
Using Incremental SAT for Testing Diagnosability of Distributed DES

Hassan IBRAHIM1 and Philippe DAGUE1 and Laurent SIMON2

1LRI, Univ. Paris-Sud and CNRS, Orsay, France
hassan.ibrahim@lri.fr, philippe.dague@lri.fr

2LaBRI, Univ. Bordeaux and CNRS, Bordeaux, France
lsimon@labri.fr

Abstract
We extend in this work the existing approach to
analyse diagnosability in discrete event systems
(DES) using satisfiability algorithms (SAT), in or-
der to analyse the diagnosability in distributed
DES (DDES) and we test this extension. For this,
we handle observable and non observable com-
munication events at the same time. We also pro-
pose an adaptation to use incremental SAT over
the existing and the extended approaches to over-
come some of the limitations, especially concern-
ing the length and the distance of the cycles that
witness the non diagnosability of the fault, and
improve the process of dealing with the reacha-
bility limit when scaling up to large systems.

1 Introduction
Diagnosis task is mainly using the available observations to
explain the difference between the expected behavior of a
system and its real behavior which may contain some faults.
Many works have been done to study the automatic ap-
proaches to system fault diagnosis. They all try to deal with
the main problem, i.e. the compromise between the number
of possible diagnoses to the considered faults and the num-
ber of observations which must be given to make the deci-
sion. Diagnosis problem is NP-hard and one always needs
to cope with an explosion in the number of system model
states. Moreover, the diagnosis decision is not always cer-
tain, and thus running a diagnosis algorithm may not be ac-
curate. For example, two sets of observations provided by
different sets of sensors or at different times may lead to
different diagnoses. This uncertainty raises the problem of
diagnosability which is essential while designing the system
model. After that, the model based diagnosis will be used
in applications to explain any anomaly, with a guarantee of
correctness and precision at least for anticipated faults.
Diagnosability of the considered systems is a property de-
fined to answer the question about the possibility to distin-
guish any possible faulty behavior in the system from any
other behavior without this fault (i.e., correct or with a dif-
ferent fault) within a finite time after the occurrence of the
fault. A fault is diagnosable if it can be surely identified
from the partial observation available in a finite delay af-
ter its occurrence. A system is diagnosable if every possible
fault in it is diagnosable. This property provides information
before getting into finding the explanations of the fault. It
also helps in designing a robust system against faults and in

positioning the sensors to manage the observation require-
ments. The main difficulty in diagnosability algorithms is
related to the states number explosion. Another difficulty
appears when checking diagnosability of a system which
is actually diagnosable, i.e. the inexistence of a counter-
example witnessing non diagnosability. Thus all possibili-
ties need to be tested as for proving the non existence of a
plan in a planning problem, and usually in this case some
approximations are used to avoid exploring all the search
space.
The paper is structured as follows. Section 2 will introduce
the system transition models for centralized DES and recall
the traditional definition of the diagnosability in those mod-
els and the state of the art of encoding this definition as a
satisfiability problem in propositional logic. Section 3 will
present our first contribution, an extension of this state of the
art to DDES with observable and non observable communi-
cation events in the same model, and will give experimental
results of this extension. Section 4 is devoted to our sec-
ond contribution, using incremental SAT calls to overcome
the limitation when the number of steps required to check
diagnosability, i.e., the length of possible paths with cycles
witnessing non diagnosability, is large, and will present ex-
perimental results showing how the method scales up. Sec-
tion 5 will present related works and section 6 will conclude
and give our perspectives for future work.

2 Using SAT in Diagnosability Analysis of
Centralized Systems

We recall first the definitions of DES models we use and of
diagnosability for these models.

2.1 Preliminaries
We will use finite state machines (FSM) to model systems.
We define labeled transition systems following [1].

Definition 1. A Labeled Transition System (LTS) is
a tuple T = 〈X,Σo,Σu,Σf , δ, s0〉 where:

• X is a finite set of states,

• Σo is a finite set of observable correct events,

• Σu is a finite set of unobservable correct events,

• Σf is a finite set of unobservable faulty events,

• δ ⊆ X× (Σo∪Σu∪Σf)×X is the transition relation,

• s0 is the initial state.

Proceedings of the 26th International Workshop on Principles of Diagnosis

51

In [2] the authors used an equivalent but more compact
representation than LTS for modeling systems in order to
analyze their diagnosability: succinct transition systems,
that exploit the regularity in the systems structures and
are expressed in terms of propositional variables, which
allowed them to translate more easily to a SAT problem the
twin plant method proposed by [3] for checking diagnos-
ability.
As we aim at studying the diagnosability of DDES using
SAT solvers, we will follow the model of [2] who stud-
ied the same problem in centralized DES. It represents
the system states by the valuations of a finite set A of
Boolean state variables where valuation changes reflect
the transitions between states according to the events. The
set of all literals issued from A is L = A ∪ {¬a|a ∈ A}
and L is the language over A that consists of all formulas
that can be formed from A and the connectives ∨ and
¬. We use the standard definitions of further connec-
tives Φ ∧ Ψ ≡ ¬(¬Φ ∨ ¬Ψ),Φ → Ψ ≡ ¬Φ ∨ Ψ and
Φ ↔ Ψ ≡ (Φ → Ψ) ∧ (Ψ → Φ). The transition relation
is defined to allow two or more events to take place
simultaneously. Thus each event is described by a set of
pairs 〈φ, c〉 which represent its possible ways of occurrence
by indicating that the event can be associated with changes
c ∈ 2L in states that satisfy the condition φ ∈ L.

