical locations. The layer 2 comprises a
middleware to collect and host the sensor data coming from
distributed data loggers. It mainly covers a database with
support of historical data and also an OPC UA server aggre-
gating the data incoming from distributed WPP data loggers
and pushes them to the database using an OPC UA database
wrapper. As shown in Figure 2, the main component of layer
3 is an analysis engine. This engine applies algorithms on
the database. Based on the learned machine models an out-
put about the machines condition is presented to the operator
by a human machine interface (HMI).

4 Modeling Solution
The main idea of the presented solution is to automatically
learn a model of normal system behavior from the observed
data using data-driven methods. Classical manual model-
ing utilizes expert process knowledge to build a simulation
model as a reference for anomaly detection. But a process
such as a WPP contains numerous continuous sensor val-
ues, which make it difficult to model the system manually.
Therefore, as first step of the solution a model is learned
from a set of data. The second step utilizes this model as
reference to perform anomaly detection. This section con-
siders these two steps.
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Figure 2: Architecture overview of the presented system-
level condition monitoring solution for a WPP

4.1 Step 1: Data-Driven Modeling

In order to automatically compute a system model, the pre-
sented solution use generic methods to analyze training data
and aim for process knowledge. These methods from the
field of machine learning reduce effort of time for generat-
ing a system model caused by the complex sensor interde-
pendencies. Additionally, a WPP is influenced by seasonal
components and a normal state of work cannot be declared
as precise as for a machine that works in a homogeneous en-
vironment of a factory. This meets the requirement in point
II (see section 1). In this solution, step 2 detects anomalies
as deviation between an observation and the learned refer-
ence model of the system, this is described in section 4.2.

Common strategies for data-driven modeling are super-
vised and unsupervised learning methods. Supervised meth-
ods such as Multilayer Perceptron, Support Vector Ma-
chines or Naive Bayes Classifier (see [16] for more infor-
mation) can be used to directly classify data according to
learned hyperplanes in the data space. To be reliable, those
methods need a-priori knowledge from labeled data of pos-
sible faults and the normal state. Gathering those precise
data for a continuous production system like a WPP is hard
to realize, as faults are rare and environmental conditions
increase the number of possible faults dramatically.

In comparison, unsupervised learning methods (e.g.
Clustering, Self Organizing Maps) seek to model data with-
out any a-priori knowledge. Therefore, they are able to
extract knowledge from unlabeled data sets and generate
a model out of this knowledge. In this article, two types
of unsupervised learning methods are investigated to model
a WPP using unlabeled data. The PCA based modeling is
compared against cluster based modeling methods, which
are used as reference.

Clustering based modeling
The goal of cluster analysis is to partition data points into
different groups. Similarity of points is defined by a mini-
mal intra-cluster distance, whereas different cluster aim for
a maximum inter-cluster distance. Thus, cluster analysis
can be utilized to find the pattern of a system direct us-
ing the multi-dimensional data without explicit descriptions
about the system features. This is the main advantage in
using cluster analysis for modeling complex systems with
seasonal components, e.g. WPP.

In the presented solution, a system model for anomaly de-
tection should characterize the normal system behavior and
can be used to identify unusual behavior. For most com-
plex system, the normal behavior might consist of multiple
modes that depend on different factors, e.g. work environ-
ments, operations of the systems. When the cluster analysis
is performed on a data set representing the normal behav-
ior of a system, multiple clusters can be recognized. Each
cluster (group) represents a particular status of the system.
Then such multiple clusters can be used as the normal be-
havior model of a system for anomaly detection.

In this paper, two well-known clustering algorithms, DB-
SCAN and spectral clustering, are utilized to model the nor-
mal behavior of a WPP on system level. Each of them has
advantages in clustering the data with complex correlations.

DBSCAN is resistant to noise and can recognize patterns
of arbitrary shapes. In DBSCAN, the density for a particu-
lar point is defined as the number of neighbor points within
a specified radius of that point [17]. Two user-defined pa-
rameters are required: Eps - the radius; MinPts - the min-
imal number of neighbors in the Eps. DBSCAN uses such
center-based density to classify the data points as core point
(Eps-neighbors ≥ MinPts), border point (not core point
but the neighbor of minimal one core point) or noise point
(neither a core nor a border point). Two core points that are
within Eps of each other are defined as density-reachable
core points. DBSCAN partitions the data into clusters by
iteratively labeling the data points and collecting density-
reachable core points into same cluster. As result, DBSCAN
delivers several clusters in which noise points are also col-
lected in a cluster. DBSCAN is not suitable to cluster high
dimensional data because density is more difficult to define
in high dimensional space. Therefore, a method to reduce
dimensionality should be applied to the data before using
the DBSCAN. This leads to a density based description of
the normal behavior.

