
ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems

September 28, 2015 • Ottawa (Canada)

Joint proceedings of

ACES-MB 2015 – Model-based Architecting
of Cyber-physical and Embedded Systems

and

WUCOR 2015 – UML Consistency Rules

Iulia Dragomir, Susanne Graf, Gabor Karsai, Florian Noyrit, Iulian Ober,
Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar (Eds.)

Published on November 2015

Editors’ addresses:

Iulia Dragomir
Aalto University, Department of Computer Science, PO Box 15400, FI-00076 Aalto, Finland

Susanne Graf
VERIMAG, 2 Avenue de Vignate, F-38610 Gieres, France

Gabor Karsai
Institute for Software Integrated Systems, Vanderbilt University, Box 351829, Nashville, TN 37235-1829,
USA

Florian Noyrit
CEA LIST/LISE, Point Courrier 174, 91191 Gif-sur-Yvette, France

Iulian Ober
IRIT-University of Toulouse, 118 Route de Narbonne, 31062 Toulouse, France

Damiano Torre
Carleton University, Software Quality Engineering Laboratory, 1125 Colonel By Drive, Ottawa, Ontario,
K1S 5B6, Canada, and
University of Castilla-La Mancha, ALARCOS Research Group, Calle Altagracia, 50, 13071 Ciudad Real,
Spain

Yvan Labiche
Carleton University, Software Quality Engineering Laboratory, 1125 Colonel By Drive, Ottawa, Ontario,
K1S 5B6, Canada

Marcela Genero
University of Castilla-La Mancha, ALARCOS Research Group, Calle Altagracia, 50, 13071 Ciudad Real,
Spain

Maged Elaasar
Carleton University, Software Quality Engineering Laboratory, 1125 Colonel By Drive, Ottawa, Ontario,
K1S 5B6, Canada

Copyright © 2015 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

Table of Contents

Introduction to ACES-MB . 1
Iulia Dragomir, Susanne Graf, Gabor Karsai, Florian Noyrit, Iulian Ober

Analytic Dependency Loops in Architectural Models of Cyber-Physical Systems 3
Ivan Ruchkin, Bradley Schmerl, David Garlan

Behavioral Types for Space-aware Systems . 11
Jan Olaf Blech, Peter Herrmann

AutoFOCUS 3: Tooling Concepts for Seamless, Model-based Development of
Embedded Systems .

19

Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, Bernhard
Schätz

Introduction to WUCOR . 27
Damiano Torre, Yvan Labiche, Marcela Genero, Maged Elaasar

Consistency Rules for UML-based Domain-specific Language Models: A Litera-
ture Review .

29

Bernhard Hoisl, Stefan Sobernig

Proposal for Improving the UML Abstract Syntax . 37
Dan Chiorean, Vladiela Petraşcu, Ioana Chiorean

iv

Introduction to ACESMB 2015
– Model-based Architecting of Cyber-physical and Embedded Systems –

Iulia Dragomir∗, Susanne Graf†, Gabor Karsai‡, Florian Noyrit§, Iulian Ober¶
∗ Aalto University, Finland. iulia.dragomir@aalto.fi
† CNRS-VERIMAG, France. susanne.graf@imag.fr

‡ ISIS, Vanderbilt University, USA. gabor.karsai@vanderbilt.edu
§ CEA LIST, France. florian.noyrit@cea.fr

¶ IRIT-University of Toulouse, France. iulian.ober@irit.fr

Abstract—The 8th ACESMB workshop took place on September
28, 2015 at the 2015 ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MoDELS).
The workshop brought together researchers and practitioners
who work in the area of cyber-physical systems and apply model-
based architecting techniques and tools. The workshop presented
novel approaches, both theoretical and practical, as well as early
results of their applications.

INTRODUCTION

The design of embedded and cyber-physical systems with
real-time and other critical constraints raises distinctive prob-
lems throughout the development process, in particular from
system specifications to obtaining correct implementations.
On the high-level side, system design is much more an art
than a systematic activity, while on the low-level side design
teams have to make specific architectural choices and handle
non-functional constraints like real-time deadlines, energy
consumption, etc., as early as possible in order to streamline
the system development process. Model-based engineering
techniques have now been established as the norm in in-
dustry since they are a major factor for further gains in
productivity, quality and time-to-market such complex sys-
tems. They provide means to capture dedicated architectural
and non-functional information in precise (and even formal)
domain-specific models. They support compositional design of
systems, in which functional aspects (platform independent)
are separated from architectural and non-functional aspects
(platform specific) until the integration step, etc. Many of the
mentioned topics are emerging research areas, where efforts
and results are still expected.

The 8th workshop on Model-based architecting of cyber-
physical and embedded systems1 brought together researchers
and practitioners interested in model-based engineering to
share and explore innovative ideas and experiences that con-
tribute to better architecting embedded and cyber-physical
systems, with a focus on approaches yielding efficient and
provably correct designs.

1http://www.irit.fr/ACES-MB

WORKSHOP CONTRIBUTIONS

The interest of the research and practice community for
the ACESMB workshop is attested by the steady number of
attendees – around 20 people – at each edition. This year’s
program focused on novel approaches for the correct design of
cyber-physical systems, both at the theoretical and the practical
level. The selected talks ranged through experiences and chal-
lenges in industrial model-based engineering, incorporating
formal methods in model-based systems engineering, and tools
supporting design and analysis techniques. These contributions
consist of an invited talk and 3 paper presentations detailed
hereafter.

Invited talk. The keynote was given by Dr. Tao Yue from
the Simula Research Laboratory, Norway, who discussed her
experiences and insights gained from investigating the appli-
cation of model-based engineering in different industrial do-
mains (i.e., Communication, Oil&Gas, Maritime, Automated
Material Handling and Geo Sports), for addressing different
industrial challenges (i.e., Requirements, Architecture and
Design, Testing, Product Line), and using diverse model-based
engineering technologies.

Paper talks. 3 full papers had been accepted for presentation
at the workshop, out of 4 full papers and 4 short papers,
each being peer-reviewed by three independent reviewers. A
synopsis of each presentation is given below.

I. Ruchkin et al. discussed dependency loops in the analysis
of cyber-physical system designs. The authors defined the
concept of dependency loops in the analysis process, as well
as a spectrum of various relevant properties of the workflow,
ranging from strong convergence to strong divergence. The
authors also made proposals for resolving the analysis loops:
iteration, constraint solving, and genetic algorithms.

J.O. Blech et al. introduced the concept of behavioral
types for space-aware systems as a means to facilitate the
development, commissioning, maintenance, and refactoring
of cyber-physical systems with spatial characteristics. The
approach is intended to be used in industrial automation, for
which a formalization and analysis approach were presented.

V. Aravantinos et al. presented AUTOFOCUS3: a toolsuite
for the design and analysis of cyber-physical systems. The

1

toolchain is comprehensive, as it covers a broad area of
the engineering workflow (from requirements to design to
synthesis to analysis, including safety analysis) and is well
supported by tools. The authors paid particular attention to
the details of the tool integration techniques used.

ACKNOWLEDGMENTS

We would like to thank the authors for submitting their
papers at ACESMB and the participants for their lively dis-
cussions, thus making the workshop successful. We especially
thank our keynote speaker, Dr. Tao Yue, for her insightful
presentation. We are grateful to the Program Committee and
Steering Committee members for their support during the
workshop organization.

Program Committee
• De-Jiu Chen, KTH Royal Institute of Technology, Swe-

den
• Arnaud Cuccuru, CEA LIST, France
• Patricia Derler, National Instruments, USA
• Iulia Dragomir, Aalto University, Finland
• Mamoun Filali, CNRS - IRIT, France
• Sébastien Gérard, CEA LIST, France
• Susanne Graf, CNRS - VERIMAG, France
• Gabor Karsai, ISIS, Vanderbilt University, USA
• Alexander Knapp, University of Augsburg, Germany
• Florian Noyrit, CEA LIST, France
• Pierluigi Nuzzo, UC Berkeley, USA
• Ileana Ober, IRIT - University of Toulouse, France
• Iulian Ober, IRIT - University of Toulouse, France
• Necmiye Ozay, University of Michigan, Usa
• Andreas Prinz, University of Agder, Norway
• Alejandra Ruiz Lopez, Tecnalia, Spain
• Bernhard Rumpe, RWTH Aachen, Germany
• Bran Selic, Malina Software, Canada
• Tullio Vardanega, University of Padua, Italy
• Eugenio Villar, University of Cantabria, Spain
• Thomas Weigert, UniqueSoft, USA
• Tim Weilkiens, OOSE Innovative Informatik GmbH, Ger-

many
• Virginie Wiels, LAAS, Toulouse, France
• Qi Zhu, UC Riverside, USA

Steering Committee
• Stefan Van Baelen, iMindsvzw, Belgium
• Mamoun Filali, CNRS-IRIT, France
• Sébastien Gérard, CEA LIST, France
• Ileana Ober, IRIT - University of Toulouse, France
• Bran Selic, Malina Software, Canada
• Thomas Weigert, UniqueSoft, USA

2

Analytic Dependency Loops in
Architectural Models of Cyber-Physical Systems

Ivan Ruchkin, Bradley Schmerl, David Garlan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{iruchkin, schmerl, garlan}@cs.cmu.edu

Abstract—Rigorous engineering of safety-critical Cyber-
Physical Systems (CPS) requires integration of heterogeneous
modeling methods from different disciplines. It is often necessary
to view this integration from the perspective of analyses –
algorithms that read and change models. Although such analytic
integration supports formal contract-based verification of model
evolution, it suffers from the limitation of analytic dependency
loops. Dependency loops between analyses cannot be resolved
based on existing contract-based verification. This paper makes
a step towards using rich architectural descriptions to resolve
circular analytic dependencies. We characterize the dependency
loop problem and discuss three algorithmic approaches to resolv-
ing such loops: analysis iteration, constraint solving, and genetic
search. These approaches take advantage of information in multi-
view architectures to resolve analytic dependency loops.

Keywords—Analytical models, Component architectures, Em-
bedded software, Systems engineering and theory

I. INTRODUCTION

Cyber-physical systems (CPS), such as self-driving cars
and autonomous drones, often operate in critical contexts
and therefore require rigorous up-front engineering methods.
The model-driven engineering (MDE) community has been
developing formal approaches to designing and verifying sys-
tems to provide guarantees on performance, safety, and other
critical qualities [1] [2]. For example, recent research on
collision avoidance proposes various analysis and verification
techniques to guarantee an absence of collisions [3] [4] [5].

One important aspect of CPS design is using heterogeneous
types of analysis to evaluate and evolve designs. For example,
reliability analysis can evolve a design so that its elements have
sufficient redundancy [6]; scheduling analysis can allocate
computational elements to processors [7]. In reality, there
are many analyses that are applied to CPS designs and one
particularly challenging aspect is how to integrate, or order
and properly apply, these analyses. Such analytic integration
can be done by verifying logical conditions in order to control
changes made to models [8]. In particular, prior work showed
that verification based on analysis contracts can prevent errors
caused by stale or missing information by determining which
analyses must be redone, and in which order. The analytic
perspective is convenient when model evolution patterns are
simpler than patterns for model structure and behavior.

One of the problems that arises during analytic integration
are analysis dependency loops – circular dependencies among
several analyses that make it impossible to order these analyses

in a sound way. Such loops may happen when analyses from
different domains are developed independently but operate
on the same design aspects, such as sensor infrastructure.
For example, reliability analysis may change the number of
sensors based on failure probabilities, and trust analysis may
adjust the number of sensors to mitigate against malicious
attacks on sensors. How can we conduct these analyses and be
sure that we have sufficient sensors? Such dependency loops
cannot be overcome with previous work using analysis contract
specifications [9] and render the methodology inapplicable.

One way to resolve analysis dependency loops is to bring in
a more detailed model of the system and analyses, making the
dependency description better understood. In previous work
we have advocated for the use of component-based (i.e.,
architectural) models to separate engineering into independent
components and to assemble the components together [4] [10].
In this paper we take the first step to combining architectural
and analytic approaches to CPS design. We take advantage
of rich architectural models – multi-view descriptions and
component types – to provide several approaches to resolving
analytic dependency loops. Specifically, this paper makes the
following contributions:

• A characterization of the problem of analytic dependency
loops.

• Three algorithmic approaches to resolve dependency
loops automatically, and a qualitative analysis of their
applicability, strengths, and weaknesses.

Specifically, we examine analysis iteration, constraint solv-
ing, and genetic search as potential approaches to resolve
dependencies, showing the cases in which each approach may
best apply. Iteration and search rely on multi-view mappings to
produce valid architectural models, and constraint solving uses
a library of architectural types to set up constraint problems
on architectural models.

The paper is organized as follows. The next section reviews
the related work on CPS modeling and analysis. We then
describe and exemplify the problem of circular analysis depen-
dencies in Sec. III. In Sec. IV we propose three approaches
to resolve such dependencies and discuss the approaches’
qualities. We wrap up the paper by describing future research
directions in Sec. V.

II. RELATED WORK

Recently several research efforts in architectural modeling
have achieved substantial progress in MDE. Results include

3

composability and provability using component interfaces
and contracts [11] [12] [13], rich simulation using multiple
computational models [14], platform-based verification and
reuse [15] [16], graph-based mapping and consistency between
cyber and physical models [17], and semantic validation using
logical metamodeling [18] [19]. These methods do not enable
reasoning about how designs are modified throughout the
engineering lifecycle. At best, there are tools like DESERT
[20] for exploring the design space, but these do not support
consistent evolution of a set of models. As a result, the
integration of heterogeneous CPS models has to be maintained
manually, which is tedious and error-prone.

The problem of dependency loops has been considered
in many contexts. For example, dataflow systems that consist
of concurrent actors may deadlock due to dependency loops
among actors [21]. The authors develop a specification ap-
proach called causality interfaces for actors that helps resolve
the loops. However, whether the causality interface approach
can be applied to model-based analyses remains an open
research question. Another approach is using game-theoretic
models to synthesize proof of contract causality [9]. This
method relies on detailed game models that may be difficult
to obtain for heterogeneous domains where analyses often
originate.

Existing research on analyses [22] [8] and change-driven
transformations [23] applies formal reasoning at the level of
analysis algorithms, which is distinct from architectural mod-
els. One aspect of this reasoning is identifying dependencies
between analyses and ordering their execution to respect these
dependencies. So far this body of work has only considered
tree-shaped analysis graphs that do not have cycles [8]. The
developed tools, e.g., ACTIVE [24], would not be applicable
for circularly dependent analyses, which are more likely to be
discovered as more domains are incorporated into the frame-
work of analysis contracts. Our work identifies the potential
ways to deal with such circularities.

Several dependency management methods address inter-
actions in different parts of system design. For example,
Qamar has developed a cross-domain dependency management
approach that keeps track of dependent model variables in
their designs across disciplinary and instrumental boundaries
[25]. Another example is a multi-view architecture description
language with dependency links to ensure consistency among
views [26]. Such approaches focus on discovery and repre-
sentation of dependencies and do not deal with algorithmic
cycles directly. Our work therefore can be seen as a next step
in automation of change and dependency management.

III. ANALYTIC DEPENDENCY LOOPS

In this section we describe the problem of analytic de-
pendency loops in detail. First we present a car model to
ground the discussion and describe two example analyses
from the reliability and security domains. Then we formalize
several foundational concepts that help us characterize analytic
dependency loops.

A. System Example

To illustrate circular dependencies between analyses, let
us consider the internal digital system of a self-driving car.

Fig. 1. Architecture of the braking subsystem of a self-driving vehicle.

Inspired by recent advances in the automotive industry [27],
the car is designed to perform fully autonomous driving that
includes acceleration, lane control and change, platooning, and
braking to avoid collision. To inform its decisions, the car
collects information about the environment through its sensors:
sonar, lidar [28], speedometer, and wireless car-to-car (C2C)
communication. Controllers make actuation decisions using
algorithms executed in threads running on electronic control
units (ECUs), and send these decisions to physical actuators
such as steering, acceleration, and braking.

In this example, we focus on the braking subsystem,
because it performs the safety-critical function of avoiding
collision with various static and dynamic obstacles on the road.
In Fig. 1 we show an example architecture of the braking
subsystem. Sensors collect data about the position of the
car, its speed, and the locations of obstacles. The controllers
periodically make a decision about the timing and strength of
braking, sending their commands to several braking actuators
in the front and back of the car. Since braking control and
actuation are critical functions, there is a reserve controller
and redundant brakes for the case of nominal components
malfunctioning. Throughout this section we will build a formal
multi-view model of this architecture in order to precisely
express the conditions leading to dependency loops.

One of the major quality attributes of the braking subsys-
tem is safety, which itself depends on system security and reli-
ability. Security needs to be considered because it may violate
safety if a malicious attacker compromises sensors (S). For
instance, the braking system could be compromised internally
through the CAN network of the car [29] or externally [30]
by executing deception attacks on sensors [31]. Different types
and placements of sensors (Place) 1 have varying capacity
to be compromised by attacks, which determines their level
of trustworthiness (Trust)2 [32]. Sensors that output genuine
data, or have a mechanism to determine genuine data, are
considered trustworthy for modeling purposes. We extend this
notion to controllers as well. According to [31], there exists a
data decoding algorithm that is guaranteed to deliver genuine
data when at least half of the sensors are trustworthy. We

1In the running example we consider car sensors placed internally, such as
speedometer, and externally, such as car-to-car communication.

2For simplicity, we assume that Trust is binary – whether a sensor’s output
can be trusted.

4

model security concerns in the trustworthiness view Vtrust (see
the left half of Fig. 2) that contains components Ctrust that
may be compromised by a malicious attacker – sensors and
controllers – and a bus connector CNtrust with data read and
write operations.

Reliability of the system should be considered because
safety is affected when components randomly fail (e.g., due
to manufacturing defects). The reliability view Vfmea (see
the right half of Fig. 2) contains physical components Cfmea

that may fail – sensor devices, threads, electronic control
units (ECUs) – and physical network connectors and buses
CNfmea. View Vfmea focuses on such concerns as compo-
nent probabilities of failure Pfail, failure propagation among
individual components, and failure effects. For instance, if
the speedometer fails in Fig. 1, the controller will not have
an accurate measurement of speed. However, this can be
overcome by inferring the approximate speed from values
delivered by a position sensor such as GPS. If, on the other
hand, both lidar and C2C fail, there is no way for the controller
to obtain the locations of obstacles, which is likely to result
in a critical failure. Thus, different configurations of system
failure (also known as failure modes [6]) may have different
likelihoods of effects on the system.

The views Vtrust and Vfmea are related to each other
through view-to-view mappings of components: RV

V ⊂ C ∪
CN×C∪CN. Component c1 ∈ Cfmea is considered mapped
to c2 ∈ Ctrust when (c1, c2) ∈ RV

V , and analogously for con-
nectors. Some components such as ECUs in Vfmea do not have
a counterpart in Vtrust, so the views are not full abstractions
of each other as they are required to be in some approaches
(e.g., structural consistency [33]). However, in our example, it
is important that sensors and controllers are mapped to each
other in both views: every sensor and controller considered for
trust needs to be considered for failure, and vice versa. Hence
we will use the following condition of consistency:

∀c1 ∈ Strust ∪ Rtrust

∃c2 ∈ Sfmea ∪ Rfmea · (c1, c2) ∈ RV
V (1)

∧
∀c2 ∈ Sfmea ∪ Rfmea

∃c1 ∈ Strust ∪ Rtrust · (c1, c2) ∈ RV
V (2)

where

Strust ∪ Rtrust ⊂ Ctrust ∧ Sfmea ∪ Rfmea ⊂ Cfmea.

The views and relations constitute a full architectural
model M of the system: M ≡ (Vtrust,Vfmea,R

V
V). Outside the

formal boundaries of M we define component and connector
types T to reuse common aspects of components. Types specify
relevant properties such as Trust and Pfail, and formally are
domains of these functions. For example, a component type
could describe a lidar device from a particular supplier and
its characteristics. Formally, types are assigned to components
and connectors with a typing function T : C∪CN→ {T} that
maps an architectural element to a subset of types. This way
we can specify and reuse types separately from systems.

B. Analyses and Contracts

Architectural views undergo continual change as engineers
search for a design that satisfies the requirements. Often design
exploration and refinement relies upon algorithms and tools,
which read and change models. We call such tools analyses
[22] [8]. Many analyses originate in different domains and
make implicit interdependent assumptions about each other.
For example, real-time scheduling assumes that there is suffi-
cient electrical power for every processor at all times. At the
same time, battery design process requires that computations
do not consume more power than the battery can reasonably
provide. Such analytic assumptions need to be explicitly con-
sidered and reconciled. Let us consider two analyses from the
fields of sensor security and system reliability respectively:

• Trustworthiness Analysis. Atrust [34] modifies the system
to ensure that in case of a malicious attack on sensors the
system can still function within acceptable error margins.
This is achieved by considering a particular attacker
profile and determining the necessary number of sensors
of each kind. Atrust operates over Vtrust.

• Failure Modes and Effects Analysis (FMEA). Afmea [35]
determines failure modes and their probabilities. We con-
sider a version of FMEA that redesigns the system so that
it does not have critical failure modes (i.e., those where
the system is unsafe) with likelihood more than some
threshold αfail. Afmea operates over Vfmea.

In previous work [36], we considered Atrust and Afmea

to be integrated without dependency cycles. However, this is
not a realistic solution: as more analyses are considered, cyclic
dependencies are increasingly likely to occur, and cannot be
avoided without significantly changing the analyses. Therefore,
in this paper we consider Atrust and Afmea to be separate
but dependent on each other (as we elaborate later), thus
introducing a cyclic dependency that needs to be addressed.

Formally, analysis A is a function that has system designs
as its domain and codomain: A : M → M. Many analyses
including Atrust and Afmea operate only on their specific view
V, in which case we can restrict an analysis to this view: A :
V → V. In this case executing, or applying, an analysis A to
a system model M requires two steps:

1) Obtaining A(M) and making it the new system under
design.

2) Restoring consistency among views in M.

In our example each analysis modifies its own view, which
means in step 2 the changes need to be propagated to the other
view. This can be done using mapping RV

V following existing
approaches like change propagation [37] or model synchro-
nization [38]. Although re-establishing view consistency is an
important part of analysis the workflow, we do not concentrate
on it in this paper.