Definition 2. A Succinct Transition System (SLTS)
is described by a tuple T = 〈A,Σo,Σu,Σf , δ, s0〉 where:
• A is a finite set of state variables,
• Σo is a finite set of observable correct events,
• Σu is a finite set of unobservable correct events,
• Σf is a finite set of unobservable faulty events,

• δ : Σ = Σo ∪Σu ∪Σf → 2L×2L

assigns to each event
a set of pairs 〈φ, c〉,
• s0 is the initial state (a valuation of A).

It is straightforward to show that any LTS can be repre-
sented as an SLTS (one takes dlog(|X|)e Boolean variables
and represents states by different valuations of these vari-
ables; one assigns to each occurence of an event e labeling
a transition (x, e, y) a pair 〈φ, c〉, with φ expressing the
valuation of x and c the valuation changes between x and
y). And reciprocally any SLTS can be mapped to an LTS
(see Definition 2.4 in [2]).
The formal definition of diagnosability of a fault f in a
centralized system modeled by (an LTS or SLTS) T was
proposed by [1] as follows:

Definition 3. Diagnosability. A fault f is diagnos-
able in a system T iff

∃k ∈ N, ∀sf ∈ L(T),∀t ∈ L(T)/sf , |t| ≥ k ⇒
∀p ∈ L(T), (P (p) = P (sf .t)⇒ f ∈ p).

In this formula, L(T) denotes the prefix-closed language of
T whose words are called trajectories, sf any trajectory end-
ing by the fault f , L(T)/s the post-language of L(T) after
s, i.e., {t ∈ Σ∗|s.t ∈ L(T)} and P the projection of tra-
jectories on observable events. The above definition states
that for each trajectory sf ending with fault f in T , for each
t that is an extension of sf in T with enough events, every
trajectory p in T that is equivalent to sf .t in terms of obser-
vation should contain in it f . As usual, it will be assumed

that L(T) is live (i.e., for any state, there is at least one tran-
sition issued from this state) and convergent (i.e., there is no
cycle made up only of unobservable events).

A system T is said to be diagnosable iff any fault f ∈ Σf
is diagnosable in T . In order to avoid exponential complex-
ity in the number of faults during diagnosability analysis,
only one fault at a time is checked for diagnosability. It will
thus be assumed in the following that there exists only one
fault event f (Σf = {f}), without restriction on the num-
ber of its occurrences. Diagnosability checking has been
proved in [3] to be polynomial in the number |X| of states
for LTS, so exponential in the number |A| of state variables
for SLTS (actually the problem is NLOGSPACE-complete
for LTS and PSPACE-complete for SLTS [4]).

2.2 SLTS Diagnosability as Satisfiability
An immediate rephrasing of the definition 3 shows that T is
non diagnosable iff it exists a pair of trajectories correspond-
ing to cycles (and thus to infinite paths), a faulty one and
a correct one, sharing the same observable events. Which
is equivalent to the existence of an ambiguous (i.e. made
up of pairs of states respectively reachable by a faulty path
and a correct path) cycle in the product of T by itself, syn-
chronized on observable events, which is at the origin of the
so called twin plant structure introduced in [3]. This non
diagnosability test was formulated in [2] as a satisfiability
problem in propositional logic. We recall below this encod-
ing with the variables and the formulas used, where super-
scripts t refer to time points and (eto) and (êto) refer respec-
tively to the faulty and correct events occurrences sequences
(corresponding states being described by valuations of (at)
and (ât)) of a pair of trajectories witnessing non diagnos-
ability (so sharing the same observable events represented
by (et) and forming a cycle). The increasing of the time
step corresponds to the triggering of at least one transition
and the extension by an event of at least one of the two tra-
jectories. T = 〈A,Σu,Σo,Σf , δ, s0〉 being an SLTS, the
propositional variables are thus:

• at and ât for all a ∈ A and t ∈ {0, . . . , n},
• eto for all e ∈ Σo ∪Σu ∪Σf , o ∈ δ(e) and t ∈ {0, . . . ,
n− 1},

• êto for all e ∈ Σo ∪ Σu, o ∈ δ(e) and t ∈ {0, . . . ,
n− 1},

• et for all e ∈ Σo and t ∈ {0, . . . , n− 1}.
The following formulas express the constraints that must be
applied at each time step t or between t and t+ 1.

1. The event occurrence eto must be possible in the current
state:

eto → φt for o = 〈φ, c〉 ∈ δ(e) (2.1)

and its effects must hold at the next time step:

eto →
∧

l∈c
lt+1 for o = 〈φ, c〉 ∈ δ(e) (2.2)

We have the same formulas with êto.

2. The present value (True or False) of a state variable
changes to a new value (False or True, respectively)
only if there is a reason for this change, i.e., because of
an event that has the new value in its effects (so, change
without reason is prohibited). Here is the change from

Proceedings of the 26th International Workshop on Principles of Diagnosis

52

True to False (the change from False to True is de-
fined similarly by interchanging a and ¬a):

(at ∧ ¬at+1)→ (eti1oj1

∨ · · · ∨ etikojk

) (2.3)

where the ojl = 〈φjl , cjl〉 ∈ δ(eil) are all the occur-
rences of events eil with ¬a ∈ cji .
We have the same formulas with ât and êtilojl

.