This method assumes that the training data perfectly de-
scribe the distribution of system normal states. For WPP,
some special states of the plant occur so rarely that the
recorded data can not represent such special states very well.
In addition, environmental influences lead to noise points
within the data set. Therefore, a complete coverage of the
normal states of a WPP in learning data set is unrealistic to
achieve.

Compared to the traditional approaches to clustering (e.g.
k-means, DBSCAN), spectral clustering can generally de-
liver better results and can be solved efficiently by standard
linear algebra methods[18]. Another advantage of spectral
clustering is the ability to handle the high dimensional data
using spectral analysis. Thus, extra dimensionality reduc-
tion method is not required. The idea of spectral cluster-
ing is to represent the data in form of a similarity graph
G(V,E) where each vertex vi ∈ V presents a data point
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Algorithm 1 PCA based modeling
1: Input: X . learning data set
2: Output: ModelX . model of input data

3: procedure PCA_BASED_MODELING (X)
4: l: reduced dimensionality

5: PCA_Matrix = performPCA(X)
6: XPCA = mapToLowDimension(X)
7: ModelX = generate_N-Tree(XPCA)
8: end procedure

9: function GENERATE_N-TREE(XPCA)
10: Tree: List with length 2l

11: for (xpca in XPCA) do
12: i = determine_orthant(xpca)
13: Treei = append(Treei, xpca)
14: end for
15: for ( leaf in Tree ) do
16: if (sizeOf(leaf) > 1) then
17: leaf = generate_N-Tree(leaf)
18: end if
19: end for
20: return ( Tree, PCA_Matrix )
21: end function

in the dataset. Each edge eij ∈ E between two vertices vi
and vj carries a non-negative weight (similarity between the
two points) wij . Then, the clustering problem can be han-
dled as graph partition[19]. G will be divided into smaller
components, such that the vertices within the small compo-
nents have high connection and there are few connections
between the small components. These small components
correspond to the clusters in the results of spectral cluster-
ing and can be used as normal status model for anomaly
detection.

PCA based modeling
Algorithm 1 presents the stated modeling solution for a
system-level approach to a WPP. The algorithm utilizes the
Principal Component Analyses (see, line 5 algorithm 1 ) as a
very first step to achieve a dimensional reduced description
of the training data set. Although a part of the information is
lost due to the reduction, the sensor correlations in the low
dimensional space are reduced drastically, which minimizes
the computational effort.

The PCA is based on the assumption, that most of the
information is located in the direction of most variance.
Therefore, this method aims to project a data set to a sub-
space with a lower dimension by minimizing the sum of
squares of yi and to their projections θi following cost func-
tion:

m∑

i=1

= ||yi − θi||2.

Let x1, . . . ,xm be the data point of m sensor values and
X is a historical dataset of N scaled data points.

X =



x1,1 . . . x1,m

...
. . .

...
xN,1 . . . xN,m


 ∈ RN×m

Then as first step for computing the PCA, the covariance
matrix is formed as

Σ0 ≈
1

N − 1
XTX

By means of EVD (eigen value decomposition) or the
equivalent SVD (singular value decomposition) the covari-
ance matrix is decomposed as follows:

Σ0 = PT ΛP,Λ =

[
Λpc 0
0 Λres

]

With Λ = diag(σ2
1 < σ2

2 < · · · < σ2
i ) where σi,

i = 1, · · · ,m is the i-th eigenvalue and P is a matrix of the
eigenvectors, sorted according to the eigenvalues of Λ. Λpc

are the chosen principal components according to a thresh-
old l and Λres denotes the less informative rest. l is a pa-
rameter which depends on the eigenvalues proportion of to-
tal variance and determines the dimension of the reduced
normal space.