An important assumption of our work is the idempotence
property A(A(V)) = A(V). Both analyses that we consider
in this paper are idempotent because they directly address a
particular quality attribute, and do not modify the system if
the attribute is already satisfied. We rely on idempotence in
Sec. IV to resolve dependency cycles. Applicability of the
discussed resolution techniques to non-idempotent analyses
will be considered in the future work.

5

Fig. 2. A multi-view model M of the braking system: Vtrust, Vfmea, and RV
V .

Following [8], for each A we define analysis contracts as
tuples of inputs I , outputs O, assumptions A, and guarantees
G: CA ≡ (I,O,A,G). For simplicity we will write A.I
meaning CA.I . Therefore we have the following contracts3:

Ctrust.I = {S,Place, . . . }
Ctrust.O = {S,Trust}
Ctrust.A = . . .

Ctrust.G = “system is trustworthy” 4

Cfmea.I = {S,Pfail, αfail}
Cfmea.O = {S, . . . }
Cfmea.A = . . .

Cfmea.G = “system is reliable” 5

(3)

We limit our discussion in the rest of the paper to Atrust

and Afmea. However, in a typical engineering context there
may be dozens of analyses from heterogeneous domains that
have dependencies. For example, control analysis may deter-
mine whether a control algorithm satisfies control requirements
such as rise time and percent overshoot [39]. Schedulability
analyses such as binpacking and frequency scaling [22] de-
termine the capacity behind the control algorithm to compute
outputs in time, but at the same time depend upon the quantity
of control computation and communication.

3Some inputs, outputs, and assumptions are omitted because they do not
contribute to the discussion of dependency loops. Full contracts can be found
in [36].

4System trustworthiness may have several different operationalizations [32].
For example, we could assume that the system is trustworthy when at least
half of its sensors are trustworthy [31]. A particular operationalization of
trustworthiness is outside of this paper’s scope.

5Analogously, the interpretation of reliability may differ from system to
system. We reason about reliability as a whole without binding ourselves to
a particular definition.

According to Eqs. 3 both Atrust and Afmea modify the set
of system’s sensors S, meaning that these two analyses have a
circular dependency on each other. This makes it impossible
to find a valid sequence of their execution based on just their
contracts. Therefore we need to study the nature of analytic
dependency loops closer.

C. Dependency Loops

To characterize the dependency loops precisely, let us
introduce several formal definitions for analyses, dependencies,
and dependency loops between analyses. First, two analyses
are dependent if inputs of one have commonalities with outputs
of the other.

Definition 1: Analysis Ai is dependent on analysis Aj ,
denoted d(Ai,Aj), if Ai.I ∩ Aj .O 6= ∅.

Second, a dependency loop is a chain of analysis de-
pendencies where the last element depends on the first one.
The smallest dependency loop is a pair of mutually dependent
analyses.

Definition 2: Analyses A1 . . .An form a dependency loop,
denoted Loop(A1 . . .An), if:

d(A1,A2) ∧ · · · ∧ d(An−1,An) ∧ d(An,A1)

Eqs. 3 indicate that Loop(Afmea,Atrust). A dependency
loop makes it impossible to use the graph-based ordering
algorithm [8] to find a sound sequence of analyses because
analysis contracts do not have sufficient specification to resolve
the dependency. Therefore we explore other ways to resolve
loops. Our ultimate goal is to “skip” the loop and find a design
that would theoretically satisfy the loop. Such a design, when
fed into each of the analyses, would not change. This situation
resembles the fixed point concept from numeric analysis [40],
hence we adapt definitions from that field.

6

Definition 3: A system model or view M is a fixpoint of
an analysis set AN , denoted M ∈ FP(AN), if ∀A ∈ AN ·
A(M) = M.

From Def. 3 it follows that a fixpoint M satisfies the
guarantees of all analyses in AN . This is a necessary, but
not sufficient, condition: a model may satisfy all guarantees
of an analyses, but not be a fixpoint because the analysis
may still modify the model (e.g., to optimize it further). We
define models that satisfy all guarantees of an analysis as
its candidate fixpoints. Also, a fixpoint may not satisfy some
assumptions because analyses may exclude their fixpoints from
the applicability set since no further changes are possible or
needed.

Now consider a set of analyses AN and a system model M.
Below are several mutually exclusive cases for fixpoints. These
cases support two goals. First, they will help us qualitatively
evaluate techniques for dependency loop resolution, which we
present in the next section. Second, knowing the case of a
particular loop narrows down the available techniques, thus
streamlining the resolution of this loop.

C1 Strong convergence: a fixpoint exists and is reachable by
any sequence of analyses. This may happen when there
are two analyses and their changes to the system do not
practically overlap.

C2 Weak convergence: a fixpoint exists and is reachable by
some sequence of analyses. This is more likely to be the
case when there are several analyses and they interact
differently depending on their order of execution.

C3 Weak divergence: a fixpoint exists but is not reachable by
any sequence of analyses. E.g., there is a stable alternation
between two designs with two analyses.

C4 Divergence: a fixpoint does not exist, but at least one
candidate fixpoint exists.

C5 Strong divergence: no candidate fixpoints exist: no model
satisfies a conjunction of guarantees of all analyses.

Now that the problem of analytic dependency loops is
formally defined, we proceed to the methods of its resolution.

IV. RESOLUTION OF DEPENDENCY LOOPS

The goal of dependency loop resolution is, given a system
M and a set of circularly dependent analyses Loop(AN), to
find such analysis A′ that would produce a fixpoint of AN :

A′(M) ∈ FP(AN).

This problem has two sub-parts: finding a fixpoint and
verifying that a given model is a fixpoint. For the former,
we are not looking for a mathematically optimal solution or
a specific fixpoint because system design is often done via
satisficing [41] rather than optimizing. Many aspects of design
are poorly quantifiable: supplier availability and negotiation,
diverse qualities of the system, component compatibility, and
so on. Therefore we prefer an acceptable suboptimal design to
an exhaustive search of a design space that is often unbounded
or too large. For the latter part however, we do require an
accurate approach, otherwise analysis results may be unsound
and potentially lead to design errors.

TABLE I. CONVERGENCE, EXAMPLE OF C1 AND C2.

Sensors Gtrust Gfmea

A 3 7
B 7 7

AB 3 7
ABB 7 3

AABB 3 3

Fig. 3. Example workflow of analyses for convergence.

For further discussion consider the application of Afmea

and Atrust in several specific contexts. Assume that two types
of sensors are given: A and B. A is trustworthy but unreliable,
and B is reliable but untrustworthy – these characteristics
are specified in the sensors’ architectural types. The specific
calculations of aggregates do not concern us at this moment,
and we abstract reliability and trustworthiness as boolean
properties.

First let us consider the convergence situation. Tab. I shows
the evaluation of a sensor configuration for the convergence
situation. Each line represents a configuration of the system in
terms of sensors. AABB is the desired fixpoint configuration
that is both trustworthy and reliable. As Fig. 3 indicates, the
alternating analyses converge on the fixpoint.

Similarly, Tab. II and III represent divergence with and
without a fixpoint respectively. Fig. 4 shows an alternation
situation where ABB is not trustworthy and AAB is not
reliable, and analyses keep alternating between designs without
converging on an existing but unreachable fixpoint AABB.

TABLE II. DIVERGENCE, EXAMPLE OF C3 AND C4.

Sensors Gtrust Gfmea

AB 3 7
ABB 7 3
AAB 3 7

AABB 3 3

Fig. 4. Example workflow of analyses for divergence. See legend in Fig. 3.

To achieve practical dependency resolution we consider
three methods: analysis iteration, constraint solving, and ge-
netic search.

Analysis Iteration. This method iteratively searches for a
fixpoint by applying analyses to the model in some sequence,
similarly to a method of numeric computation of functional

7

TABLE III. STRONG DIVERGENCE, EXAMPLE OF C5.

Sensors Gtrust Gfmea

A 3 7
B 7 7

AB 3 7
ABB 7 3
AAB 3 7

AABB 3 7
ABBB 7 3
AAAB 3 7

Fig. 5. Example workflow of analyses for strong divergence.
See legend in Fig. 3.

fixpoints [40]. In our case, however, the order of analysis
iteration is an open question. One option is to select random
sequences of analyses, which would find a fixpoint in C1 and
could find one in C2. A more sophisticated approach is to con-
struct a contract-guided sequence: only analyses with satisfied
assumptions are applied; from those, analyses with unsatisfied
guarantees are given a priority. Selection may be random or
lexicographical. Another to enhance analysis iteration is to
define a partial order on each view, and apply analyses that
move the views towards the goal. Analysis iteration can also
be used as an accurate fixpoint verification method for C1,
C2, C3 and candidate verification for C4 in accordance with
Def. 3.

An advantage of analysis iteration is that it is simple and
does not require extra specification. In particular, for Tab. I and
Fig. 3 iteration would converge on the AABB model given a
starting point of A or B. For larger models however iteration is
computationally expensive6, may not converge, and its success
may depend heavily on the starting model: there are cases
when iteration converges when started from one model but not
from another. Therefore, we suggest two other approaches.

Constraint solving. This method searches for a fixpoint
by constructing a constraint satisfaction problem and feeding
it to a solver. We can use Satisfiability Modulo Theories
(SMT) [42] as an example of a constraint solving approach.
To set up a constraint problem, one needs to translate relevant
architectural types from the model (denoted SMT (M)) and
analysis guarantees into problem constraints using an existing
theory (e.g., integers or reals). The set of sensors under
search would become an underspecified part of the satisfaction
problem, so that a solver can find its valuation that satisfies

6For practical application of analysis iteration it is crucial that the consis-
tency propagation algorithm is efficient since it is run after every iteration.

constraints. For instance, constraint solving would find AABB
in Tab. II/Fig. 4, but analysis iteration would not find a path
to it. Constraint solving would also demonstrate absence of
a fixpoint in Tab. III/Fig. 5, although it would only explore
within the given bounds.

Constraint solving can be successfully used to find a
fixpoint in C1, C2, C3, find candidate fixpoints and demon-
strate absence of fixpoints in C4, and demonstrate absence of
candidate fixpoints in C5 – as long as a constraint problem
can be constructed and a (candidate) fixpoint lies within the
constraints. The possibility of constructing a constraint satis-
faction problem depends on the particular solving framework.
For instance, SMT does not yet have theories for calculating
real numbers. Unfortunately, constraint solving cannot verify
fixpoints because it does not directly execute analyses; never-
theless, it can verify candidate fixpoints. For instance, in the
case of SMT if SMT (M)∧¬G1∧· · ·∧¬Gn is UNSAT then the
M is a candidate fixpoint, at least within the checking bounds.
We can overcome the checking bound limitation with the next
cycle resolution approach.

Genetic search. This method executes for a system model
M obtaining A1(M) . . .An(M) and deriving hybrids among
the architectures, in a way similar to crossover in genetic
algorithms [43]. For two analyses Afmea and Atrust the set
of candidates is Afmea(M)⊕ Atrust(M) ∪ ∀i ⊆ Afmea(M) ∩
Atrust(M), where ⊕ is an exclusive OR over sets. Genetic
search may find fixpoints in C1, C2, C3, and C4. Genetic
search may be particularly useful in cases where the fixpoint
is outside the bounds of constraint solving but can be reached
by a mutation. For instance, if AABB were outside of the
constraint checking bounds in Tab. II/Fig. 4, genetic search
would still have a chance to find this model.

A special case of genetic search for the case of two
models crossover – merging models – can be useful in cases
where constraint solving is not: crossover may find a candidate
that does not satisfy some guarantees or constraints. Such
candidates may provide insights to engineers that would lead
to relaxing inappropriate constraints or finding important sub-
spaces of the design space. Merging would rely on view-
to-view mappings to achieve consistency in the produced
architectural models. We expect merging to be practically
limited to sets of components because merging connectors may
lead to combinatorial explosion due to non-determinism of
where connectors attach. Another drawback of genetic search
is that it cannot perform fixpoint verification, and therefore
it should be paired with another method like iteration. Thus,
non-determinism of genetic search is both its strength and
weakness.

All three methods and their expected applicability are
summarized in Tab. IV. The constraint solving column assumes
that a constraint problem can be formulated in one of the
existing theories. This table indicates that no single method can
capture all possible dependency cases, and their combination
is necessary to provide a robust solution to this engineering
problem. We have shown that even for two analyses, Atrust

and Afmea, the circular case may be different, which would
lead to different approaches being fruitful.

This section explored solutions for the relatively simple
example of two mutually dependent analyses, Atrust and

8

TABLE IV. SUMMARY OF APPLICABILITY
FOR LOOP RESOLUTION METHODS.

Case Analysis Iteration Constraint Solving Genetic Search
Find C1 3 3 3

Verify C1 3 7 7
Find C2 7 3 3

Verify C2 3 7 7
Find C3 7 3 3

Verify C3 3 7 7
Find C4 7 3 3

Verify C4 3 3 7
Detect C5 7 3 7

Afmea. In a more complex case many analyses depend on each
other and make interrelated and often vague assumptions. One
may use other ways to deal with this complexity. For example,
one may think of re-writing several analyses as one monolithic
multi-analysis with algorithms encapsulated. This approach has
a benefit of being simple and more controllable (e.g., additional
optimization can be applied during consolidation), however
it is more fragile because the constituent analyses cannot
be reused individually or combined in a different fashion.
Instead, our contract-based approach emphasizes more general
modular composition, formal verification, and scalability for
larger numbers of analyses.

V. FUTURE WORK AND CONCLUSION

This paper explored the challenging problem of resolving
analysis dependencies. As we showed, these dependencies
often cannot be resolved using contract specification and needs
extra description, such as architectural types and mappings. We
sketched and exemplified three approaches to cycle resolution:
iterative execution, constraint solving, and genetic algorithms.
We expect these descriptions and approaches be applicable
to other domains and analyses (e.g., cost-benefit analysis of
architecture) in our future work.

An important future work direction is implementing and
integrating dependency resolution algorithms into our architec-
tural and analytic framework [24]. The tools would need access
to architectural styles and analysis descriptions to perform the
intended functions. A major step is a design of a general
API so that dependency resolution can be extended with
new techniques. An implementation of dependency resolution
would also be helpful to demonstrate practical feasibility of
our cycle resolution techniques. This implementation can be
further enhanced in several ways. One is concurrent execution
of different techniques and aggregation of their results. An-
other way to enhance loop resolution is to combine it with
optimization and search for optimal fixpoints.

We envision our work to be more general and systematic
than ad hoc analysis integration, so empirical validation is
essential. We have previously formalized a number of scientific
and engineering domains: real-time CPU scheduling, electrical
and thermal analysis of batteries [8], reliability, sensor security,
and secure control [36]. To demonstrate the generality and
effectiveness of the described cycle resolution techniques we
will revisit these domains to discover circular dependencies,
which we previously designed away. Beyond that, we plan
to look for realistic CPS projects to investigate the effect on
analytic cycles on larger system designs.

An even deeper level of integration between the analytic
and architectural approaches would involve using system in-

variants during analysis execution. Currently, satisfaction of
system invariants is a concern orthogonal to analytic exe-
cution. One way to use invariants is to discharge analytic
assumptions with them, instead of verifying the assumptions
directly. Similarly, one can use analytic guarantees to discharge
system invariants after running an analysis. We hope that
this would lead to a significant reduction of verification time
and effort. We expect that bringing analyses and architecture
closer together would lead to a cohesive and versatile toolbox
of domain integration tools that can be applied in various
engineering contexts, such as aerospace, automotive, energy,
and medical CPS.

ACKNOWLEDGMENTS

The authors would like to thank Ashwini Rao, Dionisio De
Niz, and Sagar Chaki for their work on the initial vision of the
system example and analyses in [36], and Nicholas Rouquette
for a motivating discussion of circular dependencies in model-
based engineering.

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. This work was also supported in part by
the National Science Foundation under Grant CNS-0834701,
and the National Security Agency.

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in Proceed-
ings of the 11th Symposium on Object Oriented Real-Time Distributed
Computing. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 363–369.

[2] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems:
The next computing revolution,” in 2010 47th ACM/IEEE Design
Automation Conference (DAC), 2010, pp. 731–736.

[3] S. Mitsch, K. Ghorbal, and A. Platzer, “On Provably Safe Obstacle
Avoidance for Autonomous Robotic Ground Vehicles,” in Proc. of
Robotics: Science and Systems, 2013.

[4] I. Ruchkin, B. Schmerl, and D. Garlan, “Architectural Abstractions
for Hybrid Programs,” in Proceedings of the 18th International ACM
SIGSOFT Symposium on Component-Based Software Engineering, ser.
CBSE ’15. New York, NY, USA: ACM, 2015, pp. 65–74.

[5] D. Phan, J. Yang, D. Ratasich, R. Grosu, S. A. Smolka, and S. D. Stoller,
“Collision Avoidance for Mobile Robots with Limited Sensing in
Unknown Environments,” in Proc. of the 15th International Conference
on Runtime Verification, 2015.

[6] D. H. Stamatis and H. Schneider., Failure Mode and Effect Analysis:
FMEA from Theory to Execution, 2nd ed. Milwaukee, Wisc: Amer
Society for Quality, Jun. 2003.

[7] M. Klein, A Practitioner’s Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Springer, 1993.

[8] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan, “Contract-based
Integration of Cyber-physical Analyses,” in Proceedings of the 14th
International Conference on Embedded Software, ser. EMSOFT ’14.
New York, NY, USA: ACM, 2014, pp. 23:1–23:10.

[9] M. Bartoletti, T. Cimoli, P. Di Giamberardino, and R. Zunino, “Vicious
circles in contracts and in logic,” Science of Computer Programming,
vol. 109, pp. 61–95, Oct. 2015.

[10] A. Rajhans, A. Bhave, I. Ruchkin, B. Krogh, D. Garlan, A. Platzer,
and B. Schmerl, “Supporting Heterogeneity in Cyber-Physical Systems
Architectures,” IEEE Transactions on Automatic Control, vol. 59,
no. 12, pp. 3178–3193, Dec. 2014.

[11] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems*,”
European Journal of Control, vol. 18, no. 3, pp. 217–238, 2012.

9

[12] P. Derler, E. A. Lee, S. Tripakis, and M. Torngren, “Cyber-physical
System Design Contracts,” in Proceedings of the ACM/IEEE 4th Inter-
national Conference on Cyber-Physical Systems, ser. ICCPS ’13. New
York, NY, USA: ACM, 2013, pp. 109–118.

[13] P. Nuzzo, H. Xu, N. Ozay, J. Finn, A. Sangiovanni-Vincentelli, R. Mur-
ray, A. Donze, and S. Seshia, “A Contract-Based Methodology for
Aircraft Electric Power System Design,” IEEE Access, vol. 2, pp. 1–25,
2014.

[14] S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee, “A Modular Formal
Semantics for Ptolemy,” Mathematical Structures in Computer Science.
Accepted for publication, 2012.

[15] V. Subramonian and C. Gill, “Towards Integrated Model-Driven Ver-
ification and Empirical Validation of Reusable Software Frameworks
for Automotive Systems,” in Model-Driven Development of Reliable
Automotive Services. Springer Berlin Heidelberg, 2008, pp. 118–132.

[16] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “metroII: A Design Environ-
ment for Cyber-physical Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 12, no. 1s, pp. 49:1–49:31, 2013.

[17] A. Bhave, “Multi-View Consistency in Architectures for Cyber-Physical
Systems,” Ph.D. dissertation, Carnegie Mellon University, Dec. 2011.

[18] G. Simko, D. Lindecker, T. Levendovszky, S. Neema, and J. Szti-
panovits, “Specification of Cyber-Physical Components with Formal
Semantics Integration and Composition,” in Model-Driven Engineering
Languages and Systems. Springer Berlin Heidelberg, Jan. 2013, pp.
471–487.

[19] Sandeep Neema, Ted Bapty, and Janos Sztipanovits, “Multi-Model
Language Suite for Cyber-Physical Systems,” Institute for Software
Integrated Systems, Vanderbilt University, Tech. Rep., 2013.

[20] J. Sztipanovits, G. Karsai, S. Neema, and T. Bapty, “The Model-
Integrated Computing Tool Suite,” in Model-Based Engineering of
Embedded Real-Time Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Jan. 2010, no. 6100, pp. 369–376.

[21] Y. Zhou and E. A. Lee, “A Causality Interface for Deadlock Analysis in
Dataflow,” in Proceedings of the 6th ACM &Amp; IEEE International
Conference on Embedded Software, ser. EMSOFT ’06. New York,
NY, USA: ACM, 2006, pp. 44–52.

[22] M.-Y. Nam, D. de Niz, L. Wrage, and L. Sha, “Resource allocation
contracts for open analytic runtime models,” in Proc. of the 9th
International Conference on Embedded Software, ser. EMSOFT ’11.
New York, NY, USA: ACM, 2011, pp. 13–22.

[23] G. Bergmann, I. Roth, G. Varro, and D. Varro, “Change-driven model
transformations,” Software & Systems Modeling, vol. 11, no. 3, pp. 431–
461, Mar. 2011.

[24] I. Ruchkin, D. De Niz, S. Chaki, and D. Garlan, “ACTIVE: A Tool for
Integrating Analysis Contracts,” in 5th Analytic Virtual Integration of
Cyber-Physical Systems Workshop, Rome, Italy, Dec. 2014.

[25] A. Qamar, “Model and Dependency Management in Mechatronic De-
sign,” Ph.D. dissertation, KTH Sweden, Stockholm, Sweden, 2013.

[26] A. Radjenovic and R. Paige, “The Role of Dependency Links in En-
suring Architectural View Consistency,” in Seventh Working IEEE/IFIP
Conference on Software Architecture, 2008. WICSA 2008, Feb. 2008,
pp. 199 –208.

[27] Paul Gao, Russel Hensley, and Andreas Zielke, “A road map to the
future for the auto industry,” McKinsey Quarterly, Oct. 2014.

[28] A. Iliaifar, “LIDAR, lasers, and logic: Anatomy of an autonomous
vehicle,” 2013. [Online]. Available: http://www.digitaltrends.com/cars

[29] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in 2010
IEEE Symposium on Security and Privacy (SP), May 2010, pp. 447–
462.

[30] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
Experimental Analyses of Automotive Attack Surfaces,” in Proc. of the
20th USENIX Conference on Security, Berkeley, CA, USA, 2011, pp.
6–22.