3. At most one occurrence of a given event can occur at
a time and the occurrences of two different events can-
not be simultaneous if they interfere (i.e., if they have
two contradicting effects or if the precondition of one
contradicts the effect of the other):

¬(eto ∧ eto′) ∀e ∈ Σ,∀{o, o′} ⊆ δ(e), o 6= o′ (2.4)

¬(eto ∧ e′to′) ∀{e, e′} ⊆ Σ, e 6= e′,∀o ∈ δ(e),

∀o′ ∈ δ(e′) such that o and o′ interfere (2.5)

We have the same formulas with êto.
4. The formulas that connect the two events sequences

require that observable events take place in both se-
quences whenever they take place (use of et):

∨

o∈δ(e)
eto ↔ et and

∨

o∈δ(e)
êto ↔ et ∀e ∈ Σo (2.6)

The conjunction of all the above formulas for a given t is
denoted by T (t, t+ 1).
A formula for the initial state s0 is:

I0 =
∧

a∈A,s0(a)=1

(a0∧â0) ∧
∧

a∈A,s0(a)=0

(¬a0∧¬â0) (2.7)

At last, the following formula can be defined to encode
the fact that a pair of executions is found with the same ob-
servable events and no fault in one execution (first line), but
one fault in the other (second line), which are infinite (in
the form of a non trivial cycle, so containing at least one
observable event, 1 at step n; third line), witnessing non di-
agnosability:

ΦTn = I0 ∧ T (0, 1) ∧ · · · ∧ T (n− 1, n) ∧
n−1∨

t=0

∨

e∈Σf

∨

o∈δ(e)
eto ∧

n−1∨

m=0

(
∧

a∈A
((an ↔ am) ∧ (ân ↔ âm)) ∧

n−1∨

t=m

∨

e∈Σo

et)

From this encoding in propositional logic, follows the re-
sult (theorem 3.2 of [2]) that an SLTS T is not diagnosable
if and only if ∃n ≥ 1,ΦTn is satisfiable. It is also equivalent
to ΦT

22|A| being satisfiable, as the twin plant states number is
an obvious upper bound for n, but often impractically high
(see in [2] some ways to deal with this problem).

3 Using SAT in Diagnosability Analysis of
Distributed Systems

We extend from centralized systems to distributed systems
the satisfiability framework of subsection 2.2 for testing di-
agnosability and we provide some experimental results.

1This verification that the cycle found is not trivial was not done
in [2]; it is why the authors had to add for each time point a for-
mula, not needed here, guaranteeing that at least one event took
place, to avoid silent loops with no state change.

3.1 DDES Modeling
In order to model DDES with SLTS, we need to extend
these ones by adding communication events to each com-
ponent. So we use the following definition for a distributed
SLTS with k different components (sites):

Definition 4. A Distributed Succinct Transition
System (DSLTS) with k components is described by a tuple
T = 〈A,Σo,Σu,Σf ,Σc, δ, s0〉 where (subscripts i refer to
component i):

• A is a union of disjoint finite sets (Ai)1≤i≤k of com-
ponent own state variables, A = ∪ki=1Ai,

• Σo is a union of disjoint finite sets of component own
observable correct events, Σo = ∪ki=1Σoi,

• Σu is a union of disjoint finite sets of component own
unobservable correct events, Σu = ∪ki=1Σui,

• Σf is a union of disjoint finite sets of component own
unobservable faulty events, Σf = ∪ki=1Σf i,

• Σc is a union of finite sets of (observable or unobserv-
able) correct communication events, Σc = ∪ki=1Σci,
which are the only events shared by at least two differ-
ent components (i.e., ∀i,∀c ∈ Σci,∃j 6= i, c ∈ Σcj),

• δ = (δi), where δi : Σi = Σoi ∪ Σui ∪ Σf i ∪ Σci →
2Li×2Li , assigns to each event a set of pairs 〈φ, c〉 in
the propositional language of the component where it
occurs (so, for communication events, in each compo-
nent separately where they occur),

• s0 = (s0i) is the initial state (a valuation of each Ai).

In this distributed framework, synchronous communication
is assumed, i.e., communication events are synchronized
such that they all occur simultaneously in all components
where they appear. More precisely, a transition by a com-
munication event c may occur in a component iff a simul-
taneous transition by c occurs in all the other components
where c appears (has at least one occurrence). In particular,
all events before c in trajectories in all these components
necessarily occur before all events after c in these trajecto-
ries. The global model of the system is thus nothing else that
the product of the models of the components, synchronized
on communication events. Notice that we allow in whole
generality communication events to be, partially or totally,
unobservable, so one has in general to wait further obser-
vations to know that some communication event occurred
between two or more components. On the other side, as-
suming these communications to be faultless is not actually
a limitation. If a communication process or protocol may be
faulty, it has just to be modeled as a proper component with
its own correct and faulty behaviors (the same that, e.g., for
a wire in an electrical circuit). In this sense, communica-
tions between components are just a modeling concept, not
subject to diagnosis. It will be also assumed that the observ-
able information is global, i.e. centralized (when observable
information is only local to each component, distributed di-
agnosability checking becomes undecidable [5]), allowing
to keep definition 3 for diagnosability.

3.2 DSLTS Diagnosability as Satisfiability
Let T be a DSLTS made up of k components denoted by
indexes i, 1 ≤ i ≤ k. In order to express the diagnosability
analysis of T as a satisfiability problem, we have to extend

Proceedings of the 26th International Workshop on Principles of Diagnosis

53

the formulas of subsection 2.2 to deal with communication
events between components. Let Σc = Σco ∪ Σcu be the
communication events, with Σco = ∪ki=1Σcoi the observ-
able ones and Σcu = ∪ki=1Σcui the unobservable ones.