Y = P TX

Transforms the p-dimensional dataset X into a dataset Y of
a lower dimension l, with a minimum of information loss.
The axes of the dimensionally reduced data space are or-
thonormal and aligned to the maximum variance of data.
Prerequisite for modeling a WPP with this kind of trans-
formation is the input data to calculate eigenvalues and the
rotation matrix. Therefore, the presented data set of a WPP
needs to describe a period of fault free operation, which is
denoted by the term ’normal state’. Using this data set as
a learning base, the PCA described above spans a reduced
normal state space, where signal covariances are taken into
account due to the eigenvalues of the covariance matrix as
the basis for transformation. The input variables are trans-
formed within the algorithm 1 in line 6.

In comparison to clustering methods only the covariance
matrix stores explicit shape informations. This leads to the
necessity of taking into account all data points for classi-
fying a new observation. That is why computational effort
for this model increases with the number of data points in
the data set and their dimension. To overcome this issue,
the model is extended with an N-Tree as geometrical data
structure (see function generate_N−Tree in algorithm 1).
The axis of the PCA transformed normal state space divides
the data into 2l subspaces. Centering these subspaces in
each iteration divides the subspaces recursively until each
leaf of the tree contains one data point or is empty. Note,
that the mean of each subspace needs to be stored.

4.2 Step 2: Anomaly Detection
To comply with point III (see section 1), the prerequisite
for a system-level anomaly detection is a data-driven model
as stated above. Given such a model, a distance measure
is needed to calculate the deviation between a new system
observation and the model in order to identify anomalies.
Therefore, an observation vector needs to be transformed
into the dimensionally reduced space of the model. Then
the deviation of an actual observation and the learned model
can be calculated using a distance metric, such as Euclidean
distance, Mahalanobis distance or Manhattan distance.

DBSCAN generated cluster provide a discrimination of
core and border data points. Distance computation in DB-
SCAN use the euclidean distance metric. Only core points
are used to measure the distance between an observations
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Figure 3: Characteristics of Gaussian distribution in com-
parison to Marr Wavelet (dashed). Spots are marked where
the Marr Wavelet reach zero

and the core points. This leads to the decision whether an
observation is part of the models cluster or not.

Spectral clustering computes clusters in a dimensionally
reduced space but gives no further information about core or
border points. Measuring the distance between such clus-
ters can be achieved by a prototype, for example the clus-
ter center. Then, for computing the distance, a metric like
the Mahalanobis distance is used, which is sensible for the
multidimensionality of such cluster. Representing a cluster
based on a prototype is a generalization.

The PCA based modeling approach uses the dimension-
ally reduced input data as description of the multidimen-
sional normal state space. Algorithm 2 shows how the
model, computed with algorithm 1, is used for anomaly de-
tection. At first a new observation is mapped to the low
dimensional space of the model, using the rotation matrix
from the PCA (see line 5). Then the mapped observation
is compared with the normal state space. Therefore, the N-
Tree is searched for its corresponding subset first (see func-
tion get_subset). If an empty leaf is found, all neighbor
leafs are aggregated to a most relevant subset of data points.
As the data is not generalized by border points or cluster
means as prototypical points it is necessary to measure dis-
tance of the observation to each point of this subset. Now
the distance is computed (see line 7).

Absolute distance measuring is missing a threshold to de-
cide when an observation meets the model or not. Even
when utilizing a Gaussian density function to provide an in-
dicator for classification, a threshold needs to be estimated
for classification. In this project, a Marr wavelet function
is used to decide whether a new observation is part of the
learned normal space. Instead of a Gaussian distribution the
characteristic form of a Marr wavelet [20] allows a classi-
fication where the threshold can be set to zero, see figure
3. Taking into account the Marr wavelet and the euclidean
distance function the process of distance measuring is com-
puted as follows.

Let Xpca = [x1, · · · , xl] be a vector of the models’ prin-
cipal normal-space and Opc = [o1, · · · , ol] a transformed
observation, where l denotes the number of principal com-
ponents. Then the distribution function to measure if a new
observation is part of the normal state space is formed as:

ψ(Xpca, Opca) =
2√

3σπ
1
4

· 1− k

σ2
· exp (− k

2σ2
)

Algorithm 2 Anomaly detection
1: Input: Tree . (Learned model, see algorithm 1)
2: Input: O . Input observation
3: Output: Boolean . Anomaly
4: procedure ANOMALY_DETECTION(Tree, O)
5: OPCA = mapToLowDimension(O)
6: subset = get_subset(Tree,O)
7: dist = calculate_distance(O, subset)

8: if ( dist > 0 ) then
9: anomaly: TRUE

10: else
11: anomaly: FALSE
12: end if
13: return ( anomaly )
14: end procedure

15: function GET_SUBSET( Tree , OPCA )
16: i = determine_orthant(xpca)
17: if (size(leafi) > 1) then
18: get_subset(leafi)
19: else
20: subset = neighbors(leafi)
21: end if
22: return ( subset )
23: end function

Where l denotes dimensions of reduced normal-space and

k =

√√√√
l∑

i

(Opcai
−Xpcai

)2

k is the l-space euclidean distance. For ψ > 0 an observa-
tion in principal space Opca is denoted part of the normal
state space (see line 17).