[31] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure Estimation and Control
for Cyber-Physical Systems Under Adversarial Attacks,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014.

[32] F. G. Marmol and G. M. Perez, “Towards pre-standardization of trust
and reputation models for distributed and heterogeneous systems,”
Computer Standards & Interfaces, vol. 32, no. 4, pp. 185–196, Jun.
2010.

[33] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl, “View Consistency
in Architectures for Cyber-Physical Systems,” in 2011 IEEE/ACM
International Conference on Cyber-Physical Systems (ICCPS), Apr.
2011, pp. 151 –160.

[34] L.-A. Tang, X. Yu, S. Kim, Q. Gu, J. Han, A. Leung, and T. La Porta,
“Trustworthiness analysis of sensor data in cyber-physical systems,”
Journal of Computer and System Sciences, vol. 79, no. 3, pp. 383–401,
May 2013.

[35] M. Hecht, A. Lam, and C. Vogl, “A Tool Set for Integrated Software
and Hardware Dependability Analysis Using the Architecture Analysis
and Design Language (AADL) and Error Model Annex,” in 16th In-
ternational Conference on Engineering of Complex Computer Systems,
2011, pp. 361–366.

[36] I. Ruchkin, A. Rao, D. De Niz, S. Chaki, and D. Garlan, “Eliminating
Inter-Domain Vulnerabilities in Cyber-Physical Systems: An Analysis
Contracts Approach,” in Proc. of the First ACM Workshop on Cyber-
Physical Systems Security & Privacy (CPS-SPC), Denver, Colorado,
2015.

[37] R. Eramo, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio,
“A model-driven approach to automate the propagation of changes
among Architecture Description Languages,” Software & Systems Mod-
eling, vol. 11, no. 1, pp. 29–53, Jul. 2012.

[38] Z. Diskin, “Algebraic Models for Bidirectional Model Synchronization,”
in Model Driven Engineering Languages and Systems, ser. Lecture
Notes in Computer Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl,
and M. Vlter, Eds. Springer Berlin Heidelberg, 2008, no. 5301, pp.
21–36.

[39] D. W. S. Clair, Controller Tuning and Control Loop Performance,
2nd ed. Newark: Straight-Line Control Co., Jan. 1990.

[40] D. Borwein and J. Borwein, “Fixed point iterations for real functions,”
Journal of Mathematical Analysis and Applications, vol. 157, no. 1, pp.
112–126, May 1991.

[41] H. Simon, “Rational choice and the structure of the environment,”
Psychological Review, vol. 63, no. 2, pp. 129–138, 1956.

[42] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
Modulo Theories: From an Abstract DavisPutnamLogemannLoveland
Procedure to DPLL(T),” J. ACM, vol. 53, no. 6, pp. 937–977, Nov.
2006.

[43] J. Holland, “Genetic Algorithms and the Optimal Allocation of Trials,”
SIAM Journal on Computing, vol. 2, no. 2, pp. 88–105, Jun. 1973.

10

Behavioral Types for Space-aware Systems
Jan Olaf Blech
RMIT University

Melbourne, Australia
{janolaf.blech@rmit.edu.au}

Peter Herrmann
Norwegian University of Science and Technology

Trondheim, Norway
{herrmann@item.ntnu.no}

Abstract—Behavioral types for space-aware systems are pro-
posed as a means to facilitate the development, commissioning,
maintenance, and refactoring of systems with cyber-physical
characteristics. In this paper, we particularly introduce the
formal definition of behavioral types that are associated with
system components in order to specify their expected behavior.
As application domain, we concentrate on systems from industrial
automation that encompass recurring behavior.

I. INTRODUCTION

In the industrial automation domain, many systems consist
of physically distributed components that cooperate with each
other by carrying out recurring behavioral patterns. A typical
example is a state-of-the-art assembly line consisting of a
series of robots that build complex articles like cars. To work
correctly, the behaviors of the components need to fulfill
various software and physical behavioral aspects that can be
quite diverse and may comprise, for instance, communication
protocols, heat emission or spatial occupation (e.g., a robot
adding a part to a car must perform trajectories such that the
car’s carriage is not damaged).

To handle the complexity and diversity of specifying com-
ponent and system behaviors, we introduce space-aware be-
havioral types that allow us to capture both software and
physical aspects. As with types in traditional programming
languages, e.g., primitive datatypes and their composition,
the behavioral types can be used to eliminate error sources
already at the development time of software systems. This
is analog to classical static type checks performed by a
compiler. Furthermore, we can use the behavioral types to
eliminate runtime errors. This resembles dynamic type checks
that, in many programming languages, are performed when
accessing pointers that reference data of types which cannot be
statically determined. Behavioral types also provide additional
information about components which can be used for tool-
based operations that allow the discovery of components and
the dynamic reconfiguration of systems.

The behavioral types introduced in this paper are applicable
on different scales such as to express the interaction of the
various parts of a single robot or to specify collaboration
aspects between different sites (cf. [8]). The limitation to
recurring behavior makes it possible to verify behavior by
checking only a finite number of situations which eases the
use of highly automatic verification tools. Our approach makes
it possible to check the following features of a type system:

• Type compatibility checking — as known from types
of imperative programming languages, e.g., checking
whether we can add an integer to a float — with space-
aware behavioral types associated to components.

• Subtyping allows the replacement of a component with
a certain behavioral type t by another component that
has a subtype t′ of type t. We base subtyping on spatial
geometric refinement that can be checked automatically.

• Type composition is necessary to infer types of com-
ponents that are composed of existing components with
known types.

In addition, we want to ensure
• Type conformance, i.e., the question whether a component

really behaves according to its specification: the geomet-
ric spatial behavioral type.

A. Motivating Examples

Loading robot: Figure 1 shows two pictures of a robot
interacting with a moving device. The robot and the device
have spatial behaviors, i.e., their positions in space change
during time. At various points on the time scale, that we
call timepoints, they physically occupy certain spaces that
can be characterized by coordinates in a geometric coordinate
system. On the one hand, we like to ensure using space-
aware behavioral types that the robot does not collide with the
moving device. On the other one, we also want to guarantee
that the robot grip is coming very close to the device in order
to avoid that articles are damaged while being loaded onto the
device.

The robot consists of three segments and a tool that are
attached to each other via joints. Each of the four robot
components has an individual spatial behavior relative to the
parts it is attached to. As depicted on the left side of Fig. 1,
this spatial behavior can be expressed with a space-aware
behavioral type that encodes the movement of a robot part
over time. Typically, the behavioral description of each type
is relative to a distinct point in the coordinate system. For
example, multiple instances of the tool may have the same
type, but may be deployed independently in different locations
(e.g., segments 1 and 3). Likewise, we can use a behavioral
type expressing the behavior of the moving device.

The right side of Fig. 1 shows the composition of the types
from the robot’s components into a single type representing
the behavior of the overall robot. The composed type for the
robot takes the relative spatial movements of the segment and

11

�W\SH!�VHJPHQW��

�W\SH!�EDVLV

�W\SH!�MRLQW��DOW���

�W\SH�!�MRLQW

�W\SH!�VHJPHQW��

�W\SH!�WRRO

�W\SH!�VHJPHQW��

�W\SH!�MRLQW��DOW���

�W\SH!�PRYLQJ�GHYLFH

�W\SH!�URERW

FRPSDWLELOLW\
�W\SH!�PRYLQJ�GHYLFH

Fig. 1. Behavioral types for a robot

c1

c2

c3

Fig. 2. Spatial behavior of rotating robot arms

tools to each other into account. To verify that the robot does
not collide with the moving devices but that its grip comes
sufficiently close, we can apply the composed type of the
robot instead of the four simple ones referring to its parts.
The spatial verifications are carried out by type checking of the
composed robot type and the one of the moving device. Using
the subtyping feature, we can even replace robot segments by
other ones without needing to repeat the type checking proofs
of safety properties as long as the replaced segments are in
certain relations with the original ones.

Rotating robot arm: Another example of a robot com-
position is depicted in Figure 2. Here, three components are
shown: c1 is a robot arm. It performs a circular movement
around a center point and features a reference point at the outer
end that turns counterclockwise. This behavior is captured
using a space-aware behavioral type. Another component c2
also carries out a counterclockwise circular movement albeit
with a smaller radius. This is also encoded in a space-aware
behavioral type. c2 gets attached to c1 via the reference
point. By type composition, we can create a behavioral type
modeling the joint behavior of c1 and c2.

c3 is also a robot arm, possibly of the same kind as c1,
that performs the same rotational movement around a different
center point. In consequence, the behavioral type of c3 may
be the same as the one of c1 which, however, refers to another
center point.

A typical type checking problem is the decision whether
the system composed of c1 and c2 can collide with c3. For
type checking, we compute the least common multiple of the
cycle times for each of the three components and compare for
each time point whether a collision may occur. The use of
time points instead of time intervals requires that the spatial
behavior at each time point is a safe approximation of the
behavior during the adjacent time intervals. We will discuss
this later in detail.

B. Related Work

The idea to use well defined specifications that define the
interfaces of software component systems, has been made
popular by the design-by-contract approach for software com-
ponents [31]. More recent work comprises specification and
contract languages for component-based systems that have
been studied in the context of web services. Process algebra-
like languages and associated techniques are studied in [11],
[16]. Another algebraic approach to service composition is
presented in [18]. In [27], so-called External State Machines
(ESMs) are used to specify the interface behavior of functional
software building blocks. The ESMs do not only facilitate
the integration of the building blocks into their environment
but make also compositional model checking of the building
blocks possible.

Behavioral types have been studied as interface automata
[1] for software components and in the Ptolemy II project [30]
for the software part of real-time systems. Further, their use as
means for behavioral checks at runtime for component-based
systems was investigated in [2].

We proposed a behavioral type system in [9]. In [6], ensur-
ing behavioral type correctness at runtime using techniques
from runtime verification was discussed in the context of

12

Java/OSGi-based applications. Moreover, we studied compat-
ibility checking in [7]. This paper also features a solution
for behavioral type coercion for a highly restricted class of
behavioral types. Furthermore, we have applied a behavioral
types concept to the software part of automation control
systems [37] which can be seen as a precursor of the work
presented here. Providing a format for spatial behavioral types
and means to reason about it is a new contribution of this
paper.

Specification of spatial properties has been studied using
process algebra-like formalisms [13], [14]. A type system
based on this formalism was introduced in [12] for con-
currency and resource control. The author presents typing
rules and automatic type checking which is not a focus here.
Moreover, a verification tool has been developed to check
properties based on this formalism in [15]. In contrast, we
are interested in developing a solution that fits for industrial
robots and related machinery. Therefore, we restrict ourselves
to the checking of recurrent behavior in geometric space and
concentrate us on tailoring a formalism and compliant check-
ing techniques for this particular domain. Contracts between
components with a cyber-physical flavour have been studied
in the SPEEDS project [3], [4], [20]. Here, the contracts also
take behavior in the form of a transition system into account.
In [32] contracts for avionic components are studied.

Reasoning about spatial and geometric constraints is de-
scribed in, e.g., [5], [25]. A particularly important applica-
tion domain is robot path planning which has been studied
for decades (e.g., [26], [29]). Spatial types are also used
for databases, e.g., to manage geometric objects [21] or in
Geographic Information Systems [36]. A challenge of these
approaches is to guarantee that a reasonable subset of the
spatial logic is decidable and, of course, that realistic system
models can be checked in an acceptable period of time
(e.g., see decidability results in [17]). Logic approaches for
hybrid systems (e.g., [19], [34], [35]) provide comprehensive
languages and tools for describing cyber-physical systems. In
contrast to these works, our focus is stronger aligned with the
industrial automation domain and the use as a behavioral type
system. The time and geometry focus on the reasoning side of
our framework can be complemented by a topological view.
This has advantages in areas such as security analysis [33].

As we will show below, the approach presented here fits
well to the existing verification technique BeSpaceD [10] that
already proved that it can be used to check spatial properties
of various systems (see [22], [23], [24]).

C. Overview

Section II introduces our space-aware behavioral types. The
underlying semantics and related behavioral types features are
discussed in Sect. III. An evaluation is featured in Sect. IV
followed by a conclusion in Sect. V.

II. SPACE-AWARE BEHAVIORAL TYPES

In general, we describe spatiotemporal behavior for the
industrial automation domain by defining which properties

hold at which timepoint. Due to the recurrent nature of
the behavior, we have to observe only a finite number of
timepoints. In Sect. II-A we describe the basic formalism of
our behavioral type definitions and introduce certain templates
facilitating the use of our method. Thereafter, we discuss the
constructors and composition operators in Sect. II-B. In the
remainder of this section we justify our modeling choices.

A. Behavioral Descriptions

We use simple logic-based descriptions to define abstract
datatypes. These behavioral descriptions can be composed of
the following operators and predicates:
• Logical operators: ∧, ∨, and ¬ as well as abbreviations

such as −→ and
∧

i∈I .
• Predicates that characterize timepoints. This includes

expressions such as timepoints modulo a cycle time —
after which the behavior is repeated — and time intervals.

• Predicates characterizing events. In addition to the space-
aware aspects one can also use events to specify software
interaction protocols [9].

• Predicates indicating nodes and edges in a graph struc-
ture.

• Predicates indicating occupation of geometric space.
• Parameters defining the ownership of space occupation.

Here, spatial occupation behavior is associated with a
certain component that owns the occupied space.

Our way to associate space occupation with ownership
allows us to specify various spatial properties of a component
in separation. As already mentioned, examples for such prop-
erties that may all refer to the same physical component C,
may be C’s physical occupation of space, the distribution of
heat emitted by C, and the range over which C may broadcast
wireless communication messages. These properties can be
modeled by separate predicates that all use C as their owner.
In consequence, the individual properties can be separately
verified by type checking which is carried out based on two
different approximation approaches:
• Overapproximation means to consider a geometric space

that is at least as large as the one that is factually covered
by an owner. This fits to properties like the physical
occupation of space or the distribution of heat.

• Underapproximation refers to a geometric space that is
at most as large as the one factually covered. We can use
it, for example, to check broadcasting ranges.

The two approaches are closer described in Sect. III.
Templates: Behavioral descriptions encoding a compo-

nent of the industrial automation / robot domain can follow
the templates shown in Fig. 3. The specification features
a conjunction over implications. Each implication refers to
certain conditions that hold at a certain timepoint and in the
presence of events. The conditions can be, for instance, aspects
referring to the spatial occupation of a geometric object. Each
aspect itself is constructed as predicates of the behavioral
description language introduced above. It primarily features
constraints on space such as conjunctions of predicates that

13

t = 1 ∧ (¬) event E0 ∧ ... ∧ (¬) event En −→
Space Occupation Aspect 1 ∧ ... ∧ Space Occupation Aspect m

∧
...
∧

t = 1 ∧ (¬) event E0 ∧ ... ∧ (¬) event En −→
Space Occupation Aspect h ∧ ... ∧ Space Occupation Aspect j

∧
...
∧

t = cycletime ∧ (¬) event E0 ∧ ... ∧ (¬) event En −→
Space Occupation Aspect 1 ∧ ... ∧ Space Occupation Aspect m

∧
...
∧

t = cycletime ∧ (¬) event E0 ∧ ... ∧ (¬) event En −→
Space Occupation Aspect h ∧ ... ∧ Space Occupation Aspect j

Fig. 3. Template for a behavioral description

indicate the occupation of space for a geometric object. A
space occupation aspect is either classified as an over- or an
underapproximation.

The template specifies spatial behavior up to the timepoint
referring to finishing a recurrent behavior cycle. After the cycle
time, the behavioral description is repeated. This, however,
does not necessarily always result in the same behavior,
since events may be different. Having a cycle time is a
typical feature in industrial automation and a key characteristic
of Programmable Logic Controllers (PLC) used to control
automation facilities (e.g., the IEC 61131-3 and IEC 61499
standards) and for controlling industrial robots.

Behavioral descriptions may be specified by developers
manually. However, typical descriptions can comprise several
thousand cases. Thus, a preferable way is to specify a system
in a simulation or development tool and generate the behav-
ioral description automatically. We have successfully done this
using the model-based engineering tool Reactive Blocks [28]
as described in [23], [24].

B. Type Constructors and Composition

Type constructors use behavioral descriptions and additional
information to create a space-aware behavioral type. We
present two kinds of space-aware behavioral types. Primitive
space-aware behavioral types are often used to capture the
behavior of a single atomic component, whereas composed
space-aware behavioral types are typically applied to capture
the behavior of composed systems. However, composed types
may also be applied to characterize different aspects of a single
atomic component and a primitive type may be used to capture
the behavior of a composed system, when no detailed behavior
of subcomponents is available or it is not necessary to describe
that separately.

Basic space-aware behavioral types: We define three
different kinds for the primitive behavioral types:

1) A behavioral description bd may be accompanied by the
cycle time ct, after which the behavior is repeated to
form a geometric spatial behavioral type using the tuple

(bd, ct)

2) An extended definition features a geometric offset go
which is a point in the geometric space. Likewise, space-
aware behavioral types allow to shift the starting time
of a cycle by a time offset to in order to allow the reuse
of the behavioral description for a component that may
be started with a delay. The spatial and starting time
impacts of the behavioral description can be described
by the following tuples:

(bd, go, ct), (bd, to, ct) and (bd, go, to, ct)

3) A component that features a behavior in time and space
may be attached to a joint device of another compo-
nent where this joint device has its own spatiotemporal
behavior. This relative movement of a component to
another is captured in the following type definition:
A type may feature a set RP of reference points
through which other components may be attached to
it and a behavioral description is provided with each
reference point. For instance, the segments and the tool
of the robot introduced in Sect. I-A are attached to
each other via reference points. Each reference point
exhibits its own spatiotemporal behavior that depends
on both, the physical placement of the reference point
as well as the behavior of the overall component. In
the type constructor, we model the relation between
reference points and their behavioral descriptions by
the function 7→ mapping all elements of set RP to the
set BD of all possible behavioral descriptions. Thus, if
bdi ∈ BD is the behavioral description of a reference
point rpi ∈ RP , the formula 7→(rpi) = bdi holds which

14

we express as rpi 7→ bdi for convenience. The type
constructor is defined as follows:

(bd,RP, 7→, ct)

The behavioral description used in the reference point
must only describe the movement of a single point in
relation to time and events.

Composed space-aware behavioral types: The behavior
of multiple components can be combined, e.g., to form new
components or to define alternative types. A way to combine
behavior types syntactically is type composition. Its semantics
is highlighted in the following:

1) The union type + provides an alternative between two
different space-aware behavioral types gbt and gbt′ each
defined as one of the three types introduced above:

gbt+ gbt′

As an example, the intended semantics — a behavioral
alternative — of a union of two space-aware behavioral
types is given below (lcm denotes the least common
multiple):

(bd, ct) + (bd′, ct′) , ((bd ∨ bd′), lcm(ct, ct′))

2) Compositions as expressed by the operator × correspond
to record types in programming languages:

gbt× gbt′

Semantically, that corresponds to the following operation
on the behavioral description level:

(bd, ct)× (bd′, ct′) , ((bd ∧ bd′), lcm(ct, ct′))

Furthermore, as in records, we support an implementa-
tion that maps names to behavioral descriptions. This
allows us to have record-like field descriptors.

3) Composing structures of components attached to ref-
erence points, like in the robot example depicted in
Fig. 1, usually leads to lengthy nested behavioral de-
scriptions. To simplify these definitions, we offer non-
nested type constructors for such structures. The non-
nested variant does not have to be attached to a base
component such it does not need to feature a cycle
time. The simplified constructor can be used if a struc-
ture consisting of composed components is modeled by
the basic space-aware behavioral type gbt of kind 3,
i.e., gbt , (bd,RP, 7→, ct). We also introduce the set
GBT that features the geometric spatial behavior in
the remainder of the nested structure, as well as the
function → mapping the reference points rpi ∈ RP
in the composed structure to their respective behaviors
gbti ∈ GBT , i.e., rpi → gbti. The resulting behavioral
type is syntactically defined in the following way:

(gbt, RP,→)

To illustrate this, we regard our motivating example from
Sect. I-A and Fig. 1. The composed type for the robot

is made up of the behavioral type tt of the tool and the
types at1, at2, at3 of the three robot arm segments. The
four types can be nested in the following way:

(at1, {rpat1},
rpat1 7→ (at2, {rpat2},

rpat2 7→ (at3, {rpat3}, rpat3 7→ (tt))
)

)

Using our introduced definition, the behavioral type of
each segment type ati with a behavioral description abi
has the form:

(abi, {rpati}, rpati → rpbrpati
)

where rpbrpk
refers to the behavior of a reference point

rpk thereby removing the nested structure.
Our notion of behavioral types takes the intended semantics

into account, i.e., the behavior in space and time. Different syn-
tactic type definitions which may be grouped into equivalence
classes may exist for the same space-aware behavioral type.
For instance, by using the symmetry of the union operator
in type composition or the symmetry of ∧, we can construct
syntactically different type definitions for the same type.

III. SEMANTICS OF SPACE-AWARE BEHAVIORAL TYPES

To facilitate the verification that objects occupy a certain
geometric space in an area, we can use subtyping of the be-
havioral types of these objects. As described in Sect. II-A, ver-
ification of spatial properties can be performed based on both,
overapproximation and underapproximation. This is consid-
ered by distinguishing subtyping between overapproximation-
refinement aspects and underapproximation-refinement as-
pects. A space-aware behavioral type T ′ is a subtype of
another type T if and only if the following conditions hold
for each spatial aspect and each shared timepoint t:
• For overapproximation-refinement aspects, the space oc-

cupation at t specified in T ′ is geometrically included in
T . Thus, overapproximation-oriented spatial proofs (e.g.,
collision avoidance) that were carried out for a physical
component represented by T also hold for a “smaller”
one described by T ′.

• For underapproximation-refinement aspects, the space
occupation at t specified in T is geometrically included
in T ′. So, underapproximation proofs (e.g., broadcast
ranges) done for T hold also for a “larger” T ′.

• For both, overapproximation-refinement and underappro-
ximation-refinement aspects hold, that if T comprises
unbound reference points, T ′ incorporates the same un-
bound reference points, which show an identical behavior.