The idea is to treat each communication event as any
other event in each of its owners and, as it has been done
with events et for e ∈ Σo for synchronizing observable
events occurrences in the two executions, to introduce in the
same way a global reference variable for each communica-
tion event at each time step, in charge of synchronizing any
communication event occurrence in any of its owner with
occurrences of it in all its other owners. We use one such
reference variable for each trajectory, et and êt, for unob-
servable events e ∈ Σcu, and only one for both trajectories,
et, for observable events e ∈ Σco as it will also in addition
play the role of synchronizing observable events between
trajectories exactly as the et for e ∈ Σo. So, we add to the
previous propositional variables the new following ones:

• eto, êto for all e ∈ Σc, o ∈ δ(e) = ∪iδi(e) and
t ∈ {0, . . . , n− 1},

• et for all e ∈ Σc, êt for all e ∈ Σcu and
t ∈ {0, . . . , n− 1}.

Formulas in T (t, t+ 1) are extended as follows.

1. Formulas (2.1), (2.2), (2.3) and (2.5) extend unchanged
to eto and êto ∀e ∈ Σc, expressing that a communication
event must be possible and has effects in each of its
owner components and that two such different events
cannot be simultaneous if they interfere.

2. Formulas (2.4) extend to prevent two simultaneous oc-
currences of a given communication event in the same
owner component, i.e. apply ∀e ∈ Σc,∀i,∀{oi, oi′} ⊆
δi(e), oi 6= oi′ and the same with ê (obviously they do
not apply to different owner components, by the very
definition of communication events).

3. Finally, the new following formulas express the com-
munication process itself, i.e. the synchronization of
the occurrences of any communication event e in all its
owners components (S(e) being the set of indexes of
the owners components of e) and extend also formulas
(2.6) to observable communication events:

∨

oi∈δi(e)
etoi ↔ et and

∨

oi∈δi(e)
êtoi ↔ êt ∀e ∈ Σcu ∀i ∈ S(e)

∨

oi∈δi(e)
etoi ↔ et and

∨

oi∈δi(e)
êtoi ↔ et ∀e ∈ Σco ∀i ∈ S(e)

The formula ΦTn is unchanged except that, in the verification
that the found cycle (third line) is not trivial, any observable
event can be used, so the final disjunct of events et is ex-
tended to all e ∈ Σo ∪ Σco. We have thus the result that a
DSLTS T is not diagnosable if and only if ∃n ≥ 1,ΦTn is
satisfiable.

3.3 Implementation and Experimental Testing
We have implemented the above extension in Java. We used
the well designed API of the SAT solver Sat4j [6]. If more
efficient solvers could have been chosen, it fitted well our
clause generator written in Java and only a limited speed
up can be awaited from C++ solvers (a speed up of 4, i.e.
reduction of 75% of the runtime is often observed).

We have tested our tool on small examples with sev-
eral communication events with multiple occurrences (three
communicating components) with global communication
(all components share the same event) or partial commu-
nication (only some components share the same event), as
in Figure 1, which was the running example in [7].

Figure 1: A DDES made up of 3 components C1, C2 and
C3 from left to right. ci,1≤i≤2 are unobservable communi-
cation events, oi,1≤i≤5 are observable events and fi,1≤i≤2
are faulty events.

The total number of propositional variables V arsNum
in the generated formula ΦTn after n steps is:
V arsNum = n × (2|A| + 3

∑Obs
i=1 ObOcci +∑Faults

i=1 FaultOcci + 2
∑Unobs
i=1 UnobOcci), where:

|A| is the total number of state variables,
Obs the total number of observable events,
ObOcci the total number of occurrences of the observable
event ei,
Faults the total number of faults,
FaultOcci the total number of occurrences of the faulty
event ei,
Unobs the total number of unobservable correct events,
UnobOcci the total number of occurrences of the unob-
servable correct event ei.
The results are in Table 1, where the columns show the
system and the fault considered (3 cases), the steps number
n, the numbers of variables and clauses and the runtime.

System Fault |Steps| SAT? |Variables| |Clauses| runtime(ms)
C2 f2 4 No 106 628 27
C2 f2 5 Yes 131 783 15
C2, C3 f2 5 No 225 1157 28
C2, C3 f2 32 No 1386 7340 641
C2, C3 f2 64 No 2762 14668 1422
C2, C3 f2 128 No 5514 29324 5061
C2, C3 f2 256 No 11018 58636 18970
C2, C3 f2 512 No 22026 117260 130164
C2, C3 f2 1024 No 44042 234508 548644
C1, C2, C3 f1 8 No 576 3546 91
C1, C2, C3 f1 9 Yes 646 3987 110

Table 1: Results on the example of Figure 1.

Which means that f2 is not diagnosable in C2 alone
while it becomes diagnosable when synchronizing C2 and
C3. For this last result, we have increased the steps number
until reaching 22|A|, which is the theoretical upper bound of
the twin plant states represented in the logical formula. As
in general it is not always possible to reach this bound in
practice, we propose in section 4 using incremental SAT to
improve the management of increasing steps number. While

Proceedings of the 26th International Workshop on Principles of Diagnosis

54

f1 is not diagnosable even after synchronizing all three
components together. Numbers of variables and clauses are
small in comparison to what SAT solvers can handle (up to
hundred thousands propositional variables and millions of
clauses). These tests are mentioned as a proof of concept.
However, to test the tool on larger systems and because of
the absence of benchmark in the literature, we have created
in subsection 4.2. an example that can be scaled up.