5 Results
The data used in the evaluation is collected over a duration
of 4 years from 11 real WPPs in Germany with 10 minutes
resolution. The dataset consists of 12 variables which de-
scribe the work environment (e.g. wind speed, air temper-
ature) and the status of WPP (e.g. power capacity, rotation
speed of generator, voltage of the transformer).
For evaluation, a training data set of 232749 observations
of the 10 minutes resolution was used to model the nor-
mal behavior of a WPP. The evaluation data set of 11544
observations contains 4531 reported failures and 7013 ob-
servations of normal behavior. Table 1 shows the confusion
matrix [21] as a result of the evaluation. Here, true negative
denotes a correct predicted normal state and true positive a
correct classified failure For this use case, the F1-score is
used to analyze the system’s performance in anomaly de-
tection. Also, the runtime for the evaluation is denoted in
Table 1 to compare speed performance of the different ana-
lyzed methods.
As can be seen, the presented PCA based algorithm outper-
forms the standardized spectral clustering. Especially a sig-
nificant performance boost in computation time is achieved
due to the extended N-Tree data structure.

Both, DBSCAN and Spectral Clustering, rely on com-
plete sensor information for clustering the data set. A defect
sensor leads to a maintenance action. The delay for this

Proceedings of the 26th International Workshop on Principles of Diagnosis

47



True Pos. True Neg. False Pos. False Neg. Bal. Acc. F-Measure elapsed
Time

DBSCAN 1812 6827 186 2719 68.66% 55.50% 3s
Spectral
Clustering

3832 6328 685 699 87.40% 84.71% 6637s

PCA based 3970 6517 496 561 90.27% 88.25% 68s

Table 1: Evaluation results of wind power station data.

maintenance is based on the localization of the WPP and
cause missing sensor values for a certain time. To be oper-
able in the use case of WPP such a model needs a fall back
strategy in case of missing sensor values. Here, redundancy
and correlation of different sensors comes in handy. By ex-
tending the PCA to a Probabilistic Principal Component An-
alyzes (PPCA), missing values can be estimated according
to the data learned from the data set. Tipping and Bishop
[22] extend a classic PCA by a probability model. This
model assumes Gaussian distributed latent variables which
can be inferred from the existing variables and the matrix
of eigenvectors from the PCA. With the use of a PPCA, the
solution for a system-level is robust enough to stay reliable
even when sensors are missing. This was tested by training
the model with a defect data set, containing 10% missing
sensor values. While evaluating this model, also 10% of the
data was damaged, simulating missing sensor values. The
result of this evaluation is presented in table 1.

6 Conclusion

In this work a solution for system-level anomaly detection
was presented. Three main requirements are identified and
satisfied: At first a hardware concept for sensor data ac-
quisition in the heterogeneous environment of WPPs was
developed. This hardware logs existing sensor values and
offers an adaptive solution to integrate new sensors on de-
mand. Second, generic data-driven algorithms to automati-
cally compute a system-level model out of minimal labeled,
historical sensor data is presented. At last an anomaly detec-
tion method has been shown, which reaches an F-Measure
of 89.02% and a ballanced accuracy of 91.46%. This solu-
tion is not specialized for specific parts of a WPP and can be
trained in a short period. With an extension of the standard
PCA to a probabilistic PCA, the robustness of the algorith-
mic solution against sensor failures is ensured.

In the future, this solution will be evaluated using data
from more WPPs with different working environment. Be-
yond the task of anomaly detection, diagnosis of the root
cause of an anomaly is also a sensible functionality of a CM
system. The presented solution will be extended by a root
cause analysis. Such an extension can support maintenance
personal to trace the detected anomaly. Another focus will
be the prognosis of anomalies in a WPP. To achieve this, an
appropriate algorithm will be developed to predict the future
system status using the learned model of the system behav-
ior.
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