Subtyping imposes a partial order relation between the
space-aware behavioral types since according to our definition
the following properties hold:
• Reflexivity: A type is its own subtype since an occupied

space includes itself.
• Antisymmetry: For aspects refined by overapproximation

holds that if the space occupied according to T ′ is

15

geometrically included in the one of T but not identical,
then there is at least a point in space that is occupied by
T but not by T ′. Thus, the space of T is not included in
the one of T ′ and, in consequence, T is not a subtype of
T ′ with respect to overapproximation. The argumentation
for underapproximation is analog.

• Transitivity: If T ′ is a subtype of T and T ′′ a subtype of
T ′ with respect to overapproximation, then the occupied
space according to T ′′ is included in the one defined
by T ′ and that one is included in the one according
to T . Thus, the occupied space defined for T ′′ is also
included in the one specified in T such that T ′′ is also a
subtype of T . An analogous deduction can be drawn for
underapproximation.

It is possible to construct a lattice based on this partial order
for a fixed number of aspects. The type ⊥ is a subtype of
all other types. Here, all overapproximation-refinement aspects
are occupying zero space all the time, while underapproxi-
mation-refinement aspects occupy all the space all the time.
In contrast, all other types are subtypes of the> element. Thus,
underapproximation-refinement aspects occupy zero space all
the time, while overapproximation-refinement aspects occupy
all the space all the time.

IV. BEHAVIORAL TYPE CHECKING AND EVALUATION

In this section, we discuss means to decide the compatibility
of system components based on their behavioral types.

A. Type Compatibility Checking Algorithm

For two space-aware behavioral types with cycle times ct1
and ct2, we perform space-aware behavioral type checking in
the following way:

1) We calculate the least common multiple of ct1 and ct2
that we name ct.

2) For all time points t between 0 and ct we perform the
following steps:

a) Retrieve for both behavioral types all relevant
spatial information expressed by the behavioral
descriptions bd1 and bd2 at timepoint t.

b) Decide possible overlappings between the behav-
ioral descriptions bd1 and bd2 by regarding the pos-
sibly occupied space for all underapproximation-
refinement aspects. Here, an overlapping must oc-
cur, for each spatial aspect. Otherwise, the types
are incompatible.

c) Decide additional possible overlapping between
spatial information of bd1 and bd2 by regarding
the possibly occupied space for all overapproxima-
tion-refinement aspects. Here, no overlapping must
occur for any spatial aspect. Otherwise, the types
are incompatible.

The algorithm is carried out using the checker BeSpaceD [10]
that, depending on the geometry used, converts the spatial
information and property into a SAT or an SMT problem. For
that, BeSpaceD breaks the geometric constraints down into

behavioral
description

behavioral
types

behavior
time / aspect

spatial boxes
representation

point
representation

extraction

cycle times

overlapping
check

inclusion
check

checking
iterative /
parallel

selection

abstraction

transformation

Fig. 4. Checking type compatibility and subtyping

more fine grained verification conditions as we discuss in the
following.

B. Making Behavioral Descriptions Checkable

Our modeling style allows for very rich specifications de-
scribing quite complex systems. Checking these specifications
would demand to treat a state space that would exceed the time
and memory limits of the type checking algorithm introduced
above. In the following, we present some steps allowing to
abstract complex specifications into checkable ones such that
our type compatibility checking and subtyping algorithms can
be used. To guarantee that the abstractions do not falsify
the verification results, they have to preserve the transitivity,
reflexivity, and antisymmetry properties introduced in Sect. III.
The abstraction consists of an order of operations that is
depicted in Figure 4 (see also [10]):

1) From time intervals to timepoints: Time interval-based
descriptions are transformed into timepoint-based de-
scriptions by using safe approximations of geometric
spatial behavior of adjacent time intervals at the time-
points.

2) Extraction of relevant behavioral information: Be-
SpaceD provides functions that are based on time and
spatial aspects and provide sub-descriptions for the
relevant behavior which are defined on the inductive
structure of the behavioral descriptions.

3) From segments to boxes: Parts of robots may be de-
scribed by segments or other geometric objects. Seg-
ments have a cylindric shape with a radius, a length, and
an orientation. For fast and easy checking, we convert
segments and other geometric objects into box-based
approximations. Boxes are defined by an upper left front
and a lower right rear coordinate that are both expressed
by their respective x, y and z axes of the coordinate
system. Figure 5 shows a variant of the second example
from Sect. I-A in which the line representations of the
three robot components are replaced by a number of
boxes representing the space covered. As long as the

16

Fig. 5. Box-based abstraction of rotating robots

boxes cover all the space of the three components, this
replacement is a safe overapproximation. (It would be a
safe underapproximation if all space represented by the
boxes was covered by the components.)

4) Automata and spatial behavior: The behavior of our
components can be modeled using automata with a
cyclic control flow. Here, we describe possible transi-
tions and states encountered as events that are part of
the behavioral description.

5) From boxes to spacepoints: Behavioral descriptions us-
ing geometric boxes can be broken down into descrip-
tions that contain geometric points, so-called space-
points. For example, a cube with a side length of 10 may
be broken down into 10 · 10 · 10 = 1000 spacepoints. In
the behavioral description, each spacepoint is described
using a predicate. In spite of this enlargement of the
behavioral representation, we can check the spacepoints
speedily since points from different behavioral descrip-
tions are comparable without further interpretation.

6) Checking of overlappings and inclusion with points: We
use hash-sets for checking overlappings and inclusion of
two descriptions. For overlappings, we insert points from
one description into the hash-set and check whether the
points of the second description are already in the hash-
set. For inclusion, we insert points from one description
and check whether all points from the other description
are indeed included in the hash-set.

7) SMT and other approaches: In addition to comparing
geometric representations on a point level, we have
developed SMT encodings of geometric objects that are
more efficient for large sets of points [10]. Furthermore,
checking of point-wise overlappings and inclusion can
also be performed in BeSpaceD using a SAT solver.

C. Implementation

A first implementation of BeSpaceD and space-aware be-
havioral types exists. It is done in the functional programming

abstract class Invariant;

abstract class ATOM extends Invariant;

case class OR (t1 : Invariant, t2 : Invariant)
extends Invariant;

case class AND (t1 : Invariant, t2 : Invariant)
extends Invariant;

case class NOT (t : Invariant) extends Invariant;
case class IMPLIES (t1 : Invariant, t2 : Invariant)

extends Invariant;
...

case class TimePoint [T](timepoint : T)
extends ATOM;

case class TimeInterval [T]
(timepoint1 : T, timepoint2 : T) extends ATOM;
case class Event[E] (event : E) extends ATOM;

...
case class Occupy3DBox

(x1 : Int, y1: Int, z1 : Int,
x2 : Int, y2 : Int, z2 : Int) extends ATOM;

case class OccupySegment3D
(x1 : Int, y1 : Int, z1 : Int,
x2 : Int, y2 :Int, z2 : Int, radius : Int)
extends ATOM;

case class Occupy3DPoint (x:Int, y:Int, z: Int)
extends ATOM

Fig. 6. Some Scala definitions

language Scala which facilitates the break down and conver-
sion of behavioral descriptions.

Behavioral descriptions are provided as abstract data types
called Invariant. We chose this name since logical de-
scriptions are supposed to capture the abstract behavior of a
component during its entire lifetime. For look and feel, we
provide an excerpt in Fig. 6. Some logical operators, predicates
for time and events and geometric occupation of time are
shown. The description language is more expressive than the
subset used for space-aware behavioral types, e.g., time only
needs to be a type with a partial order (parameter T) whereas
in our semantics definitions above we used integers.

In the following, we discuss two features of the implemen-
tation:

Type system features: Using the type constructors above
with the behavioral specifications, our type checking algorithm
invoking the BeSpaceD tool allows us to check (i) space-
aware behavioral type compatibility and (ii) whether a space-
aware behavioral type is a subtype of another one. Note, that
behavioral descriptions can look different, but may describe
the same type. Our framework is able to decide both subtyping
and type compatibility, since we exhaustively simulate possible
behavior bounded by the a cycle time. In cases, where the
behavioral descriptions use elements that we cannot check,
we may still derive an order of types based on checkable
spatial aspects. For all non-checkable aspects, we assume
safe approximations. Hence, a type for which the behavioral
specification is uncheckable for all aspects, is equivalent to ⊥.

Speed of type checking: We implemented the space-aware
behavioral types checking as described above. Checking can
be done in acceptable time, e.g., checking two types with a
cycle time of 1000 different timepoints and 15000 spacepoints

17

for the first resp. 20000 spacepoints for the second behavioral
description was done in between seven and eight seconds on
an Intel core i5 running 2.8 GHz with 8 GB RAM using Mac
OS 10.8.4.

V. CONCLUSION

We presented behavioral types as a concept for space-
aware systems facilitating the development, commissioning,
maintenance, and refactoring of systems with cyber-physical
characteristics. Using a robot system, we motivated, formally
defined and discussed their applicability.

The approach is intended to be used in industrial automa-
tion. Facilities in the domain typically operate using cycles,
after which behavior is repeated. For example, a robot in an
assembly line may perform the same movement and operation
on a workpiece over and over again with slight variations based
on the color of a work piece. Our behavioral descriptions were
designed with that kind of behavior in mind.

Moreover, we believe that the use of behavioral type-like
specifications of cyber-physical systems is especially impor-
tant for remote collaboration of engineering teams. Ongoing
work in this direction comprises our collaborative engineering
project [8] with a focus on remote handling of industrial
installations in the Australian outback (such as mining sites)
or for oil rigs.

REFERENCES

[1] L. de Alfaro, T.A. Henzinger. Interface automata. Symposium on
Foundations of Software Engineering, ACM , 2001.

[2] F. Arbab. Abstract Behavior Types: A Foundation Model for Compo-
nents and Their Composition. Formal Methods for Components and
Objects. vol. 2852 of LNCS, Springer-Verlag, 2003.

[3] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis, Multiple viewpoint contract-based specification and design.
Formal Methods for Components and Objects. Springer-Verlag, 2008.

[4] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P.
Reinkemeier et al.. Contracts for System Design, INRIA, Rapport de
recherche RR-8147, Nov. 2012.

[5] B. Bennett, A. G. Cohn, F. Wolter, M. Zakharyaschev. Multi-
Dimensional Modal Logic as a Framework for Spatio-Temporal Rea-
soning. Applied Intelligence, Volume 17, Issue 3, Kluwer Academic
Publishers, November 2002.

[6] J. O. Blech. Ensuring OSGi Component Based Properties at Runtime
with Behavioral Types. Model-Driven Engineering, Verification, and
Validation, 2013.

[7] J. O. Blech. Towards a Framework for Behavioral Specifications of OSGi
Components. Formal Engineering approaches to Software Components
and Architectures. Electronic Proceedings in Theoretical Computer
Science, 2013.

[8] J. O. Blech, I. Peake, H. Schmidt, M. Kande, S. Ramaswamy, Su-
darsan SD., and V. Narayanan. Collaborative Engineering through
Integration of Architectural, Social and Spatial Models. Emerging
Technologies and Factory Automation (ETFA), IEEE, 2014.

[9] J. O. Blech and B. Schätz. Towards a Formal Foundation of Behavioral
Types for UML State-Machines. UML and Formal Methods. Paris,
France, ACM SIGSOFT Software Engineering Notes, August 2012.

[10] J. O. Blech and H. Schmidt. Towards Modeling and Checking the Spatial
and Interaction Behavior of Widely Distributed Systems. Improving
Systems and Software Engineering Conference, Melbourne, 2013.

[11] M. Bravetti, G. Zavattaro. A theory of contracts for strong service
compliance. Mathematical Structures in Computer Science 19(3): 601–
638, 2009.

[12] L. Caires. Spatial-behavioral types for concurrency and resource control
in distributed systems. Theoretical Computer Science, Elsevier, 2008.

[13] L. Caires and L. Cardelli.A Spatial Logic for Concurrency (Part I).
Information and Computation, Vol 186/2 November 2003.

[14] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II).
Theoretical Computer Science, 322(3) pp. 517–565, September 2004.

[15] L. Caires and H. Torres Vieira. SLMC: a tool for model checking
concurrent systems against dynamical spatial logic specifications. Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2012.

[16] G. Castagna, N. Gesbert, L. Padovani. A theory of contracts for Web
services. ACM Trans. Program. Lang. Syst. 31(5), 2009.

[17] S. Dal Zilio, D. Lugiez, C. Meyssonnier. A logic you can count on.
Symposium on Principles of programming languages, ACM, 2004.

[18] J. L. Fiadeiro, A. Lopes. Consistency of Service Composition. Fun-
damental Approaches to Software Engineering (FASE), vol. 7212 of
LNCS, Springer, 2012.

[19] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R.
Ripado, A. Girard, T. Dang, O. Maler. SpaceEx: Scalable Verification
of Hybrid Systems. Computer Aided Verification (CAV’11), 2011.

[20] S. Graf, R. Passerone, and S. Quinton. Contract-based reasoning for
component systems with rich interactions. Embedded Systems Develop-
ment, ser. Embedded Systems, vol. 20, pp. 139-154, Springer, 2014.

[21] R.H. Güting, R. Hartmut, and M. Schneider. Realm-based spatial data
types: the ROSE algebra. The VLDB JournalThe International Journal
on Very Large Data Bases 4.2 (1995): 243–286.

[22] F. Han, J. O. Blech, P. Herrmann, and H. Schmidt. Model-based
Engineering and Analysis of Space-aware Systems Communicating via
IEEE 802.11. In 39th Annual International Computers, Software &
Applications Conference (COMPSAC), pages 638–646, IEEE Computer,
2015.

[23] F. Han, J. O. Blech, P. Herrmann, H. Schmidt. Towards Verifying Safety
Properties of Real-Time Probabilistic Systems. Formal Engineering
approaches to Software Components and Architectures, 2014.

[24] P. Herrmann, J.O. Blech, F. Han, H. Schmidt. A Model-based Toolchain
to Verify Spatial Behavior of Cyber-Physical Systems. In 2014 Asia-
Pacific Services Computing Conference (APSCC), IEEE Computer.

[25] D. Hirschkoff, É. Lozes, D. Sangiorgi. Minimality Results for the Spatial
Logics. Foundations of Software Technology and Theoretical Computer
Science, vol 2914 of LNCS, Springer, 2003.

[26] S. Kambhampati and L.S. Davis. Multiresolution path planning for
mobile robots. Volume 2 , Issue: 3, Journal of Robotics and Automation,
IEEE 1986.

[27] F. A. Kraemer and P. Herrmann. Automated Encapsulation of UML
Activities for Incremental Development and Verification. In Model
Driven Engineering Languages and Systems (MoDELS), LNCS 5795,
pages 571–585. Springer-Verlag, 2009.

[28] F. A. Kraemer, V. Slåtten and P. Herrmann. Tool Support for the
Rapid Composition, Analysis and Implementation of Reactive Services.
Journal of Systems and Software, 82(12):2068–2080, 2009.

[29] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[30] E.A. Lee, Y. Xiong. A behavioral type system and its application in
ptolemy ii. Formal Aspects of Computing, 2004.

[31] B. Meyer. Applying ”Design by Contract”. Computer, 25, 10, pp. 40–51,
IEEE, October 1992.

[32] P. Nuzzo, H. Xu, N. Ozay, J. Finn, A. Sangiovanni-Vincentelli, R.
Murray, A. Donz, and S. Seshia, ”A contract-based methodology for
aircraft electric power system design,” IEEE Access, vol. 2, pp. 1-25,
2014.

[33] L. Pasquale, C. Ghezzi, C. Menghi, Ch. Tsigkanos, and B. Nuseibeh.
Topology aware adaptive security. In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, pp. 43–48. ACM, 2014.

[34] A. Platzer. Differential dynamic logic for hybrid systems. Journal of
Automated Reasoning, vol. 41.2: 143–189, Springer, 2008.

[35] A. Platzer, J.-D. Quesel. KeYmaera: A Hybrid Theorem Prover for
Hybrid Systems (System Description). International Joint Conference
on Automated Reasoning, pp. 171–178, LNCS 5195, Springer, 2008.

[36] P. Rigaux, M. Scholl, and Agnes Voisard. Spatial databases: with
application to GIS. Morgan Kaufmann, 2001.

[37] M. Wenger, J. O. Blech and A. Zoitl. Behavioral Type-based Monitoring
for IEC 61499. To appear in Emerging Technologies and Factory
Automation (ETFA), IEEE, 2015.

18

AutoFOCUS 3: Tooling Concepts for Seamless,
Model-based Development of Embedded Systems

Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, Bernhard Schätz
fortiss GmbH

Guerickestr. 25
80805 Munich, Germany
Email: hoelzl@fortiss.org

Abstract—This paper presents tooling concepts in AUTO-
FOCUS 3 supporting the development of software-intensive
embedded system design. AUTOFOCUS 3 is a highly integrated
model-based tool covering the complete development process
from requirements elicitation, deployment, the modelling of the
hardware platform to code generation. This is achieved thanks
to precise static and dynamic semantics based on the FOCUS
theory [1]. Models are used for requirements, for the software
architecture (SA), for the hardware platform and for relations
between those different viewpoints: traces from requirements to
the SA, refinements between SAs, and deployments of the SA to
the platform. This holistic usage of models allows the provision of
a wide range of analysis and synthesis techniques such as testing,
model checking and deployment and scheduling generation.

In this paper, we demonstrate how tooling concepts on different
steps in the development process look like, based on these
integrated models and implemented in AUTOFOCUS 3.

Index Terms—AutoFOCUS3, Seamless MBD, Model-Based
Development, Embedded Systems, Tooling Concept, Tool

I. INTRODUCTION

Embedded systems are increasingly developed in a model-
based fashion facilitating constructive and analytic quality
assurance via abstract component-models of the system under
development. A variety of different tools claim to support a
model-based approach; however, these tools mostly cover cer-
tain parts of the development process. In this paper, we demon-
strate the advantage of integrated models and provide tooling
concepts for various design steps. Both together leverage the
benefits of a seamless model-based approach based on well-
defined semantics. The objective of this paper is to present
such tooling concepts in an entire tool (AUTOFOCUS 3)
in its current advanced feature state, which is open source
and freely available at http://af3.fortiss.org. The
main contribution of this paper is to demonstrate the seamless
integration of the integrated models.

AUTOFOCUS 3 is built on a system model based on the FO-
CUS theory [1] that allows to precisely describe a system, its
interface, behavior, and decomposition in component systems
on different levels of abstraction. To manage the complexity
of describing such a system, different views are used for these
aspects, providing dedicated description techniques for differ-
ent structural aspects (like the decomposition of a component
in a network of subcomponents, or the hardware platform the
system is implemented on) as well as behavioral aspects (like
an exemplary execution of a system, or its complete behavior).

Since all of these views are projections of the underlying sys-
tem model, these views are directly integrated. Furthermore,
linking views allow an additional integration (like the mapping
of a component behavior to a hardware element, or a required
partial execution to a completely defined behavior). Besides
allowing a manageable precise description of a system under
development, the system model also enables different analysis
and synthesis mechanisms (like the compatibility analysis of a
partial and complete behavior or the deployment synthesis of
components to a hardware platform). To support the different
tasks in a development process, the views are furthermore
organized in viewpoints. A viewpoint serves as a construct for
managing the artifacts related to the different stakeholders of
the development process [2, Chapter 3]. The AUTOFOCUS 3
viewpoints focus on the definition of the system requirements
in a requirements analysis, the design of the software as a
network of communicating components in form of a software
architecture, and the realization of the system as scheduled
tasks executed on networked processors in form of a hardware
architecture.

The importance of integrated models, views and viewpoints
is widely recognized and influenced the definition of many
methods and frameworks in systems, software and enterprise
engineering [2], [3] and provides the basis for this paper.

The objective of AUTOFOCUS 3 is to implement tooling
concepts which demonstrate that such an approach is indeed
feasible through a ready-to-use, open-source implementation
in a pre-series quality. The current AUTOFOCUS 3 is a
revised and improved version of earlier prototypes [4], [5]
(the oldest dating back to 1996). Previous papers either report
on particular aspects of the tool [6], [7], [8], [9], or on its use
in the context of industrial case studies [10], [11], [12]. The
underlying ideas of the current AUTOFOCUS 3 incarnation
are presented in [13].

AUTOFOCUS 3 is not tied to a specific development
process, but most developments done with AUTOFOCUS 3
would typically follow the following process or variations
thereof:

1) Requirements Analysis. Requirements are elicited, doc-
umented as structured text, organized, analyzed and
refined, and incrementally formalized. Test suites with
coverage criteria can be generated from high-level spec-
ifications.

19

2) Software Architecture. The system is designed with
a component-based language specifying the application
software architecture and behavior of the system. The
design is validated using simulation, testing (which can
come as refinements from high-level generated tests) as
well as formal verification based on model-checking.

3) Hardware Architecture. The software components are
(possibly automatically) deployed on the platform, w.r.t.
certain system requirements. Schedules optimizing one
or more criteria are generated with the help of SMT
solvers.

The code is completely generated out of the previous models,
according to the deployment and chosen schedule. Further-
more, Safety Cases [14], which are documented bodies of
evidence that provide a convincing and valid argument that a
system is adequately safe for a given application in a given
environment, can be modelled. A Safety Case may contain
complex arguments that can be decomposed, corresponding
to modular system artifacts which are generally dependent on
artifacts from different viewpoints.

The paper is organized as follows: Section II presents
briefly the main modelling viewpoints that are offered by
AUTOFOCUS 3 (requirements, software architecture, and
hardware architecture). Section III presents the transversal
viewpoints which facilitate to make the connections between
the main viewpoints and thus yield a seamless integration. We
also present the benefits resulting of this integration: formal
analysis and verification, scheduling, hardware-specific code
generation. Section IV presents related work.

II. MODEL-BASED TOOLING CONCEPTS IN THE
DEVELOPMENT PROCESS

In this section we present shortly the three modelling
viewpoints supporting the process mentioned in the previous
section.

A. Requirements

In AUTOFOCUS 3, requirements are specified model-
based: requirements are not just documented as plain text;
the tool provides templates with named fields to define, for
instance, the title of a requirement, its author, a description, a
potential rationale or a review status (see Fig. 1).

Furthermore, requirement sources and glossaries can be
defined. Whenever they are referenced in a textual description
of a requirement, the entries are automatically highlighted and
the definition can be read in a pop-up. Requirements can be
hierarchically grouped by packages and organized by trace
links. Templates for scenarios and interface behavior help to
detail requirements further.