4 Adaptation to Incremental SAT
Diagnosability Checking

We adapt satisfiability algorithms for checking diagnosabil-
ity of both centralized (subsection 2.2) and distributed (sub-
section 3.2) DES in order to incrementally process the max-
imum length of paths with cycles searched for witnessing
non diagnosability and we provide experimental results.

4.1 Diagnosability as Incremental Satisfiability
Two cases have to be distinguished while testing diagnos-
ability using SAT solvers to verify the satisfiability of the
logical formula ΦTn for a given n [2]. The first case is when
we find a model for ΦTn , which definitely indicates the non
diagnosability of the studied fault. The second case is when
we do not find such a model: this result indicates just that the
studied fault has not been found non diagnosable according
to the value of n. In other words, after testing all the possible
first n steps, we did not find a pair of executions of length
at most n containing cycles such that one of them contains
the fault and not the other and such that the two executions
are equivalent in terms of observation. However, as the the-
oretical upper bound n = 22|A| which would guarantee that
the fault is actually diagnosable is often in practice unreach-
able, such a pair may exist for a greater value of n. Testing
it means increasing n and rebuilding the logical formula ΦTn
then recalling the SAT solver.

Instead, we propose to adapt the formula ΦTn in order to
be tested in an incremental SAT mode by multiple calls to
a Conflict Driven Clause Learning (CDCL) solver. Using
CDCL solvers in a specialized, incremental, mode is rela-
tively new but already widely used [8] in many applications.
In this operation mode, the solver can be called many times
with different formulas. However, solvers are designed to
work with similar formulas, where clauses are removed and
added from calls to calls. Learnt clauses can be kept as soon
as the solver can ensure that clauses used to derive them are
not removed. This is generally done by adding specialized
variables, called assumptions, to each clause that can be re-
moved. By assuming the variable to be False, the clause
is activated and by assuming the variable to be True, the
clause is trivially satisfied and no longer used by the solver.
What is interesting for our purpose is that the CDCL solver
can save clauses learnt during the previous calls and test
multiple assumptions in each new call. This means that af-
ter n steps we hope that the solver will have learnt some
constraints about the behavior of the system. Although we
are interested in testing the diagnosability property on a de-
fined system, this property is independent from the system
behavior which can be learnt by the solver from the previous
calls.

In order to extend the clauses representation given in sub-
sections 2.2 and 3.2 to this mode of operation, we propose
to divide the formula ΦTn in two parts. The first part Tn de-
scribes the first n steps, synchronized on the observations,

of the behavior of both trajectories (represented by the con-
junction of formulas T (t, t+1), 0 ≤ t ≤ n−1, representing
the (t + 1)th step). The second part Dn describes the diag-
nosability property at step n, i.e., the occurrence of a fault
in the n previous steps of the faulty trajectory (given by the
formula Fn) and the detection of a cycle at step n (given by
the formula Cn). So we obtain, for n ≥ 1:

ΦTn = Tn ∧ Dn

Tn = I0 ∧
n−1∧

t=0

T (t, t+ 1) Dn = Fn ∧ Cn

Fn =
n−1∨

t=0

∨

e∈Σf

∨

o∈δ(e)
eto

Cn =
n−1∨

m=0

(
∧

a∈A
((an ↔ am) ∧ (ân ↔ âm)) ∧

n−1∨

t=m

∨

e∈Σo

et)

Add now at each step j a control variable hj allowing to
disable (when its truth value is False) or activate (when its
truth value is True) the formulas Fj and Cj and keep at step
n all these controlled formulas for 1 ≤ j ≤ n. We obtain
the following ΨT

n formula, for n ≥ 1:

ΨT
n = Tn ∧

n∧

j=1

Dj ′ Dj ′ = Fj ′ ∧ Cj ′ 1 ≤ j ≤ n

Fj ′ = ¬hj ∨ Fj Cj ′ = ¬hj ∨ Cj 1 ≤ j ≤ n
We have thus the equivalence, for all n ≥ 1:

ΦTn ≡ ΨT
n ∧ hn ∧

n−1∧

j=1

¬hj

This allows one, for all n ≥ 1, to replace the SAT call on
ΦTn by a SAT call on ΨT

n under the control variables set-
ting given by Hn = {¬h1, . . . ,¬hn−1, hn} (indicated in a
second argument of the call):

SAT (ΦTn) = SAT (ΨT
n , Hn)

The idea is now to consider the control variables hj as as-
sumptions and use incremental SAT calls IncSATj under
varying assumptions, for 1 ≤ j ≤ n. For this, we use
the following recurrence relationships for both formulas ΨT

j
and assumptions Hj :

ΨT
0 = I0 ΨT

j+1 = ΨT
j ∧ T (j, j + 1) ∧ Dj+1

′ j ≥ 0

H1 = {h1} Hj+1 = Hj [{¬hj , hj+1}] j ≥ 1

where the notation Hj [{assi}] means updating in Hj

assumptions hi by their new settings assi, i.e., in the
formula above, replacing the truth value of hj , which was
True, by False, and adding the new assumption hj+1

with truth value True. From these relationships, the unique
call to SAT under given assumptions SAT (ΨT

n , Hn) can
be replaced, starting with the set of clauses I0, by multiple
calls, 0 ≤ j ≤ n − 1, to an incremental SAT under varying
assumptions:

IncSATj+1(NewClausesj+1, NewAssumptionsj+1)

= IncSATj+1(T (j, j + 1) ∧ Dj+1
′, {¬hj , hj+1}) (4.1)

If IncSATj answers SAT, the search is stopped as non diag-
nosability is proved, if it answers UNSAT, then IncSATj+1

is called.