Requirements can not only be documented as text, but also
formalized and represented by machine-processable models.
Message sequence charts (MSC), see Fig. 2, can be used to
describe desired or unwanted interactions of actors.

Temporal logic expressions can be used to express desired
and unwanted behavior of the system under development.

Fig. 1. Example structured requirement

Fig. 2. Message sequence charts

As shown in Fig. 3, AUTOFOCUS 3 provides user-friendly
templates (see also [15]) to specify temporal logic expressions.

Fig. 3. Temporal logic expression

Once the requirements analysis is sufficiently advanced, it
is possible to express formalized behaviors, e.g., in the form
of state automata. A state automaton typically covers a set of
requirements rather than a single requirement.

Fig. 4. Requirements statistics and reports

20

Tooling Support. AUTOFOCUS 3 supports the user in
analyzing the requirements, for example through reports on
the review status or statistics (Fig. 4). Simple queries on the
requirements identify for example empty fields, duplicates and
inconsistent status of requirements and their trace links. A
report can be generated from AUTOFOCUS 3 that can be
used for the validation of the requirements by the stakeholders
of the system under development. State automata can be
simulated; this is typically used in both the analysis and
validation of requirements.

B. Software Architecture

The software architecture of a system under development
can be described using a classical component-based language
with a formal (execution) semantics based on the FOCUS
theory [1]: components execute in parallel according to a
global, synchronous, and discrete time clock.

Fig. 5. State automaton

The behavior of atomic components can be defined by state
automata (Fig. 5), tables (Fig. 6) or simple imperative code
(Fig. 7). Components interact with each other through typed
input and output ports which are connected by fixed channels
(Fig. 8).

Fig. 6. Table

Fig. 7. Simple imperative code

Fig. 8. Components and channels

Finally, components can be decomposed into sub-
components to allow a hierarchically structured architecture.

Tooling Support. Due to the executable formal semantics
of the component-based modeling language, AUTOFOCUS 3
facilitates the simulation of the software architecture at all
levels, of a single state automaton (Fig. 9) as well as of
composite components (Fig. 10) providing Model-in-the-Loop
simulations. Test cases can be created and simulated (Fig. 11).

Fig. 9. Simulation of state automata

Fig. 10. Simulation of composite components

Furthermore, formal analyses like reachability analysis (see
Fig. 12), non-determinism check, variable bounds checking
and the verification of temporal logic patterns (see Fig. 13)
are available: due to the formal semantics of FOCUS, AUTO-
FOCUS 3 can embed a precise translation of the software
architecture into the language of the NuSMV/nuXmv [16]
model checker. Note that this is all done in a complete
transparent way: the translation and call to the model checker
are all done in the background to provide user-friendliness

21

Fig. 11. Test suites

workflow. The results of the model checker, namely their
counterexamples, are also translated back in the same way
e.g., a counter example to a temporal logic property can be
graphically simulated.

Fig. 12. Unreachable state

Fig. 13. Verification result

C. Hardware Architecture

AUTOFOCUS 3 allows to model the hardware: processors
(or, in the automotive domain, ECUs – Engine Control Units),
buses, actuators and sensors can explicitly be modeled as
well as their connections (Fig. 14). Multi-core platforms with

Fig. 14. Hardware architecture for generic ECUs

shared memory are available (Fig. 15), as well as specific
domain specific hardware e.g., a pacemaker platform was built
specifically for building and deploying models of a pace-
maker. Similarly, automotive-specific hardware is supported
via FIBEX import/export (an XML-based standardized format
used for representing TDMA-networks).

Hardware architecture models actually deal with more than
just hardware: they typically include a platform architecture

Fig. 15. Hardware architecture for multicore, with shared memory

which encompasses execution environments from bare metal
hardware (e.g., chips and wires) over operating system envi-
ronments up to higher-level runtime environments (e.g., Java
virtual machine with remote method invocation mechanism).
For instance, the aforementioned hardware model for FIBEX
comes also with an implementation for the Flexray protocol
([17]), a time-triggered communication protocol in the auto-
motive domain.

III. SEAMLESS INTEGRATION

An integration of all of the previously mentioned viewpoints
in an integrated model, resp. tooling environment is an impor-
tant asset for the user: it avoids the effort to integrate tools,
defining their interfaces and dealing with conflicting, missing,
or badly documented tool-interfaces, semantics and standards.
However, if these viewpoints remain completely independent
or if the dependency between them remains informal as it is
the case with most existing tools, then only very few benefits
result from its integration. Instead, AUTOFOCUS 3 allows for
model integration leading to a consistent, integrated system
design. In the following, we present these models as well as
analysis and synthesis techniques that demonstrate the benefits
of AUTOFOCUS 3 resulting from this strong integration.

A. Tracing Requirements to the Software Architecture

Traces. The integration of requirements (Section II-A) and
the software architecture (Section II-B) can be achieved in
various ways. A first simple integration is the use of informal
traces: for each requirement, traces to components of the
software architecture can be added (see Fig. 16). These traces

Fig. 16. Traces to the software architecture

indicate that the component(s) linked to the requirement shall
fulfill the requirement. Such traces are automatically visible
(and navigable) at the level of the component architecture (Fig.
17). These traces can be used to display information to the
user. For example, a global visualization of the traces, both
between requirements and between requirements and elements
of the software architecture, is available and allows the user

22

Fig. 17. Traces, seen from the software architecture

to have an overall picture of the intra- and inter-viewpoint
relations (Fig. 18).

Fig. 18. Traces visualization

Refinements. Traces provide informal connections between
model elements, which is to be expected since most require-
ments are (at least at first, or partly) informal. However, as
explained in Section II-A, requirements elicitation can go far
enough that a formalized behavior is obtained, e.g., that a
state automaton is given. In such cases, traces to the software
architecture can be enhanced into refinements describing not
only a mere connection, but even expressing a formal relation
between the requirements-level behavior description and a
software-level implementation of it. A refinement is simply
defined by expressing how values at the requirement level
shall be transformed into values at the software level and
vice versa (Fig. 19). Such refinements can then be used

Fig. 19. Refinement definition

to automatically derive implementation-level test suites from
requirements-level ones [18], [19] (which can be automatically
generated according to some coverage criteria) or to verify
by model checking that a component indeed implements a
functionality.

Connecting MSCs to the Software Architecture. MSCs
can be used in requirements in a semi-formal setting, i.e., the
MSC entities represent actors identified in the requirements.
Or they can be used in a completely formal setting: when
the requirement elicitation is advanced enough, MSC entities
can refer to components and the messages between entities
can denote signals exchanged through channels. This can be
expressed directly in the MSC editor, e.g., Fig. 20 shows
how the properties of an MSC entity named “Merge Entity”
refers to a component named “MergeComponent”. The same

Fig. 20. Connecting MSCs to components

holds for the messages which can be connected to ports of the
corresponding components.

Once these connections are provided, AUTOFOCUS 3
allows to verify, by translating the MSC into a temporal logic
formula and by using model checking (in the style of [20]),
that the given MSC is indeed feasible in the software architec-
ture with the referenced components and ports. When feasible,
the resulting run can be simulated in AUTOFOCUS 3.

B. Deployment of the Software Architecture on the Platform

Deployment of Software to Hardware Components. The
integration of the software (Section II-B) and hardware archi-
tecture (Section II-C) is done by using deployment models that
describe the integration between different viewpoints. Such
deployments map components from the software viewpoint to
the hardware viewpoint. Furthermore, the deployment model
not only contains the mapping of components but also the
allocation of logical ports of a software component to their
corresponding hardware “ports”, namely hardware sensors for
sensor values and hardware actuators for actuator outputs.
Fig. 21 illustrates this deployment. Note that the hierarchical
structure of components makes it impossible to have such a
simple GUI for deployments in AUTOFOCUS 3, making the
actual interface different than the one presented in this figure.

Design Space Exploration for Model Synthesis. Once a
deployment is defined, Design Space Exploration methods can
be applied to define the scheduling of the software components
on their respective hardware components. AUTOFOCUS 3
provides support to achieve this step by automated synthesis.
Actually, even deployments can be automatically synthesized
as well as complete hardware architectures, according to vari-
ous system requirements, e.g. timing, safety, etc. To do so we
use Design Space Exploration (DSE) techniques. In [21], we
demonstrate how such a joint generation of deployments and
schedules can be efficiently done for shared-memory multicore
architectures. Each solution of such a synthesis process already

23

Fig. 21. Deployment (illustration)

Fig. 22. Design Space Exploration results

contains a possible deployment, which in turn already contains
a valid schedule (cf. Fig. ??). This reduces the effort and
complexity in a the workflow for the identification of valid
system designs.

Our approach relies on a symbolic encoding scheme, which
enables to generate the desired models. The symbolic encoding
is done by defining a precedence graph of components based
on the software architecture as a set of tasks and messages
and their connections including further information concerning
predefined allocations to hardware architecture.

Fig. 23. Design Space Exploration Workflow

The proposed approach has proven to perform in a scalable
fashion for practical sizes ([21]), as it relies on a symbolic

formalization encoding the deployment synthesis as a satisfia-
bility problem over Boolean formulas and linear arithmetic
constraints. A state-of-the-art satisfiability modulo theories
(SMT) solver, namely Z3 [22], is used to compute these
solutions. Using Design Space Exploration techniques during
system development involves the software engineer/designer
itself. The system designer is often not just interested in an
automatically synthesized solution, but even more in various
solutions that can be compared. Therefore, visualization tech-
niques [23] are part of a Design Space Exploration approach
that leverages to guide the system designer through the solu-
tion space.

Furthermore, we propose a tooling concept that includes
a Design Space Exploration Workflow (Fig. 23) enabling to
use intermediate results for next optimization steps, e.g. a
Generated Deployment or a Scheduling Synthesis.

C. Holistic Code Synthesis for Deployed Systems

Once the software architecture, the platform architecture,
and a (manually defined or automatically synthesized) de-
ployment model are defined, AUTOFOCUS 3 provides the
possibility to have holistic code generation.

Fig. 24. Generated C code for the deployed system

The input to the generation facility is the mapping of
software components to platform execution units. The result
of the code generator is a full implementation of the system
model including configuration files for the underlying operat-
ing system as well as bus message catalogs and compile and
build environment configurations (see Fig. 24).

The code generator consists of two parts: the software ar-
chitecture general purpose generator and the platform-specific
target generator. The former translates the different types of
software behavior specifications into an intermediate code
model. From this intermediate representation the final system
code (see Fig. 25) is generated by the ECU specific code
generator using the ECU target language (e.g. C, Java, VHDL).

Note that these specific generators can ignore the intermedi-
ate implementation in cases the original behavior specification

24

Fig. 25. Main loop of the ECU running the Merge component

can be implemented more efficiently when applying a trans-
formation to the target language and/or hardware directly (e.g.,
a state-less computation component might be implemented
efficiently on a FPGA sub-unit available to the ECU).

Every platform integrated in AUTOFOCUS 3 must provide
its extension to the target generator as well as a justification
that it upholds the semantics of the model of computation
of the software architecture. Likewise, the software code
parts must also be behaviorally equivalent to these formal
semantics. Proving such semantic equivalences can be cum-
bersome [24], but is absolutely necessary in order to avoid
breaking functional properties established by earlier validation
and verification methods.

D. Safety Cases

To argue about the safety of systems, Safety Cases are
a proven technique that allows a systematic argumentation.
Safety Cases may contain complex arguments that can be
decomposed corresponding to modular system artifacts which
are generally dependent on artifacts from different viewpoints:
e.g., requiring redundancy for safety has an impact both on
software and on hardware architectures. Such assurance cases

Fig. 26. GSN-based Safety Cases

are generally not well integrated with the different system
models, resp. viewpoints. To provide a comprehensible and
reproducible argumentation and evidence for argument cor-
rectness, we make use of the integrated system model. Since
AUTOFOCUS 3 provides such integrated models at its core, it
leverages the possibility to tightly connect these system models
with safety case artefacts in order to form a comprehensive
safety argumentation. In AUTOFOCUS 3 we provide safety
case modelling based on Goal Structuring Notation (GSN)
[25], as illustrated Fig. 26. Different safety case artifacts can be

connected to their corresponding system artifacts (e.g., a safety
goal to a requirement from the requirement viewpoint). This –
for instance – enables to automatically guide the construction
of the system architecture w.r.t. the safety claims, as we
demonstrated in [26].

IV. RELATED WORK

There are many model-based tools which target the devel-
opment/architecting of embedded systems, but none of them,
to our knowledge, presents all the features of AUTOFOCUS 3.

Papyrus [27] with Moka1 allows the execution of models
based on the fUML [28] Semantics. Code generation is, as far
as we know, only partly implemented, but considering the fast
growth of Papyrus and Moka, this is should only be a question
of time. A more significant difference to AUTOFOCUS 3
is that AUTOFOCUS 3 integrates all the modules into a
unified software instead of being made of separate modules
for diagram editing (Papyrus) and execution semantics (Moka).
This has a significant impact on the verification (either testing
or formal verification): in AUTOFOCUS 3, the semantics for
execution and verification are intrinsically identical; in Papyrus
additional work is required to synchronize the semantics of
Moka and the verification tool, for example Diversity2 – a
verification tool typically used together with Papyrus.

The widespread commercial tool IBM Rational Rhapsody3

has been offering for a long time a complete tool chain until
code generation. Rhapsody has a precisely defined semantics
[29]. It has even been used as a basis to provide integrated
formal verification [30]. However, it is not as tightly integrated
as AUTOFOCUS 3, not open source and is essentially used for
commercial use and not as a platform for research experiments
as AUTOFOCUS 3. The design space exploration viewpoint
of AUTOFOCUS 3 is a research tooling concept which is
a good example of such an experiment which differenti-
ates AUTOFOCUS 3 from Rhapsody. Similar considerations
hold for Bridgepoint (or xtUML)4, LieberLieber Embedded
Engineer5 and the Enterprise Architect (EA)6 that supports
many modeling languages such as UML or SysML. ADORA
(Analysis and Description of Requirements and Architecture)7

is a research tool that supports an object-oriented method
and a modeling language also called ADORA [31]. ADORA
targets requirements and the software architecture of a system.
Hardware is not included.

Ptolemy II [32] is similar to AUTOFOCUS 3 in the sense
that it is based on formal semantics and provides code genera-
tion. Like AUTOFOCUS 3, it is an open source and academic
tool which is used for research. However, Ptolemy targets
only the software architecture: neither requirements nor the
hardware are integrated. This arises from the fact that the

1https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
2http://projects.eclipse.org/proposals/diversity
3www-01.ibm.com/software/awdtools/rhapsody/
4https://xtuml.org/
5http://www.lieberlieber.com/en/embedded-engineer-for-enterprise-

architect/
6http://www.sparxsystems.com/products/ea/index.html
7http://www.ifi.uzh.ch/rerg/research/adora.html

25

development of embedded systems is not the main focus of
Ptolemy.

The SCADE Suite8 is a commercial tool well-known in
the development of control software, for example in avionics.
While the SCADE Suite9 offers a lot of functionality with
respect of simulation, verification and code generation, at the
moment it does not provide any support for requirements.

V. CONCLUSION

In this paper, we presented AUTOFOCUS 3 and the tooling
concepts that it supports at different steps in the development
process. AUTOFOCUS 3 is based on a completely integrated
model-based development approach from requirements elici-
tation to deployment on the platform of code which allows to
generate code completely (i.e., without further human modi-
fication) from the models. Based on well-defined semantics,
AUTOFOCUS 3 demonstrates how integrated models are
enablers for a wide range of analysis and synthesis tech-
niques such as testing, model checking and deployment and
scheduling synthesis. Tooling concepts in AUTOFOCUS 3
demonstrate how to make use of these techniques in a model-
based development process.

REFERENCES

[1] M. Broy and K. Stølen, Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[2] K. Pohl, H. Hönninger, R. Achatz, and M. Broy, Model-Based Engi-
neering of Embedded Systems: The SPES 2020 Methodology. Springer
Publishing Company, Incorporated, 2012.

[3] U.S. Office of Management and Budget and U.S. Office of E-
Government and IT, “A Common Approach to Federal Enterprise
Architecture.”

[4] F. Huber, B. Schätz, A. Schmidt, and K. Spies, “AutoFocus - A Tool for
Distributed Systems Specification,” in Formal Techniques in Real-Time
and Fault-Tolerant Systems (FTRTFT), ser. LNCS, vol. 1135. Springer
Verlag, 1996, pp. 467–470.

[5] F. Hölzl and M. Feilkas, “Autofocus 3: A scientific tool prototype
for model-based development of component-based, reactive, distributed
systems,” in Proceedings of the 2007 International Dagstuhl Conference
on Model-based Engineering of Embedded Real-time Systems, ser.
MBEERTS’07. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 317–
322.

[6] S. Teufl, D. Mou, and D. Ratiu, “MIRA: A tooling-framework to
experiment with model-based requirements engineering,” in 21st IEEE
International Requirements Engineering Conference, RE, Rio de Janeiro-
RJ, Brazil, 2013, pp. 330–331.

[7] A. Campetelli, F. Hölzl, and P. Neubeck, “User-friendly model checking
integration in model-based development,” in 24th International Confer-
ence on Computer Applications in Industry and Engineering (CAINE),
November 2011.

[8] S. Voss, J. Eder, and F. Hölzl, “Design space exploration and its
visualization in AUTOFOCUS3,” in Gemeinsamer Tagungsband der
Workshops der Tagung Software Engineering, Kiel, Deutschland, 25.-
26. Februar 2014, pp. 57–66.

[9] T. Kelly, C. Carlan, and S. Voss, “Model-based safety cases in autofo-
cus3,” in 1st International Workshop on Assurance Cases for Software-
intensive Systems (ASSURE), 2013, tool demonstration.

[10] M. Feilkas, A. Fleischmann, F. Hölzl, C. Pfaller, K. Scheidemann,
M. Spichkova, and D. Trachtenherz, “A top-down methodology for the
development of automotive software,” Technische Universität München,
Tech. Rep. TUM-I0902, January 2009.

8http://www.esterel-technologies.com/products/scade-suite/
9http://www.esterel-technologies.com/products/scade-suite/

[11] M. Feilkas, F. Hölzl, C. Pfaller, S. Rittmann, B. Schätz, W. Schwitzer,
W. Sitou, M. Spichkova, and D. Trachtenherz, “A Refined Top-
Down Methodology for the Development of Automotive Software
Systems: The KeylessEntry System Case Study,” Technische Universität
München, Tech. Rep. TUM-I1103, Februar 2011.

[12] W. Böhm, M. Junker, A. Vogelsang, S. Teufl, R. Pinger, and K. Rahn, “A
formal systems engineering approach in practice: an experience report,”
in 1st International Workshop on Software Engineering Research and
Industrial Practices, SER&IPs, Hyderabad, India, June 2014, pp. 34–41.

[13] B. Bernhard Schätz, “Model-based development of soft-
ware systems: From models to tools.” Habilitation Thesis,
Technische Universität München, 2009. [Online]. Available:
http://www4.in.tum.de/ schaetz/papers/Habiliationsschrift.pdf

[14] P. Bishop and R. Bloomfield, “A methodology for safety case devel-
opment,” in Safety-Critical Systems Symposium. Birmingham, UK:
Springer-Verlag, ISBN 3-540-76189-6, Feb 1998.

[15] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifica-
tions for finite-state verification,” in ICSE, 1999.

[16] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in Computer Aided Verification. Springer International
Publishing, 2014, pp. 334–342.

[17] F. Consortium, “Flexray communications system protocol specification,
version 2.1, revision A,” URL http://www.flexray.com, 2005.

[18] D. Mou and D. Ratiu, “Binding requirements and component architec-
ture by using model-based test-driven development,” in Twin Peaks of
Requirements and Architecture (Twin Peaks), 2012.

[19] J. O. Blech, D. Mou, and D. Ratiu, “Reusing test-cases on different levels
of abstraction in a model based development tool,” in MBT, 2012, pp.
13–27.

[20] S. Li, S. Balaguer, A. David, K. Larsen, B. Nielsen, and S. Pusinskas,
“Scenario-based verification of real-time systems using uppaal,” Formal
Methods in System Design, vol. 37, no. 2-3, pp. 200–264, 2010.

[21] S. Voss and B. Schätz, “Scheduling shared memory multicore architec-
tures in AF3 using Satisfiability Modulo Theories,” in MBEES, 2012,
pp. 49–56.

[22] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” Tools and
Algorithms for the Construction and Analysis of Systems, pp. 337–340,
2008.

[23] S. Voss, J. Eder, and F. Hölzl, “Design space exploration and
its visualization in AUTOFOCUS3,” in Gemeinsamer Tagungsband
der Workshops der Tagung Software Engineering, Kiel, Deutschland,
25.-26. Februar 2014 2014, pp. 57–66. [Online]. Available: http://ceur-
ws.org/Vol-1129/paper33.pdf

[24] F. Hölzl, “The AutoFocus 3 C0 Code Generator,” Technische Universität
München, Tech. Rep. TUM-I0918, 2009.

[25] T. Kelly and R. Weaver, “The goal structuring notation – a safety
argument notation,” in Proc. of Dependable Systems and Networks 2004
Workshop on Assurance Cases, 2004.

[26] S. Voss, C. Cârlan, B. Schätz, and T. Kelly, “Safety case driven model-
based systems construction,” in EITEC, 2015.

[27] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, “Papyrus: A UML2 tool
for domain-specific language modeling,” in Model-Based Engineering
of Embedded Real-Time Systems - International Dagstuhl Workshop,
Dagstuhl Castle, Germany, November 4-9 2007, pp. 361–368, revised
Selected Papers.

[28] T. O. M. Group, Semantics of a Foundational Subset for Executable
UML Models (FUML). Pearson Higher Education, 2013. [Online].
Available: http://www.omg.org/spec/FUML/1.1

[29] D. Harel and H. Kugler, “The rhapsody semantics of statecharts (or, on
the executable core of the uml),” in Integration of Software Specification
Techniques for Applications in Engineering, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2004, vol. 3147, pp.
325–354.

[30] I. Schinz, T. Toben, C. Mrugalla, and B. Westphal, “The rhapsody uml
verification environment,” in Proceedings of the Software Engineering
and Formal Methods, Second International Conference, ser. SEFM.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 174–183.

[31] M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with adora,”
Inf. Syst., vol. 27, no. 6, pp. 425–444, Sep. 2002.

[32] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. R. Sachs, and Y. Xiong, “Taming heterogeneity - the ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

26

Introduction to WUCOR (1st International Workshop
on UML Consistency Rules)

Damiano Torre (Primary Contact)
Carleton University

Software Quality Engineering Laboratory
Ottawa, Canada

University of Castilla-La Mancha
ALARCOS Research Group

Ciudad Real, Spain
dctorre@sce.carleton.ca

Yvan Labiche
Carleton University

Software Quality Engineering Laboratory
Ottawa, Canada

labiche@sce.carleton.ca

Marcela Genero
University of Castilla-La Mancha

ALARCOS Research Group
Ciudad Real, Spain

marcela.genero@uclm.es

Maged Elaasar
Carleton University

Software Quality Engineering Laboratory
Ottawa, Canada

melaasar@gmail.com

INTRODUCTION

The Model Driven Architecture (MDA) [1] is an approach
to the development of software systems that promotes the use
of transformations between successive models from
requirements to analysis, to design, to implementation, and to
deployment [2]. Much attention has been paid to MDA by
academia and industry in recent years [3], which has resulted in
models gaining more importance in software development. The
Unified Modeling Language (UML) [4] is the Object
Management Group’s specification most frequently used and is
the de-facto standard modeling language for object-oriented
modeling and documentation [5]. It is the most commonly used
modeling language to implement the MDA although it should
not be used in every single software development project [6].
The UML provides 14 diagram types [4] that can be used to
describe a system from different perspectives (e.g., structure,
behavior) or abstraction levels (e.g., analysis, design), which
helps deal with complexity and distribute responsibilities
between stakeholders. Those diagrams help support many
software development activities, such as: transforming an
analysis model into a design model, transforming a design
model into an implementation, generating documentation,
model-driven testing, model-driven validation and verification,
performance estimation, and schedulability analysis. Since the
various UML diagrams describe different perspectives of one,
and only one, software under development, they strongly
depend on each other and hence must be consistent. To be
successful, any software development activity that consumes a
UML model made of diagrams, such as the ones mentioned
earlier, requires that those diagrams be consistent. As UML is
not a formal notation, inconsistencies may arise in the UML
specification of a complex software system when such
specification requires multiple diagrams to describe different
perspectives of the software [7]. When UML diagrams portray
contradicting or conflicting meaning, the diagrams are said to

be inconsistent [8]. Such inconsistencies may be a source of
faults in the software system [9]. It is therefore paramount that
they be detected, analyzed and fixed [10], which requires that
consistency between the diagrams of a UML model be first
specified. One can find some UML diagram consistency
specifications in the UML standard itself, where they are often
referred to as well-formedness rules. As discussed in the
literature, one can reason about consistency according to
different dimensions: Horizontal vs. Vertical vs. Evolution
Consistency, Syntactic vs. Semantic consistency, and
Observation vs. Invocation consistency [11]. One can find
consistency specification in the UML standard itself. One can
also imagine consistency specification that is specific to a
domain (e.g., telecom, aerospace), to an organization, to a
project or a team. Even though there is a need for UML
diagram consistency, even though there exist different ways to
reason about consistency rules, one can observe from the
literature [11] that: 1) there is no well-accepted set, as
complete as possible, of consistency specification rules, or
simply rules, for UML diagrams (beyond the small set of well-
formedness rules in the standard specification); 2) many
researchers have proposed, explicitly or implicitly, rules to
detect inconsistencies, without any effort to validate those
rules; 3) the majority of the consistency rules target a small
subset of the UML diagrams (mostly, class, sequence, and state
machine diagrams); 4) a non-negligible set of consistency rules
are provided over and over again by researchers (instead of, for
instance, referring to an accepted list of such rules); 5) a non-
negligible set of consistency rules presented by researchers are
actually included in the UML standard itself; 6) the UML
standard is far from providing a comprehensive set of
consistency rules; 7) the vast majority of consistency rules are
horizontal and syntactic (other dimensions are barely used in
those rules). These observations motivated WUCOR, during
which we sought the opinion of experts about the consistency
rules researchers have been defining in the literature, and the

27

rules that may be missing. The goal of this workshop has been
to gather community input and feedback on UML consistency
rules in general. WUCOR provided an opportunity for
researchers who have been working on UML consistency, or
whose (research) activities require consistent diagrams, to
engage with each other in a highly interactive venue so that the
group could validate the rules that have been collected and
pave the path for future initiatives. The objective of the
workshop has been to bring together any one, either from the
industry or academia, interested in consistency rules between
UML diagrams of a given model, and to provide a platform for
discussions, interactions and collaborations regarding this
topic. One of the starting point for the discussion groups was
the set of 190 unique consistency rules we have coalesced in
our work [12]. We also asked for expert opinion about a subset
of those rules that are deemed paramount, and should therefore
always be enforced, and other rules that can be considered
optional. The final program of the WUCOR is presented in
TABLE I.

TABLE I. SCHEDULE OF WUCOR

Time Duration Activity
8:45am 5min Welcome to WUCOR

8:50am 25min

Bernhard Hoisl and Stefan Sobernig.
Consistency Rules for UML-based Domain-
specific Language Models: A Literature
Review

9:15am 25min
Dan Chiorean, Vladiela Petrascu and Ioana
Chiorean. Proposal for Improving the UML
Abstract Syntax

9:40am 40min
1st Actvity about dimensions of UML
Consistency

10:20am 25min Coffe Break

10:45am 1hr 2st Actvity about UML diagrams involved in
UML Consistency

11:45am 1hr15min Lunch Break
1:00pm 10min Introduction to UML Consistency Rules

1:10pm 1hr50min
3rd Activity about UML consistency rules in
Model-Driven Development

3:00pm 20min Coffe Break
3:20pm 1hr25min Discussion and Presentation of Results
4:45pm 15min Conclusion, Summary and Next Steps

The WUCOR proceedings collect the two papers presented

at the workshop (shown in TABLE I). Those submitted papers
were peer-reviewed by three independent reviewers. The two
accepted papers discuss 1) a review about UML-based
Domain-specific Language Models, and 2) a proposal for
Improving the UML Abstract Syntax; both papers were
considered very related to UML Consistency rules issues.

We would like to thank the authors for submitting their
papers to WUCOR. We are also grateful to the members of the
Program Committee and to the MODELS 2015 organizers for
their support during the workshop organization. For more
information about WUCOR please visit the workshop website
at https://wucor.wordpress.com. The Program Committee was
composed by :

• Steve Cook, Hidden Symmetry Ltd, UK

• Alexander Egyed, Johannes Kepler University, Austria
• Kenn Hussey, Committerati Consulting, Canada
• Zbigniew Huzar, Wroclaw University of Technology,

Poland
• Robert Karban, Jet Propulsion Laboratory, USA
• Florian Noyrit, CEA LIST, France
• Richard Paige, University of York, UK
• Gianna Reggio, Università di Genova, Italy
• Nicolas Rouquette, Jet Propulsion Laboratory, USA
• George Spanoudakis, City University London, UK
• Mehrdad Sabetzadeh, University of Luxembourg,

Luxembourg
• Miroslaw Staron, University of Gothenburg, Sweden

ACKNOWLEDGMENTS

This work has been funded by the SIGMA-CC project
(Ministerio de Economía y Competitividad and Fondo Europeo
de Desarrollo Regional FEDER, TIN2012-36904) .

REFERENCES

[1]. Mukerji, J., Miller, J.: Overview and guide to OMG's
architecture. Object Management Group (2003),
http://www.omg.org/mda/

[2]. Thomas, D.: MDA: Revenge of the modelers or UML
utopia? IEEE Software 21, 15–17 (2004)

[3]. Lucas, F.J., Molina, F., Toval, A.: A systematic review of
UML model consistency management. Information and
Software Technology 51, 1631-1645 (2009)

[4]. OMG: OMG Unified Modeling LanguageTM -
Superstructure Version 2.5. Object Management Group
(2013)

[5]. Pender, T.: UML Bible (2003)
[6]. Petre, M.: UML in practice. Proceedings of the 35th

International Conference on Software Engineering, pp. 722-
731. (2013)

[7]. Ibrahim, N., Ibrahim, R., Saringat, M.Z., Mansor, D.,
Herawan, T.: Consistency rules between UML use case and
activity diagrams using logical approach. International
Journal of Soft. Engin. and its Applicat. 5, 119-134 (2011)

[8]. Simmonds, J., Straeten, R.V., Jonkers, V., Mens, T.:
Maintaining Consistency between UML Models using
Description LogicZ. RSTI – LMO’04 10, 231-244 (2004)

[9]. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing
Consistency Checking between Software Views.
Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture, pp. 169-180. (2005)

[10].Spanoudakis, G., Zisman, A.: Inconsistency management
in software engineering: Survey and open research issues.
In: Chang, S.K. (ed.) Handbook of Software Engineering
and Knowledge Engineering, pp. 329-380. (2001)

[11].Torre, D., Labiche, Y., Genero, M.: UML consistency
rules: a systematic mapping study. (EASE 2014). (2014)

[12].Torre, D., Labiche, Y., Genero, M., Elaasar, M.: A
systematic identification of consistency rules for UML
diagrams. Carleton University (2015),
http://goo.gl/TFMgnE

28

Consistency Rules for UML-based Domain-specific
Language Models: A Literature Review

Bernhard Hoisl and Stefan Sobernig
Institute for Information Systems and New Media

Vienna University of Economics and Business (WU Vienna)
{bernhard.hoisl, stefan.sobernig}@wu.ac.at

Abstract—The Unified Modeling Language (UML) has become
a popular implementation vehicle for domain-specific modeling
languages (DSMLs). A UML-based DSML is typically defined by
multiple specification artifacts, i.e. inter-related models, describ-
ing different views on the DSML. These separate, yet inter-related
models are potential sources of specification inconsistencies which
bear a high risk of affecting all subsequent DSML development
phases (e.g., platform integration). In a large-scale literature
review of more than 8,000 publications, we collected evidence
on consistency-rule usage for 84 UML-based DSML designs. In
this paper, we report on the identified patterns of consistency-
rule usage (e.g., rule formalization, rule scopes, and supported
development activities) and specification defects which challenge
the use of consistency rules in DSML specifications.

I. INTRODUCTION

Domain-specific modeling languages (DSMLs) are spe-
cialized modeling languages tailored primarily for graphical
modeling tasks in a particular application domain to support
the model-driven development (MDD) of software systems for
this domain. As a special kind of domain-specific languages
(DSLs), DSMLs provide end users with at least one graphical
or diagrammatic concrete syntax—in contrast to, for example,
textual or form-/table-based DSLs (see, e.g., [1], [2]).

In recent years, developing DSMLs based on the Meta
Object Facility (MOF [3]) and integrated with the Unified
Modeling Language (UML [4]) has become a widely adopted
option (see, e.g., [5], [6]). A UML-based DSML tailors its host
language (i.e. the UML) to the needs of a particular domain
(e.g., by introducing domain-specific model elements or by
restricting the semantics of existing UML elements). These
domain-specific aspects are specified on the level of a DSML’s
language model, which captures all relevant domain abstrac-
tions and specifies the relations between these abstractions
(see, e.g., [7]). To tailor a DSML’s language model, language-
model constraints are employed, for example, specified by
informal textual annotations (e.g., UML comments [4]) or in
a formal language (e.g., OCL [8]).

In the DSML context, consistency rules are devised to
ensure that the different artifacts of a UML-based DSML do
not contradict each other due to conflicting syntax and seman-
tics specifications (see, e.g., [9]–[11]). A DSML specification
covers also the phases of defining the DSML’s concrete syntax,
behavior, and platform integration [7]. The result of such a
DSML specification are multiple interdependent specification
artifacts. For example, DSML-specific constraints—as part

of a DSML’s language model—need to be enforced for all
instance models to ensure compliance with their respective
metamodel (i.e. the DSML’s language model). Furthermore,
the UML provides 14 different model and diagram types to
specify different (structural and behavioral) concerns of a
software system [4]. DSMLs can build on multiple model and
diagram types at the same time, therefore, putting emphasis
on inter-model consistency.

In a recent systematic literature review (SLR), we ex-
tracted design decisions from UML-based DSMLs and col-
lected the corresponding DSML specification artifacts [12].
The review is a data source for two aspects of consistency
rules for UML-based DSML specifications. First, we ex-
tracted data on consistency-rule usage in DSML specifications.
From 84 DSML designs, we retrieved details on employed
consistency-rule formats, DSML language-model formaliza-
tions, consistency-rule scopes, supported software-engineering
activities, the underlying UML model and diagram types,
and supporting software tools. This complements the work
on consistency rules by [10], [11] from the perspective of
DSMLs realized as UML extensions. Second, the review
spotted critical specification defects for UML-based DSMLs.
These defects in the UML formalization of a DSML’s language
model (e.g., incomplete and insufficient specification of UML
profiles, incorrect use of constraint-language expressions) re-
sult in issues for defining consistency rules.

In summary, the key contributions of this paper are the
extraction, analysis, and discussion of consistency-rule usage
in UML-based DSML designs. This complements the work by
Torre et al. ([10], [11]) which focusses on UML in general.
In addition, the paper highlights challenges specific to UML-
based DSMLs when it comes to providing an infrastructure
for defining consistency rules, including recommendations to
avoid commonly observed pitfalls in DSML development. On
top, we provide descriptive findings on (extended) UML usage
(e.g., UML diagram types) adding to the current body of
empirical research on UML (see, e.g., [13], [14]).

The remainder of the paper is structured as follows. Sec-
tion II summarizes important background information with
respect to DSML development, SLR procedure, and specifica-
tion consistency in this context. Results of the data-extraction
process are presented in Section III, limitations of the SLR in
Section IV. Section V puts the extracted data on consistency-
rule usage in DSMLs into perspective and discusses the role

29

Language-model
definition

Language-model
formalization

Language-model
constraints

Concrete-syntax
definition

Behavior
specification

Platform
integration

Define DSML
language model

Define DSML
concrete syntax

and behavior

DSML platform
integration

Fig. 1. Language-model driven DSML development process.

of specification defects in this context. Our study is compared
to related work in Section VI and Section VII concludes the
paper.

II. BACKGROUND

The following three sections recap details of developing
DSMLs (Section II-A), conducting the SLR (Section II-B), and
evaluated UML consistency aspects (Section II-C) important
to interpret the results presented in Section III.

A. DSML Development

DSML development is an exploratory, iterative process. A
process view (such as [7]) treats DSML development as a
complex flow of characteristic development activities (e.g.,
language model definition, constraint specification etc.). We
focus on a language-model driven DSML development activ-
ity which discriminates between the following development
phases [7]: define DSML language model, define DSML
concrete syntax and behavior, and DSML platform integration
(see Fig. 1).

In our work of evaluating consistency rules for UML-based
DSMLs, we target the phase of the domain-specific language
model definition (see Section I and Fig. 1). In this first phase
of a language-model driven DSML development activity, a
core language model and the corresponding language model
constraints for the selected target domain are defined. By
following a domain analysis method, such as domain-driven
design (see, e.g., [15]), domain abstractions are identified and
form the language model of a DSML. This initial language-
model definition may not be UML-compliant (e.g., textual
descriptions, informal models) and need to be turned into
a formal language model. By formal model, we refer to
a realization of the language model using a well-defined
metamodeling language such as the MOF/UML metamodeling
infrastructure. A metamodeling language is itself based on
a well-defined and well-documented language model (i.e.
CMOF for the UML metamodel [3]) and provides at least one

well-defined and well-documented concrete syntax to define
an own language model (e.g., the CMOF diagram syntax to
specify a UML metamodel extension).

Because the language model often cannot (or only insuffi-
ciently) capture all restrictions and/or semantic properties of
the DSML elements, language-model constraints are added.
These language-model constraints prevent the language model
to be formalized incomplete, ambiguous, and/or inconsistent
with other DSML artifacts. As such, language-model con-
straints form the basis for the definition of consistency rules
and are specified, for example, by employing special-purpose
constraint languages (such as the OCL [8]) or unstructured
textual annotations.

After the definition of a DSML’s language model, the
concrete syntax of a DSML is defined (i.e. suitable notation
symbols as well as composition and production rules) which
serves as a DSML’s user interface (see Fig. 1). In parallel, the
behavior of DSML language elements is specified to produce
the behavior intended by the DSML designer. In the last phase,
all artifacts defined for a DSML are integrated into a selected
software platform to produce platform-specific (executable)
models (e.g., by employing model transformations to generate
source code [16]).

B. Systematic Literature Review

We performed a systematic literature review (SLR) to distill
generic design decisions from UML-based DSML design
documents for the different development phases discussed in
the former section. Here, we briefly summarize the process
and the results of the SLR; details are published in [12] and
in [17]. The main goal of the SLR was to identify a maximum
number of high-quality scientific publications which document
design decisions on UML-based DSMLs as primary sources.

The SLR was performed in three steps. First, to provide a
basis for evaluation of the search procedure, we established
a corpus of reference publications as quasi-gold standard
(QGS [18]). In essence, a QGS is a set of hand-picked
publications considered relevant for a specific SLR. In the
end, the constructed QGS corpus consisted of 37 publications
(24 journal and 13 proceedings articles). Based on these
QGS publications, the relevant search engines for the au-
tomated search were identified (SpringerLink, IEEE Xplore,
Scopus, and ACM Digital Library) and a search string for
the automated search was constructed (the query expression
represented 544 unique pairs of search terms).

Second, we performed the actual engine-based publication
search using the search string developed in the previous step
on the four selected search engines. The search execution
yielded 5,778 search hits split into four result sets, one for each
of the search engines. After enforcing the QGS-based capping,
having evaluated the papers based on our selection criteria
and having completed the quality assessment, 73 papers rep-
resenting 1.3% of the original search hits remained. For this
final publication set, we extracted the publication-specific data
(15 metadata items for each paper, including bibliographical
entries, selection decision, and decision-mining entries).

30

Third, based on the bibliographical records extracted from
the 73 publications selected up to this point, we then per-
formed a backward-snowballing search. Backward snow-
balling is the practice of manually identifying additional
publications for selection from the reference lists (citations)
of a given set of publications [19]. Via the backward snow-
balling search, we reviewed a total of 2,337 references. After
evaluation and quality assessment of the papers, eight were
included into the paper corpus (0.3%). From these additional
publications, we extracted publication-specific data in the same
way as was done for papers retrieved by the main search.

We considered a total of 81 articles as relevant: 73 from
main search plus eight from snowballing. To complete the
paper corpus, we re-considered the QGS publications not
retrieved by the main and the snowballing searches for in-
clusion based on the selection criteria. This way, we classified
two QGS journal articles and one QGS conference article as
relevant. We so arrived at a paper corpus of 84 publications
(the complete list of publications is provided in [20]). The
corpus was composed of 54 conference articles (64%) and 30
journal articles (36%).

C. Consistency in UML-based DSMLs

In this paper, we investigate six aspects of model-level
consistency in UML-based DSML designs in line with [10],
[11].

Language-model formalization: After the identification of
language-model concepts, the corresponding definitions serve
as input for the phase of formalizing the domain constructs into
a MOF/UML-compliant language model (see Section II-A).
As we focus on consistency rules at the level of a DSML’s
language model, we establish how the domain abstractions are
formalized using the MOF and/or the UML. Available options
are UML M1 structural model (e.g., UML class models),
UML profile definition (i.e., extending UML metaclasses with
stereotypes), and UML metamodel extension (i.e., adding new
metaclasses and/or new associations between metaclasses to
the UML metamodel) [20].1

Consistency-rule formats: A DSML’s language model for-
malization is limited by the expressiveness of the MOF/UML
(e.g., part-of relations). Semantic variation points in the
MOF/UML may render a DSML’s language-model specifi-
cation incomplete and/or ambiguous. This risks introducing
inconsistencies across different DSML modeling artifacts ([4],
[20]). Therefore, we assess whether consistency rules are
provided for a DSML to cover such variation points [10]. If
so, we document the choice of rule representation (e.g., OCL
expressions [8]).

Consistency-rule scopes: We record whether consistency
rules target a single model only (e.g., to resolve ambiguities
in the definition of a model) or whether the rules relate multi-
ple models. For inter-model scenarios, horizontal consistency
refers to consistency between different, but complementing

1We only discuss formalization options actually observed for DSMLs in our
SLR study (see Section III). A complete list of language-model formalization
options is documented in [20].

models at the same level of abstraction (e.g., between different
platform-independent models). Vertical consistency refers to
consistency between models at different levels of abstrac-
tion (e.g., between platform-independent and platform-specific
models). Evolution consistency refers to consistency between
different versions of the same model (e.g., between an input
and an output model of a model transformation [10]).

Software-engineering activities: Model-level consistency
rules are employed in support of different software-
engineering activities. Observed activities are refinement
(“semantics-preserving changes applied to a model, to reduce
non-determinism” [11]), verification (“determine whether the
products of a given development phase satisfy the conditions
imposed at the start of that phase” [11]), checking constraints
(“of models according to consistency rules and producing a list
of violations” [11]), transformation (“describe the application
of mapping rules on one model to create a new model” [11]),
and heuristics (rules that are written as plain text “for solving a
UML consistency problem without the exhaustive application
of an algorithm” [11]).2

Model and diagram types: We document which of the 14
structural and behavioral UML model and diagram types [4]
are actually tailored by the DSMLs. These are, therefore,
the model and diagram types for which consistency rules are
defined for various rule scopes ([10], [11]).

Tool support: We evaluate whether consistency rules (in
a given representation) can be automatically processed and
validated. In addition, we provide an inventory of supporting
software tools for rule processing and validation (e.g., con-
straints evaluators [10]).

III. EXTRACTED DATA ON DSML CONSISTENCY

This section presents the data on the six consistency aspects
in the corpus of 84 DSML designs collected via the SLR
([12], [17]). For data extraction, we studied the corresponding
publications as the primary design documents for cues on each
of the six consistency criteria. 52 out of 84 DSML designs
(62%) explicitly specified consistency rules at the level of
the DSML’s language model. For 32 DSML designs (38%),
we did not find any documentation hints of consistency-rule
definitions.

Table I shows the frequency of UML-based language-model
formalization options identified for the 52 DSML designs. The
majority of DSMLs (84%) employ UML profiles to formalize
their language model. Only one DSML defines its UML-based
language model via an M1 structural model. The language
model of four DSMLs is specified by using a combination of
a UML profile and a UML metamodel extension.