Proceedings of the 26th International Workshop on Principles of Diagnosis

55

Notice that we used a unique assumption hj for control-
ling both Fj and Cj as non diagnosability checking requires
the presence of both a fault occurrence in the faulty trajec-
tory and of a cycle. But the same framework allows the
independent control of formulas by separate assumptions.
For sake of simplicity, we also assumed we called IncSAT
at each step, but this is not mandatory and indexes j for the
successive calls can be decoupled from indexes t for steps.
We should also say that, even if IncSAT allows us to re-
activate an already disabled clause, we are sure in our case
to never use this function (when hk has been set to False,
it always remains so) and we can thus force the solver to
do a hard simplification process that removes the forgotten
clauses permanently. As a result of our adaptation we will
be able to scale up the size of the tested system and the dis-
tance and length of a cycle witnessing non diagnosability.

4.2 Experimental Results
We show in this subsection a comparison between our
adapted version of subsection 4.1, that uses incremental
SAT, and the previous versions, for centralized model (sub-
section 2.2 following [2]) and for distributed model (subsec-
tion 3.2). We have created the example in Figure 2 which
contains 2k + 1 components: one faulty component and
two sets of k neighboring components. The faulty compo-
nent has two separated paths, each one containing k differ-
ent successive unobservable events ci and ending with the
same observable cycle of length 1, but only one of them
contains the fault. The centralized model will be limited to
this faulty component alone and thus in this case the events
ci, 1 ≤ i ≤ 2k, are just unobservable events as is u. In
the distributed model, these events ci are communication
events and the faulty component is considered with the other
two sets of components, where each component in both sets
shares one event ci with the faulty component to ensure a
number 2k of communications before arriving to the cycles
that will witness the non diagnosability of the fault. Each
set of components will be synchronized with only one path,
either the faulty path or the correct one. This allows us to
study the effect of the cycle distance in both models.

Figure 2: One faulty component that communicates with
two sets of k components. Each set communicates with one
path (resp. faulty and correct) in the faulty component.

The results are in Table 2 for the centralized model (for k
= 18, 28, 38, 48, 58 and 98) and in Table 3 for the distributed

model (for k = 3, 13, 23, 33, 43 and 63). The length of a pair
of executions with cycles witnessing the non diagnosability
of f in each example is k + 2 and we consider the satisfia-
bility of the formula ΦTk+2, so the number of steps required
for SAT to provide the answer Yes is: |Steps] = k + 2. In
order to obtain a fair comparison between IncSAT , which
manages internally by handling assumptions the successive
satisfiability checks of increasing formulas for j = 1, . . . ,
k+2, and SAT, for which k+2 successive calls are made to
the solver with respective formulas ΦTn for n = 1, . . . , k+2,
the sum of the k + 2 runtimes of the SAT solver calls are
considered in this case (last column in the tables).

|Steps| |Clauses| Inc. SAT(s) SAT(s)
20 42,614 1.5 1.3
30 131,714 10.3 13.1
40 303,736 49.3 77.8
50 576,466 106 223
60 970,156 320 699
100 4,334,018 9410 13040

Table 2: Results on the faulty component of Figure 2.

|Steps| |Comps| |Clauses| Inc. SAT(s) SAT(s)
5 7 1,962 0.04 0.06
15 27 30,313 0.8 0.5
25 47 113,906 6.5 4.8
35 67 277,873 33.8 33.7
45 87 542,033 111 132
65 127 1,490,590 967 1090

Table 3: Results on the whole system of Figure 2.

Although these examples remain relatively simple and do
not reflect any potential constraint that could be resumed by
some learnt clauses (e.g. no interfering events), we can al-
ready notice the difference in runtime in favor of our incre-
mental version in the centralized case and for the two largest
values of k in the distributed case. This difference could be
explained by the fact that generating all variables from the
beginning for all time steps and for all events imply many
meaningless clauses that would add a load on the solver in
the version in [2], this load being avoided in our incremen-
tal version because of the clauses learnt by the CDCL SAT
solver. From another side, we should say that generating in
both versions all variables from the beginning has two main
advantages: firstly, it allows the system description without
unfolding it (even if this description is verbose); secondly,
it allows the ordering of these variables by their time step
in order to generate the constraints for only one time step
and then get next steps constraints by just shifting the num-
bers (as we are representing the clauses in DIMACS for-
mat). One last point could help to a more efficient descrip-
tion of the system: in the succinct systems we represent all
the occurrences of an event together, but in its SAT encod-
ing we “unfold” this succinctness by generating for each
occurrence n variables (for n time steps), even though log-
ically only one of them will be assigned to True. We could
thus mark this relation among these n copies by introducing
a global cardinality constraint to express that these copies
belong to only one occurrence of an event.

Proceedings of the 26th International Workshop on Principles of Diagnosis

56

5 Selection of Related Works
The first introduction to the notion of diagnosability was by
[1]. The authors studied diagnosability of FSM, as defined
in definition 1. Their formal definition of diagnosability is
the one we mentioned in definition 3. They introduced an
approach to test this property by constructing a deterministic
diagnoser. However, in the general case, this approach is
exponential in the number of states of the system, which
makes it impractical.