To quantify the specification size of these 52 DSML de-
signs, we evaluated the size of their core language-models.
Depending on the different, underlying UML language-model
formalization options, the specification size was established
differently. For 47 DSMLs defining their language models

2Again, our analysis is limited to activities observed in our SLR (see
Section III). The complete list of relevant software-engineering activities is
available from [11].

31

TABLE I
UML-BASED LANGUAGE-MODEL FORMALIZATION OPTIONS.

Language-model formalization Frequency

UML profile definition 47 (84%)
UML metamodel extension 8 (14%)
UML M1 structural model 1 (2%)

Total 56 (100%)

TABLE II
EMPLOYED FORMATS TO SPECIFY CONSISTENCY RULES.

Consistency-rule format Frequency

Unstructured text 36 (50%)
OCL 33 (46%)
Mathematical expressions 2 (3%)
ATL 1 (1%)

Total 72 (100%)

using UML profiles, we counted the stereotype definitions
and the corresponding, distinct base UML metaclasses. In this
group, we find a median of 14±9.63 stereotype definitions per
DSML. A typical profile extends a median of 5±3 distinct
base metaclasses per DSML. For the eight DSMLs using a
UML metamodel extension, we collected the number of newly
introduced UML metaclasses. A typical DSML adds a median
of 19.5±11.9 UML metaclasses. For one DSML defining its
language model using a UML structural model at level M1,
we were unable to count the number of UML classes due to
its incomplete design documentation.

The 52 DSML designs containing consistency rules adopted
four different rule formats (see Table II). 33 DSMLs (63%) use
one (either unstructured text, OCL, or mathematical expres-
sions), 18 DSMLs (35%) use two (both, unstructured text and
OCL), and one DSML three different formats (unstructured
text, OCL, and ATL [21]) to specify consistency rules. There
are nearly equal shares of DSMLs adopting unstructured
(informal) text (50%) and (formal) OCL expressions (46%).
Mathematical and transformation-language expressions (e.g.,
in ATL) are rarely used with three DSMLs only.

The majority of 52 DSMLs (79%) apply consistency rules
for the scope of a single model (see Table III). Inter-model
consistency rules for a horizontal scope (i.e., at the same
abstraction level) were found for seven DSMLs (12%). A
minority of three DSMLs define consistency rules spanning
different abstraction levels (vertical consistency). Consistency
rules between different versions of a language model (evo-
lution consistency) were reported for two DSMLs only. In
five DSMLs, consistency rules had mixed scopes: single
model/vertical consistency (2 DSMLs), single model/evolution
consistency (2), and horizontal/vertical consistency (1).

As for software-engineering activities supported by the
consistency rules, almost equal shares of DSMLs relate to
three activities of heuristics (32%), verification (32%), and

3We report the variance in terms of the median absolute deviation from the
median using the ± notation along with the median value.

TABLE III
IDENTIFIED SCOPES OF CONSISTENCY RULES.

Consistency-rule scope Frequency

Single model consistency 45 (79%)
Horizontal consistency 7 (12%)
Vertical consistency 3 (5%)
Evolution consistency 2 (4%)

Total 57 (100%)

TABLE IV
RELATING CONSISTENCY RULES TO SOFTWARE-ENGINEERING

ACTIVITIES.

Software-engineering activity Frequency

Heuristics 36 (32%)
Verification 35 (32%)
Constraint checking 33 (30%)
Transformation 4 (4%)
Refinement 3 (3%)

Total 111 (100%)

constraint checking (30%; see Table IV). In turn, rules rarely
target model transformation and refinement activities with
only four and three cases, respectively. In 17 DSMLs (33%),
rules are employed for one software-engineering activity only
(15x heuristics, 2x verification). Mixed usage is reported for
16 DSMLs (31%) with two supported activities (14x veri-
fication/constraint checking, 1x heuristics/transformation, 1x
heuristics/refinement), and for 15 DSMLs (29%) with three ac-
tivities (heuristics/verification/constraint checking). More than
three supported activities are limited to a minority share of
four DSMLs.

One DSML is unspecific about the UML model and diagram
types it is tailoring and is therefore omitted in Table V. For the
remaining 51 DSMLs, class diagrams are ranked first with a
35% share, followed by activity (12%), and component as well
as package diagrams (each 11%). No DSML tailored commu-
nication, profile and timing diagrams. Given that each of the
51 DSMLs can build on multiple model and diagram types, a
total of 95 tailored UML diagram types were identified. 65
(68%) are structural and 30 (32%) are behavioral diagram
types. Typically, a DSML tailors more than one UML diagram
type. There exists 28 unique combinations of different diagram
types tailored by the DSMLs. Most DSMLs build on either
class diagrams only (8 DSMLs, 16%) or class diagrams in
combination with package diagrams (8). Five DSMLs adopt
activity diagrams only and three DSMLs combine class and
object diagrams. All other combinations of diagram types are
employed by at most two DSMLs each; and are omitted for
brevity.

Software tools for processing and enforcing consistency
rules are shown in Table VI. In total, we identified relevant
tool support for 22 out of 52 DSML designs (42%; 16 unique
tools). The majority of DSMLs (58%) did not document any
tool usage. Five DSMLs (23%) use the OCL project of the
Eclipse Model Development Tools (MDT) and three DSMLs

32

TABLE V
TAILORED UML DIAGRAM TYPES. AN ASTERISK (*) DENOTES A

STRUCTURAL, ALL OTHERS ARE BEHAVIORAL DIAGRAM TYPES [4].

UML diagram type Frequency

Class* 33 (35%)
Activity 11 (12%)
Component* 10 (11%)
Package* 10 (11%)
State machine 7 (7%)
Composite structure* 6 (6%)
Use case 6 (6%)
Sequence 5 (5%)
Object* 4 (4%)
Deployment* 2 (2%)
Interaction overview 1 (1%)
Communication 0 (0%)
Profile* 0 (0%)
Timing 0 (0%)

Total 95 (100%)

TABLE VI
EMPLOYED TOOLS TO VALIDATE CONSISTENCY RULES.

Tool Frequency

OCL project of the Eclipse Model Development Tools
(MDT)

5 (23%)

IBM Rational Software Architect 3 (14%)
CompSize 1 (5%)
Eclipse Atlas Transformation Language (ATL) 1 (5%)
Eclipse EMF Compare 1 (5%)
EIS plug-in 1 (5%)
Gentleware Poseidon for UML 1 (5%)
ITEM ToolKit 1 (5%)
Kent Modeling Framework (KMF) 1 (5%)
LTSA 1 (5%)
No Magic MagicDraw 1 (5%)
Oclarity 1 (5%)
Octopus 1 (5%)
Telelogic Tau (G2) 1 (5%)
TOPCASED 1 (5%)
WebRatio 1 (5%)

Total 22 (100%)

(14%) IBM’s Rational Software Architect (RSA) to validate
consistency rules.4 The remaining 14 software tools are each
deployed in a single DSML project only.

IV. SLR LIMITATIONS

SLRs have the general problem of finding a representative
set of relevant primary studies. We closely followed estab-
lished guidelines on designing and conducting SLRs avail-
able from research on evidence-based software engineering
to avoid any pitfalls ([18], [19], [23]). However, we may
risk having missed further relevant primary studies on UML-
based DSMLs. For example, by extracting data from our
paper corpus, we did not find empirical evidence for every
consistency-rule format proposed by related work, such as,

4We separately report the Eclipse MDT/OCL project and IBM’s RSA
because RSA bundles a couple of the MDT/OCL plugins deviating these
in unknown ways from the official Eclipse OCL plugins [22].

code annotations or constraining model-to-text transforma-
tions [20]. Nevertheless, we addressed this threat right from
the beginning, by building our review procedure around the
principle of continuous search validation and search refinement
driven by a QGS as a recommended practice [18].

We intentionally limited our SLR exclusively to DSMLs
embedded into UML 2.x [4], thereby excluding DSMLs based
on former UML versions and other metamodeling infras-
tructures (e.g., Kermeta or MetaGME). We only considered
consistency rules specified on the level of UML-based DSML
language models; i.e. we restricted data extraction to the
DSML development phases of formalizing a UML-compliant
language-model and defining accompanying language-model
constraints (see Section II-A). Therefore, on the one hand,
we excluded rules applied on non-UML artifacts (e.g., non-
UML platform-specific models generated during the platform
integration phase). On the other hand, we also excluded
consistency rules relating to other UML models besides a
DSML’s language model (e.g., UML M1 behavioral models
as part of a DSML’s behavior specification). Furthermore, we
excluded exemplary as well as application-specific consistency
rules found in DSML reports (e.g., as part of a case study
exemplifying the application of a DSML).

We exclusively report on tools used to enforce consistency
rules on DSML language models. We do not consider tool
support for other phases in DSML development, such as,
language-model editors, generators for concrete-syntax editors,
model-execution engines, model-transformation engines, or
orchestration engines.

V. DISCUSSION

First, we elaborate on the relevance of the extracted data
presented in Section III. Against this background, we reiterate
over frequently reoccurring specification defects in UML-
based DSML language models, as revealed by [12], [17].

A. Interpretation of Review Data

Language-model formalization: The preponderance of UML
profiles might partly be explained as they are the native
UML extension mechanism [4], their application is known to
modelers, and plenty of supporting tools exists (e.g., language-
model and concrete-syntax editors). UML profiles provide
for packaging and for scoping intra-model consistency rules
(i.e., OCL expressions) as part of a DSML’s language-model
formalization. To this date, portability of such OCL consis-
tency rules between different evalution engines remains limited
due to the OCL/UML language specifications leaving critical
details to language and tool implementers (e.g., navigation
semantics between extension and extended model elements;
see [24] for an overview).

Another critical issue pertaining to (esp. formally speci-
fied) consistency rules in multi-level and shallow-instantiation-
based metamodeling environments such as MOF/UML is their
confinement to direct instantiations (e.g., M1) of model ele-
ments (e.g., M2). Consider as an example a DSML language
model defined at level M2 which must enforce consistency

33

rules at level M0, i.e. the occurrence (instance) level of
DSML models. This requirement is documented for DSMLs
in the business-process modeling domain in which consistency
conditions are stipulated for the scope of business-process in-
stances (see, e.g., [25], [26]). To date, there are certain conven-
tions (e.g., escaping to informal rule definitions [20]), imple-
mentation idioms (e.g., prototypical concept pattern [27]), and
alternatives to metamodeling based on shallow instantiation
(e.g., potency and deep instantiation [28]) to work around or
to address this limitation. However, no comprehensive solution
has yet become available in the family of MOF/UML/OCL
languages as a DSML development infrastructure.

We found that a language model can been realized by
multiple formalizations (e.g., a combination of a UML profile
and a UML metamodel extension as observed four times).
This bears a double risk. On the one hand, consistency rules
must be defined for the scope of two different artifacts,
metamodel and profile packages, causing ambiguity in rule
specification and possible rule conflicts. On the other hand,
such a mixed DSML language model can potentially be used in
different configurations (e.g., different profile and metamodel
compositions). As an extreme, when integrating two or more
DSMLs which are realized as (otherwise independent) UML
extensions, reconciling the original consistency rules becomes
a challenge [20].

Consistency-rule formats: We observed a comparatively
high frequency of unstructured text and OCL expressions
employed in combination (in 37% of the DSMLs). This
is partly explained by the reporting needs of a scientific
publication, requiring a certain level of elaboration on oth-
erwise formal constraint expressions. Another driver might be
that consistency rules expressed in some constraint-expression
language must be complemented with textual explanations
when applied beyond the context of a single model. To express
consistency conditions between two or more models (hori-
zontally and vertically), missing any direct and/or navigable
inter-model links, alternative approaches (e.g., constructs in
model-transformation languages, non-standard constructs in
constraint-expression languages such as in the Epsilon Vali-
dation Language, EVL [29]) must be evaluated for adoption
on a case-by-case basis. In doubt, complementary textual
explanations (as we found in this study) are a viable option.

Similarly, in the context of evolution consistency, one
DSML [30] specified consistency rules in a combination of
OCL expressions evaluated in ATL-based model transforma-
tions (ATL can be used to define constraints on models [21]).
The authors of [30] present an approach for model execution
by a series of model transformation steps (exemplified by an
evolving state machine diagram). In this case, OCL expres-
sions are still employed to ensure the consistency of a single
model. However, with the combination of ATL transforma-
tions and, thus, different model versions on which the OCL
expressions are evaluated against step-by-step, the consistent
evolution of a model is ensured.

Consistency-rule scopes: Intra-model consistency rules for
DSML language models are the most frequent rule scope iden-

tified by our SLR. As for inter-model consistency, consistency
was ensured by using (at least) unstructured textual artifacts.
For example, in [31] textual rules are defined for horizontal
consistency between composite structure and activity models
in support of a heuristic activity. Vertical consistency was
always observed in combination with a refinement activity.
In [32], an abstract user-interface (UI) class model is refined
into a UI deployment model. Consistency rules integrated with
model transformations for evolution support have already been
given as an example above [30].

Software-engineering activities: According to our defini-
tions, we classified consistency rules formulated as unstruc-
tured texts as related to the software-engineering activity
“heuristics” and OCL expressions as related to the constraint-
checking activity (see Section II-C). This data-extraction
convention explains the closely aligned figures reported for
these consistency-rule formats and the corresponding software-
engineering activities. Furthermore, we classified constraint
checking as a verification technique (i.e. as part of the ver-
ification activity).

We did not find any evidence for the management, val-
idation, and maintenance software-engineering activities as
defined in [11]. The reason for their absence may be that
these are not primary activities in the process of designing
a research-driven DSML (see Section II-A). Managing con-
sistency, evaluating the satisfaction of user requirements, or
maintaining interdependencies between platform-independent
models and platform-specific implementations may not be of
high priority when developing scientific UML-based DSMLs
(and, thus, are postponed).

Model and diagram types: In this study, we put emphasis on
consistency rules formulated at the level of a DSML’s language
model (M2 level). These rules are enforced on instance models
of a DSML (M1 level). A DSML’s language model was
frequently found formulated as a UML profile (in 84% of
the DSMLs). Overall, multiple combinations of tailored dia-
gram types could be observed (28 unique combinations). This
combinatorial variety indicates the domain-specific application
requirements matched by the diagram types adopted by each
DSML found by our SLR.

Tool support: All of the 16 software tools found support the
automatic evaluation of consistency rules. Because of diver-
sified tool usage, we could not identify repeated occurrences
except for the Eclipse MDT/OCL project (5 times, 23%) and
IBM’s RSA (3 times, 14%). Nevertheless, the small number
of tooling support found (no consistency-enforcing tool was
mentioned in 58% of the DSMLs) does not necessarily indicate
that in these cases consistency rules are evaluated manually.
In particular, we found OCL expressions being documented
for 33 out of 52 DSMLs (63%), which can in principle be
automatically evaluated.

B. DSML Specification Defects

Our SLR exposed six defect kinds in DSML specifications
for 31 reviewed design documents ([12], [17]). As an extreme
case of a DSML specification defect, metamodel and/or profile

34

definitions were found entirely missing (e.g., in [33]). Rather,
we found that stereotypes are often applied in UML instance
models without a proper profile definition ([12], [17]). In such
cases, any kind of consistency rule lacks the foundation of
a valid interpretation. However, there are also less obvious
sources of challenges.

Such defects often reveal misconceptions about UML exten-
sion techniques. In addition, they pose particular challenges to
formulating consistency rules and prevent consistency rules,
if any, to serve their intended purpose. In this section, we
reiterate over relevant defects related to consistency rules on
DSML language models defined using the UML.

Defects in metamodel definition: The DSML’s language
model definition does not reference a corresponding meta-
model specification, therefore, essential details about the se-
mantics of DSML-specific metaclasses and their relationships
are omitted ([12], [17]). In at least five DSML designs,
we found an underspecification of metamodel elements. For
example, newly introduced metaclasses did not inherit from
well-defined base metaclasses (e.g., in the case of a UML
metamodel extension, from metaclasses of the UML specifi-
cation [4]). In such cases, any consistency rule defined for the
scope of the underspecified metamodel elements remains am-
biguous. This is because it is potentially redundant, restating
consistency conditions already available for base metaclasses;
or it is potentially conflicting with the latter.

Missing mappings between language model and pro-
file: A frequently observed problem is that a MOF-based
or modeling-language independent metamodel is implicitly
aligned to a corresponding UML profile. Nevertheless, in at
least seven cases, the mapping between metamodel and profile
was not documented explicitly ([12], [17]). The lack of explicit
documented correspondences lets the reader assume a 1:1
mapping between, for example, non-UML-compliant elements
of an initial language-model definition and equally named
stereotypes of a UML profile formalization.

Such an implicit mapping, often only based on simple name
matching between metamodel and profile, raises the issue of
porting any consistency rules from one to the other, which
is often not straight forward. A possible approach is to define
such mappings between (non-UML-compliant) metamodel and
UML profile definitions explicitly. For example, elements of
a MOF-based metamodel can be mapped to stereotypes of a
UML profile in the form of model-to-model transformations
expressed in ATL to ensure their consistency (see, e.g., [20]).
This would allow for rendering intended semantics UML-
compliant or, if not possible (e.g., semantics of UML stereo-
types would contradict the UML specification), providing
an explicit trace back to the semantics of the originating
metamodel elements. This way, there would also be clear hints
how to interpret any consistency rules defined for one artifact
(metamodel) in the context of the other (profile).

Defects in profile definition: We identified 21 cases where
the definition of a UML profile does not adhere to the
UML specification ([12], [17]). Semantic defects encountered
included stereotypes inheriting from non-stereotype classes,

multiplicity declarations on stereotype extensions, composite
aggregation between stereotypes, or inheritance cycles be-
tween stereotypes ([12], [17]). These defects introduce seman-
tic variation points (e.g., the possibility of multiple behaviors),
which carry over to the interpretation of consistency rules
defined over these elements.

Vendor- and tool-specific extensions: In at least three cases
([12], [17]), language models are defined using vendor-specific
extensions to OMG specifications that are built into a particular
modeling tool (e.g., undefined visibility properties [34]). On
the one hand, this raises the issue of defining non-portable
consistency rules. On the other hand, to provide consistency
between these proprietary additions and elements of the UML
metamodel, we recommend specifying their precise semantics
in the same way as was done in the UML specification (see,
e.g., semantics sub-clauses in [4]).

Defects in constraint-language expressions: We encountered
numerous syntactic and semantic defects, including logical
errors, calling undefined functions, missing keywords, unbal-
anced parentheses, and misspelled metamodel elements ([12],
[17]). It is obvious that consistency can only be ensured and
automatic evaluation can only be provided if formal rules (e.g.,
OCL expressions) are defect-free. Therefore, increasing the
documentation quality of constraint-language expressions is
key. Documentation guidelines which require authors to check
syntax and semantics of OCL expressions with dedicated
tools is a starting point. Table VI provides a non-exhaustive
overview of available tools.

VI. RELATED WORK

Our data extraction criteria are closely aligned to the
ones presented in [10], [11], in which the authors present
a systematic mapping study identifying consistency rules for
UML diagrams. The main difference to the approach of
Torre et al. is that we focus on domain-specific language
models extending the UML, instead of general-purpose UML
diagrams. Therefore, our work can be seen as complementary.
However, a key difference is that we do not strive for providing
an exhaustive collection of concrete consistency rules for UML
diagrams in the sense of [10], [11]. Most of the consistency
rules for DSMLs are inherently specific to one application
domain and to one design of a corresponding language model.
As this prevents their general applicability (e.g., to the UML
metamodel in general), we did not compile a catalog of
consistency rules.

When comparing the collected data with the original work
in [10], [11], we can confirm the predominance of consistency
rules defined as unstructured text and as OCL expressions,
both targeting a single model and multiple models at the same
abstraction level (horizontal consistency), for the reviewed
DSMLs. Verification and constraint checking are also fre-
quently employed, although we rank heuristics activities first
unlike in [10], [11]. This may be due to our data-extraction
process, in which we classified each text-based consistency
rule as related to the heuristics software-engineering activity
as specified by the definition in Section II-C.

35

Regarding UML model and diagram types, a majority of
empirical studies report UML classes as the most exhibited
one (see, e.g., [13], [14]). At the same time, we cannot
confirm the previously reported high frequency of sequence
and state machine diagrams. Similarily, in the review by [10],
[11] the otherwise reported frequent adoption of activity,
component, and package diagram types is not confirmed.
A further confirmatory finding to recent empirical studies
(see, e.g., [11]) is the large amount of unique combinations
of different diagram types (28). There is also an important
overlap regarding supporting tools (Eclipse-based projects,
No Magic MagicDraw etc.), but the small tool-specific study
population at our side prevents drawing robust conclusions.

VII. CONCLUSION

In this paper, we analyzed consistency aspects extracted
from 84 UML-based DSML designs collected via a SLR [12].
We exclusively focused on consistency rules defined on the
level of a DSML’s language model. For the evaluation of UML
consistency aspects, we adopted criteria from close related
work ([10], [11]). By interpreting extracted consistency-related
data, we discussed frequently identified defects in UML-based
DSML language models. Results of our study show that a
UML-based DSML language model is predominantly formal-
ized via profile definitions which tailor mostly class, activity,
component, and package diagrams. Textual descriptions and
the OCL are most frequently used in combination to define
consistency rules on a single model for verification purposes.
In the majority of cases, the DSML reports do not document
any tool support for enforcing these rules. Results of our study
partly confirm findings from as well as add to the observations
by related work.

REFERENCES

[1] D. Spinellis, “Notable design patterns for domain-specific languages,”
J. Syst. Softw., vol. 56, no. 1, pp. 91–99, 2001.

[2] U. Zdun and M. Strembeck, “Reusable architectural decisions for DSL
design: Foundational decisions in DSL development,” in Proc. 14th
Europ. Conf. Patt. Lang. Prog., 2009.

[3] Object Management Group, “OMG meta object facility (MOF) core
specification,” Available at: http://www.omg.org/spec/MOF, 2015, ver-
sion 2.5, formal/2015-06-05.

[4] ——, “OMG unified modeling language (OMG UML),” Available at:
http://www.omg.org/spec/UML, 2015, version 2.5, formal/2015-03-01.