In order to overcome this limitation [3] introduced the
twin plant approach, which is a special structure built by
synchronizing on their observable events two identical in-
stances of a nondeterministic fault diagnoser, and then
searched for a path in this structure with an observed cy-
cle made up of ambiguous states, i.e. states that are pairs
of original states, one reached by going through a fault and
the other not. Thus faults diagnosability is equivalent to the
absence of such a path, called a critical path. This approach
turns the diagnosability problem in a search for a path with
a cycle in a finite automaton, and this reduces its complexity
to be polynomial of degree 4 in the number of states (and ex-
ponential in the number of faults, but processing each fault
separately makes its linear in the number of faults).

Let us mention here that the two previous works were in-
terested in centralized systems with simple faults modeled
as distinguished events. The first studies about fault pat-
terns were introduced in [9] and [10] which generalize the
simple fault event in a centralized DES to handle a sequence
of events considered together as a fault, or handle multiple
occurrences of the same fault or of different faults. More
generally, a fault pattern is given as a suffix-closed rational
events language (so by a complete deterministic automaton
with a stable subset of final states).

The first work that addressed diagnosability analysis in
DDES was [7]. A DDES is modeled as a set of communicat-
ing FSM. Each FSM has its own events set, communication
events being the only ones shared by at least two different
FSM. In [7] was introduced an incremental diagnosability
test which avoids to build the twin plant for the whole dis-
tributed system if not needed. Thus one starts by building
a local twin plant for the faulty component to test the exis-
tence of a local critical path. If such a path exists one builds
the local twin checkers of the neighboring components. Lo-
cal twin checker is a structure similar to local twin plant,
i.e., where each path in it represents a pair of behaviors with
the same observations, except that there is no fault infor-
mation in it since it is constructed from non-faulty compo-
nent. After constructing local twin checkers, one tries to
solve the ambiguity resulting from the existence of a critical
path in the local twin plant. This is done by synchronizing
on their communication events this local twin plant with the
local twin checker of one neighboring component. In other
words, one tries to distinguish the faulty path from the cor-
rect one by exploiting the observable events in the neigh-
boring components, because theses events occurrences that
are consistent with the occurrences of the communication
events could solve the ambiguity. The process is repeated
until the diagnosability is answered, so only in the worst
case has the whole system to be visited. Another impor-
tant contribution in this work was to delete the unambigu-
ous parts after each synchronization on the communication
events, reducing thus the amount of information transferred
to next check (if needed). The approach assumed simple

faults.
The work by [11] has optimized the construction of lo-

cal twin plants, by exploiting the fact that one distinguishes
two behaviors (faulty and correct) and one synchronizes at
two levels (observations first and communications later). It
improved the construction of the twin plants proposed by
[7] by exploiting the different identifiers given to the com-
munication events at the observation synchronization level
(depending on which instance, left or right, they belong to)
to assign them directly to the two behaviors studied (left
copy assigned to the faulty behavior, right copy to the cor-
rect one). This helped in deleting the redundant informa-
tion, then in abstracting the amount of information to be
transferred later to next steps if the diagnosability was not
answered. The generalization to fault patterns in DDES was
introduced by [12].

After the reduction of diagnosability problem to a path
finding problem by [3], it became transferable to a satis-
fiability problem like it is the case for planning problems
[13]. This was done by [2] which formulated the diagnos-
ability problem (in its twin plant version) into a SAT prob-
lem, assuming a centralized DES with simple fault events.
The authors represented the studied transition system by a
succinct representation (cf. definition 2). This allows both
a compact representation of the system states and a max-
imum amount of non interfering events to be fired simul-
taneously. Thus, they represented the system states by the
valuation of a set of Boolean state variables (dlog(q)e state
variables for q states) and the interference relation between
two events according to the consistency among their effects
and preconditions, one versus the other. They distinguished
between an occurrence of an event in the faulty sequence or
in the correct sequence by introducing two versions of it and
constructed the logical formula expressing states transitions
for each possible step in the system. Each step may con-
tain simultaneous events that belong to faulty and correct
sequences but must synchronize the occurrence of observ-
able events whenever they take place. For a given bound n
of paths length, they made the conjunct of these formulas
for n steps and added the logical formula that represents the
occurrence of the fault in the faulty sequence and the oc-
currence of a cycle in both sequences. The satisfiability of
the obtained formula is equivalent to finding a critical path,
i.e. to the non diagnosability of the fault (see subsection 2.2
for a summary of this approach). Although this approach
allows one to test diagnosability in large systems, it has a
limitation which is that we cannot dynamically increase n
to ensure reaching more states while scaling up the size of
the system where the cycles that witness non diagnosabil-
ity can be very long. However the authors notice that we
are not always forced to test all reachable states in many
cases where an approximation for the reachable states can
be applied, but without explaining explicitly how such an
approximation can be found.

6 Conclusion and Future Works
By extending the state of the art works for centralized DES,
we have expressed diagnosability analysis of DDES as a
satisfiability problem by building a propositional formula
whose satisfiability, witnessing non diagnosability, can be
checked by SAT solvers. We allow both observable and
non observable communication events in our model. Our
expression of these communication events, which avoids

Proceedings of the 26th International Workshop on Principles of Diagnosis

57

merging all their owner components, helps in reducing the
number of clauses used to represent them and this reduction
is proportional to the number of their occurrences. We have
also proposed an adaptation of the logical formula in order
to use incremental SAT calls helping managing the scaling
up of the distance and the length of the intended cycles
witnessing non diagnosability and thus the size of the tested
system. Thus we exploited the clauses learnt about the
system behavior in the previous calls. This approach is
more practical and more efficient for complex systems than
existing ones, as it avoids starting from scratch at each call.

We are now considering the extension of this work to
fault patterns diagnosability [12]. We will use the same ap-
proach to express predictability analysis [14] as a satisfia-
bility problem, for DES and DDES [15] and both for simple
fault events and fault patterns [16] . Although our represen-
tation can be easily extended to deal with local observations
(i.e., observable events in one component are observed only
by this component), we know that in general diagnosability
checking becomes then undecidable, e.g. when communica-
tion events are unobservable (obviously it remains decidable
when these events are observable in all their owners) [5]. A
future work will be to study decidable cases of diagnosabil-
ity checking in DDES with local observations, e.g. assum-
ing some well chosen communication events being observ-
able. Another natural question is to study if the methods
used in [7] and refined in [11] to check diagnosability in
DDES in an incremental way in terms of the system com-
ponents could be transposed as guiding strategies for some
component incremental SAT based approach for testing di-
agnosability in DDES. Transposing in SAT these methods,
based on building a local twin plant and local twin check-
ers for gaining efficiency with regards to a global checking,
seems difficult. Basically, at any step k, corresponding to
considering a subsystem made up of k components, these
methods build all critical paths witnessing non diagnosabil-
ity at the level of this subsystem and the incremental step,
when adding a (k + 1)th neighboring component, consists
in checking the consistency of these pairs with the observa-
tions in the new component: only those pairs which can be
consistently extended are kept, if any. In addition, in [11],
only useful and abstracted information is kept from one step
to the next one. With SAT, only one critical pair witness-
ing non diagnosability of the subsystem (i.e., a model for
the formula) will be built. If it is not consistent, and thus
disappears, when adding the (k+ 1)th component, diagnos-
ability is not proven for all that: other critical pairs in the
subsystem, not completely computed at step k, may exist
and be extendible to step (k + 1). So, they have to be com-
puted now, which limits the incremental characteristic of the
approach. In the same way, abstracting some information
is difficult to achieve with SAT. So, there is no evidence
a priori that efficiency gain could be obtained by trying to
develop a component incremental SAT based approach for
testing DDES diagnosability.

References

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamo-
hideen, and D. Teneketzis. Diagnosability of discrete-
event systems. IEEE Transactions on Automatic Con-
trol, 40(9):1555–1575, 1995.

[2] J. Rintanen and A. Grastien. Diagnosability testing
with satisfiability algorithms. In Proceedings of the
20th International Joint Conference on Artificial Intel-
ligence (IJCAI’07), pages 532–537, 2007.

[3] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A poly-
nomial algorithm for testing diagnosability of discrete-
event systems. IEEE Transactions on Automatic Con-
trol, 46(8):1318–1321, 2001.

[4] J. Rintanen. Diagnosers and diagnosability of succinct
transition systems. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI’07), pages 538–544, 2007.

[5] L. Ye and P. Dague. Undecidable case and decidable
case of joint diagnosability in distributed discrete event
systems. International Journal On Advances in Sys-
tems and Measurements, 6(3 and 4):287–299, 2013.

[6] D. Le Berre and A. Parrain. The sat4j library, release
2.2. Journal on Satisfiability, Boolean Modeling and
Computation, 7:59–64, 2010.

[7] Y. Pencolé. Diagnosability analysis of distributed dis-
crete event systems. In Proceedings of the 16th Euro-
pean Conference on Artificial Intelligence (ECAI’04),
2004.

[8] A. Nadel and V. Ryvchin. Efficient SAT solving under
assumptions. In Proceedings of the 15th International
Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT’12), 2012.

[9] T. Jéron, H. Marchand, S. Pinchinat, and M.-O.
Cordier. Supervision patterns in discrete event sys-
tems diagnosis. In Proceedings of the 8th International
Workshop on Discrete Event Systems, 2006.

[10] S. Genc and S. Lafortune. Diagnosis of patterns in
partially-observed discrete-event systems. In Proceed-
ings of the 45th IEEE Conference on Decision and
Control, pages 422–427. IEEE, 2006.

[11] L. Ye and P. Dague. An optimized algorithm for diag-
nosability of component-based systems. In Proceed-
ings of the 10th International Workshop on Discrete
Event Systems (WODES’10), 2010.

[12] L. Ye, Y. Yan, and P. Dague. Diagnosability for pat-
terns in distributed discrete event systems. In Proceed-
ings of the 21st International Workshop on Principles
of Diagnosis (DX’10), 2010.

[13] H. Kautz and B. Selman. Planning as satisfiability. In
Proceedings of the 10th European Conference on Ar-
tificial Intelligence (ECAI’92), pages 359–363, 1992.

[14] S. Genc and S. Lafortune. Predictability of Event
Occurrences in Partially-observed Discrete-event Sys-
tems. Automatica, 45(2):301–311, 2009.

[15] L. Ye, P. Dague, and F. Nouioua. Predictability Analy-
sis of Distributed Discrete Event Systems. In Proceed-
ings of the 52nd IEEE Conference on Decision and
Control (CDC-13), pages 5009–5015. IEEE., 2013.

[16] T. Jéron, H. Marchand, S. Genc, and S. Lafortune.
Predictability of Sequence Patterns in Discrete Event
Systems. In Proceedings of the 17th World Congress,
pages 537–453. IFAC., 2008.

Proceedings of the 26th International Workshop on Principles of Diagnosis

58