[5] L. Nascimento, D. L. Viana, P. A. M. S. Neto, D. A. O. Martins, V. C.
Garcia, and S. R. L. Meira, “A systematic mapping study on domain-
specific languages,” in Proc. 7th Int. Conf. Softw. Eng. Adv. IARIA,
2012, pp. 179–187.

[6] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical assessment of MDE in industry,” in Proc. 33rd Int. Conf. Softw.
Eng. ACM, 2011, pp. 471–480.

[7] M. Strembeck and U. Zdun, “An approach for the systematic develop-
ment of domain-specific languages,” Softw. Pract. Exper., vol. 39, no. 15,
pp. 1253–1292, 2009.

[8] Object Management Group, “Object constraint language,” Available at:
http://www.omg.org/spec/OCL, 2014, version 2.4, formal/2014-02-03.

[9] J. Simmonds, R. V. D. Straeten, V. Jonckers, and T. Mens, “Maintaining
consistency between UML models using description logic,” RSTI –
L’Objet, vol. 10, no. 2-3, pp. 231–244, 2004.

[10] D. Torre, Y. Labiche, and M. Genero, “UML consistency rules: A
systematic mapping study,” in Proc. 18th Int. Conf. Eval. Assess. Softw.
Eng. ACM, 2014, pp. 6:1–6:10.

[11] D. Torre, Y. Labiche, M. Genero, and M. Elaasar, “A system-
atic identification of consistency rules for UML diagrams,” Avail-
able at: http://squall.sce.carleton.ca/pubs/tech report/TR SCE-15-01.
pdf, Carleton University, Tech. Rep. SCE-15-01, 2015.

[12] S. Sobernig, B. Hoisl, and M. Strembeck, “Extracting reusable design
decisions in UML-based domain-specific languages: A multi-method
study,” submitted.

[13] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Pre-
torius, “Empirical evidence about the UML: A systematic literature
review,” Softw. Pract. Exper., vol. 41, no. 4, pp. 363–392, 2011.

[14] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven engineer-
ing practices in industry: Social, organizational and managerial factors
that lead to success or failure,” Sci. Comput. Program., vol. 89, Part B,
pp. 144–161, 2014.

[15] E. Evans, Domain-driven Design: Tackling Complexity in the Heart of
Software, 1st ed. Addison-Wesley, 2004.

[16] T. Mens and P. v. Gorp, “A taxonomy of model transformation,”
Electron. Notes Theor. Comput. Sci., vol. 152, pp. 125–142, 2006.

[17] S. Sobernig, B. Hoisl, and M. Strembeck, “Protocol for a systematic
literature review on design decisions for UML-based DSMLs,” Available
at: http://epub.wu.ac.at/4467/, WU Vienna, Tech. Rep. 2014/02, 2015.

[18] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Inform. Softw. Tech., vol. 53, no. 6, pp. 625–637,
2011.

[19] S. Jalali and C. Wohlin, “Systematic literature studies: Database searches
vs. backward snowballing,” in Proc. ACM-IEEE Int. Sym. Empir. Softw.
Eng. Meas. ACM, 2012, pp. 29–38.

[20] B. Hoisl, S. Sobernig, and M. Strembeck, “A catalog of reusable design
decisions for developing UML/MOF-based domain-specific modeling
languages,” Available at: http://epub.wu.ac.at/4466/, WU Vienna, Tech.
Rep. 2014/03, 2015.

[21] J. Bézivin and F. Jouault, “Using ATL for checking models,” Electron.
Notes Theor. Comput. Sci., vol. 152, pp. 69–81, 2006.

[22] A. S.-B. Herrera, E. Willink, R. Zanzeebarr, A. Igdalov, C. W. Damus,
and N. Boldt, “OCL/FAQ – Eclipsepedia,” Available at: http://wiki.
eclipse.org/OCL/FAQ, 2015.

[23] B. Kitchenham, “Procedures for performing systematic reviews,” Keele
University & National ICT Ltd., Joint Tech. Rep. (Keele University Tech.
Rep., NICTA Tech. Rep.) TR/SE-0401, 0400011T.1, 2004.

[24] P. Langer, K. Wieland, M. Wimmer, and J. Cabot, “EMF profiles: A
lightweight extension approach for EMF models,” J. Object Technol.,
vol. 11, no. 1, pp. 1–29, 2012.

[25] S. Schefer and M. Strembeck, “Modeling support for delegating roles,
tasks, and duties in a process-related RBAC context,” in Proc. Int.
Worksh. Inform. Syst. Secur. Eng., ser. LNBIP, vol. 83. Springer, 2011,
pp. 660–667.

[26] S. Schefer-Wenzl and M. Strembeck, “An approach for consistent
delegation in process-aware information systems,” in Proc. 15th Int.
Conf. Bus. Inform. Syst., ser. LNBIP, vol. 117. Springer, 2012, pp.
60–71.

[27] C. Atkinson and T. Kühne, “Processes and products in a multi-level
metamodeling architecture,” Int. J. Softw. Eng. Know., vol. 11, no. 6,
pp. 761–783, 2001.

[28] ——, “A tour of language customization concepts,” Adv. Comput.,
vol. 70, pp. 105–161, 2007.

[29] D. Kolovos, L. Rose, A. Garcı́a-Domı́nguez, and R. Paige, “The Epsilon
book,” Available at: http://www.eclipse.org/epsilon/doc/book/, 2015.

[30] E. Cariou, C. Ballagny, A. Feugas, and F. Barbier, “Contracts for
model execution verification,” in Model. Found. Applicat., ser. LNCS.
Springer, 2011, vol. 6698, pp. 3–18.

[31] T. Schattkowsky, J. Hausmann, and G. Engels, “Using UML activities
for system-on-chip design and synthesis,” in Model Driven Eng. Lang.
Syst., ser. LNCS. Springer, 2006, vol. 4199, pp. 737–752.

[32] J. Bergh and K. Coninx, “CUP 2.0: High-level modeling of context-
sensitive interactive applications,” in Model Driven Eng. Lang. Syst.,
ser. LNCS. Springer, 2006, vol. 4199, pp. 140–154.

[33] N. Ubayashi, T. Tamai, S. Sano, Y. Maeno, and S. Murakami, “Model
compiler construction based on aspect-oriented mechanisms,” in Gen.
Program. Compon. Eng., ser. LNCS. Springer, 2005, vol. 3676, pp.
109–124.

[34] E. Soler, J. Trujillo, E. Fernández-Medina, and M. Piattini, “Building a
secure star schema in data warehouses by an extension of the relational
package from CWM,” Comp. Stand. Inter., vol. 30, no. 6, pp. 341–350,
2008.

36

Proposal for Improving the UML Abstract Syntax
Dan Chiorean, Vladiela Petraşcu, Ioana Chiorean

Babeş-Bolyai University, Cluj-Napoca, Romania
chiorean@cs.ubbcluj.ro, vladi@cs.ubbcluj.ro, ioana@math.ubbcluj.ro

Abstract—Different types of consistency of UML models have
been described in the literature. The consistency of UML mod-
els with the UML static semantics, usually referred as well-
formedness, and the consistency between different versions of
the same model are among the most cited. The UML models’
well-formedness is a precondition for any other kind of consis-
tency, being described by means of the UML abstract syntax.
Unfortunately, this abstract syntax specification is bogus. As a
consequence, checking UML models’ consistency is not a natural
practice, as it should be. Beginning with 2000, there have been
several papers reporting this state of facts, but without any visible
consequences on the state of practice. In this paper, the authors
propose a new approach (including specification techniques and
a process) meant to overcome this specification drawback. Our
proposal is based on a long practice of improving the specification
of UML Well-Formedness Rules in the OCLE tool.

Index Terms—UML model consistency, UML abstract syntax,
Well-Formedness Rules

I. I NTRODUCTION

The purpose and relevance of the abstract syntax specifica-
tion of MOF-based metamodels are explicitly mentioned in all
OMG documents and acknowledged by the entire community
of modelers. As stated in [11], “The abstract syntax defines
the set of UML modeling concepts, their attributes and their
relationships, as well as the rules for combining these concepts
to construct partial or complete UML models.” The same
document claims that “Relative to UML 1, this revision of
UML has been enhanced with significantly more precise
definitions of its abstract syntax rules and semantics, a more
modular language structure, and a greatly improved capability
for modeling large-scale systems.” Unfortunately, the state of
facts does not live up to these claims. The paper [14] proposed
by Wilke and Demuth at the OCL 2011 Workshop is a relevant
proof of this, through both its title and contents, even though
it has been written before [11]. The errors identified within
the abstract syntax specification and the solutions proposed
for some of them concern all UML and MOF releases, with
no exception (see [1] - [8], [13], [14]). Although there have
been enhancements in the abstract syntax specification from
one version of the standards to the other, things could and
should be seriously improved given the fact that: the reported
errors, except compilation errors, have not been eliminated
yet, new errors have emerged, the reading and analysis of
the UML 2.x specification is much more tedious compared to
its 1.x version. Thus, the understanding of a single 2.x well-
formedness rule (WFR) generally requires a detailed analysis
of several class diagrams and additional operations (AOs).
The fact that the standard abstract syntax specifications fail

to reach a stable and correct version is symptomatic and
triggers the necessity of a change of attitude in writing such
specifications. The approach proposed here is driven by the
paramount importance of a complete, non-ambiguous informal
specification, accompanied by relevant examples and by the
need of a thorough validation of all specifications, based on
adequate test cases. The technical aspects concerning the OCL
specifications reported by previous papers, as well as the need
of a testing-oriented OCL specification (meant to support an
efficient error detection and diagnosis [5]) are also considered.

Within the abstract syntax specification, the role of the
informal (natural language) descriptions is twofold. On the one
side, they are used for detailing the structure described byclass
diagrams, by providing additional information concerningthe
concepts, attributes and associations involved. On the other,
they describe the constraints that should be fulfilled by the
modeling concepts, as well as the additional operations used
for querying the model or needed in the specification of
WFRs. This second role influences both the design of OCL
specifications and their validation.

Unlike previous work on the topic, this paper introduces
a natural approach concerning the specification of a static
semantics. Although the term “approach” may seem a bit
pretentious, we claim it is the most adequate, since it refers to
a process in which the involvement of the OMG standards’
authors is a must. The gaps and ambiguities residing in
the standard specifications cannot be fixed in absence of
their authors or in the absence of an explicit, unequivocal
description, due to the risk of altering the original intentions.
Our proposal takes into account the major differences among
the 2.x and 1.x versions of the UML standard.

The reading of the UML 2.x specifications is more de-
manding and tedious as compared to the 1.x versions. This
is due to the fact that most of the concepts are progressively
described in several packages, their understanding requiring
the investigation of various diagrams and associated textual
descriptions [2]. The amount of newly-introduced concepts
and their dispersed presentation are a strong argument towards
the adoption of a complete, rigorous and clear description
style, as proposed by this paper.

II. UML 2. X ABSTRACT SYNTAX - FROM GOALS TO

STATE OF FACTS

The primary purpose of an abstract syntax definition is
that of providing a complete, non-ambiguous and rigorous
description of a modeling language. These requirements are
mandatory for both the correct understanding and consistent

37

use of the modeling language, and for enabling conformance
verifications of user-models against it. Failure to fulfill these
requirements triggers inability to fully validate models and
the risk to encounter different interpretations of the same
specifications. Moreover, it compromises the chance to ensure
a safe and predictable model transfer among tools, as required
by [11]: “One of the primary goals of UML is to advance the
state of the industry by enabling object visual modeling tool
interoperability. However, to enable meaningful exchangeof
model information between tools, agreement on semantics and
notation is required.”

Modeling languages share far more commonalities than
differences with programming languages. Therefore, similar
to programs, compilability is a mandatory requirement on
models as well. However, the similarity among the two types
of languages does not only involve compilability. Similar
to programs, models should be executable, and the results
should conform to the requirements [6]. The formal model
specifications should be preceded by informal equivalents.The
informal description should be complete and non-ambiguous,
since, according to Kristen Nygaard “Programming is under-
standing”. Therefore modeling, similar to programming, can-
not be imagined in the absence of a thorough problem under-
standing. Mathematical proofs of specifications’ correctness
are only seldom realized; testing remains therefore the best
alternative, at least in the current context. Similar to program
development, ensuring model compilability is mandatory only
at some key points of model development (usually, prior to
transforming the models or prior to performing simulations).
Such a requirement is best captured in [10]: “ during model
editing, the model will frequently be syntactically incorrect,
and the tool needs to be able to allow for syntactical incor-
rectness in this mode.”. Thus, it is easy to understand the
reason why the static semantics is described exclusively by
means of invariants (WFRs), without pre/post-conditions, as
promoted by Design by Contract. Despite this, some of the
additional operations encountered in UML have preconditions.
We judge this practice as right and useful, since the additional
operations are not employed exclusively in the specification
of invariants. An AO being targeted to model navigation, the
fulfillment of its precondition guarantees that its evaluation is
meaningful, while the fulfillment of its postcondition ensures
the correctness of the evaluation results. As regarding theresult
of a model compilability check, this should provide more
than a simple yes/no message. In case of non-compilability,
it is essential to be provided with meaningful information
enabling efficient error diagnosing and allowing a real-time
model adjustment.

The informal specifications included in the UML 2.x docu-
ments (for both WFRs and AOs) fail to comply with the quality
requirements mentioned in the beginning of this section.
This is a high-priority issue, in our view. In the last UML
specification, 2.5, WFRs are compilable - a step forward
compared to the previous specification, 2.4.1. However, the
runtime testing and debugging issues are much more tedious
than the compilability ones, as unanimously acknowledged by

software developers. An important cause of the existing errors
is the inappropriate informal specification. We will deal with
these issues in Section 5 of this paper.

III. R ELATED WORK

Beginning with 2000, several papers have focused on the
specification and usage of WFRs. In the following, we sum-
marize the ones considered to be the closest to our approach.

In [13], the authors have given a first quasi-exhaustive
analysis of the WFRs specified in UML 1.3. The work has
focused on the Foundation::Core package (31 classes and
27 associations) that has been specified in USE, in order
to check the corresponding 43 WFRs. Also, 28 Additional
Operations were tested. Errors have been found in 39 out
of 71 tested expressions. Four categories of errors have been
identified: syntax errors, minor inconsistencies, type checking
errors, and general problems. The paper was the first to draw
an alarm with respect to the quality of the UML WFRs
specifications. The following statement worth mentioned: “For
future work we plan to extend the analysis to the complete
UML metamodel including all of its wellformedness rules
and making it available in USE. This might not only be
useful for improving the state of the standard but also implies
another very nice application: in principle, any UML model
can be checked for conformance to the UML standard.”. In
[2], authors from the same research team present a similar
analysis performed with USE, this time for the UML 2.0
Superstructure.

In [8], the second published paper on this topic, the authors
claim having tested the entire set of WFRs specified in the
context of the UML 1.3 metamodel. They report 450 errors
of three kinds: non-accessible elements, empty names, and
miscellanea. The proposed solutions for fixing the reported
problems seem a bit bizarre. Namely, they suggest to “Take
the empty names into account in every rule of the metamodel
(296 errors). Consider access and contents as two different
concepts (138 errors). Avoid two opposite association ends
with the same name (18 errors)”.

In [3], the authors present two techniques for checking UML
models. One, implemented in Rational Rose, that enables to
navigate and check the contents of the UML metamodel by
means of an appropriate VBA specification, and the other
by means of OCL AOs and WFRs. Some AOs and WFRs
are analyzed both with respect to the identified bugs to the
actions undertaken for correcting them. In [4], the same
authors analyze different kinds of errors identified in the
OCL specification. The focus is on proposing “good practices”
meant to support “a correct, clear and efficient specification”.
The consistency among the formal and informal specifications,
the clearness of OCL expressions, the fact that evaluating OCL
specifications instead of only compiling them is imperative, are
among the proposed and exemplified practices. The paper [5]
is focused on describing OCL specification patterns intended
to support a specification style targeted at an easier model
debugging. In [6], the focus is on the similarities between
programming and modeling languages. The paper emphasizes

38

the fact that, in the context of the model-driven paradigms,
producing compilable models is a must, not an option.

[14] is focused on the study of UML 2.3 Superstructure
WFRs. As acknowledged by its authors, there are many
similarities between the topic and results reported in thispaper
and those of [2]. The differences concerns the metamodels
(UML 2.3 in this last analysed paper and UML 2.0 in the
previous case) and the tools employed (Dresden OCL toolkit
in the last paper and USE in the other).

The common feature of papers published by the teams from
Bremen and Dresden is their focus on the compilation phase.
As regarding the papers published by our team, the analysis
overpasses the mere compilation. The runtime results and their
conformance to the informal specifications are also considered.

In [9], the authors present coherence rules grouped on
metamodel elements and diagrams. Although the idea looks
nice, there are some drawbacks. Firstly, the rules are presented
exclusively in an informal manner (in spoken language);
moreover, for some rules the semantics is not clear enough.
Secondly, there are no comments about incorrect rules and
about authors’ proposal for improving the existent semantics.

Finally, in [7] and in some other papers on the same topic,
A. Egyed presents ”an approach for quickly, correctly, and
automatically deciding when to evaluate consistency rules.” As
the title of the paper suggests, the author’s work is focused
on doing an automated quick evaluation. In the experience
presented, only 24 rule were evaluated - some being WFRs
and others defined by model designers. There are no mentions
about the correctness of the evaluated rules. From this point
of view, the approach is significantly different from ours.
However, the author is convinced about the importance of
consistency checking in case of UML models.

IV. T HE PROPOSEDAPPROACH FORSPECIFYING THE

ABSTRACT SYNTAX

The state of facts in specifying the abstract syntax of UML,
together with a thorough analysis of the published literature on
the topic allow us to argue that a significant amount of all the
existing specification errors are due to failure in obeying to a
number of elementary requirements, validated by the software
engineering practice. Given our experience in the field, we
propose conforming to the following rules when specifying
the abstract syntax of UML/MOF.

1) A complete and non-ambiguous informal equivalent of
all OCL specifications (both WFRs and AOs) is the
first and the most important of these rules. Moreover,
there should exist a full conformance among the in-
formal specification and its formal correspondent. It
would be helpful if the informal specification would
be accompanied (possibly in an attached document) by
examples illustrating cases of validation and invalidation
of each rule, as well as exceptional cases that may arise
throughout the evaluation of AOs.

2) Runtime validation of formal specifications on signifi-
cant data sets (models) is mandatory. Mere compilability
is not enough.

3) The formal specifications of WFRs must be testing-
oriented [5]. Accomplishment of this requirement sup-
ports an easy error diagnosing of models that do not
comply with the WFRs in question.

4) Choosing the appropriate context for the specification
of WFRs that refer to features of several metaclasses is
also an important issue [6].

5) For both efficiency and clarity, the use of OCL specifi-
cation patterns is recommended, whenever the case.

6) Indented and syntax highlighted OCL expressions en-
able an easier lecture of specifications. Prefixing the
formal specifications with a short informal description
of requirements (similar to comments in programming)
is useful, as well.

7) The WFRs which are specified in an informal man-
ner exclusively should be complemented by relevant
examples of their fulfillment or failure to be fulfilled,
possibly accompanied by an overview of how the au-
thors imagine the validation process. Obeying to this
requirement allows a better understanding of the rules
and provides support in finding appropriate specification
and validation solutions.

Except for the forth recommendation, which seems to be
obeyed by almost all specifications of the UML, all the others
are not met. As illustrated in the following, taking them into
account will help in increasing the quality of the standard
specifications.

V. A NALYZING IMPORT RELATIONSHIPS ONUML
NAMESPACES

The import in a namespace of elements from different
namespaces is one of the most important relationships in
both programming and modeling languages offering modular
development support. This allows the imported elements to
be directly referred by their name or by an alias, whenever
there is no name conflict among the imported elements and
the elements belonging to the namespace which performs the
import. In case of conflict, the use of a qualified name is
mandatory. The programming languages come with clear spec-
ifications concerning the import relationship. Thus, we argue
that any differences in the import rules specified for UML
and MOF compared to the programming languages should be
clearly justified. Even more, examples are needed to illustrate
the manner in which various cases tolerated by modeling
languages can be coded in a programming language (direct
engineering) or the reverse (reverse engineering). Otherwise,
the support offered by modeling languages to the MDA, MDE
and MDD paradigms remains only in statements.

Similar to programming languages, the UML allows two
types of import:

1) explicit, by defining an individual import relation-
ship for each imported element (which should be a
PackageableElement). Such an import relationship
is modeled by theElementImport concept (direct
descendent ofDirectedRelationship), that has
two attributes:visibility andalias. Graphically,

39

Fig. 1. TheNamespaces diagram of theConstructs package (Figure 7.5 of [11])

ElementImport is represented by a “a dashed arrow
with an open arrowhead from the importing namespace
to the imported element. The keywordimport is
shown near the dashed arrow if the visibility is public,
otherwise the keywordaccess is shown to indicate
private visibility. If an element import has an alias, this
is used in lieu of the name of the imported element. The
aliased name may be shown after or below the keyword
import.”

2) implicit, by means of an import relationship among
the importing namespace and the imported package.
“Conceptually, a package import is equivalent to hav-
ing an element import to each individual member of
the imported namespace, unless there is already a
separately-defined element import.” Similar to the case
of an element import, this relationship is modeled by
the PackageImport metaclass, having an analogous
graphical representation. It “is shown using a dashed ar-
row with an open arrowhead from the importing package
to the imported package. A keyword is shown near the
dashed arrow to identify which kind of package import
that is intended. The predefined keywords areimport
for a public package import, andaccess for a private

package import.”

The concepts involved in the import relationships and their
interconnections are illustrated in Figure 1. Even if not ex-
plicitly stated, the setimportedMember is needed when
computing the set of potential servers of a model element or
when checking if an element is legally imported.

In the following, we will analyze the formal OCL speci-
fications (and their informal descriptions) regarding the im-
port relationship defined between aNamespace and a
PackageableElement or a Package.

In the Namespace context, the AO
getNamesOfMember() previously specified in the
NamedElement context “is overridden to take account of
importing. It gives back the set of names that an element
would have in an importing namespace, either because it is
owned; or if not owned, thenimported individually; or if not
individually, then from a package.”

In our opinion, the last part of the second phrase (marked by
the underlined words) is a bit confusing. A clearer and more
explicit statement (at least for a non-native speaker) could be:
either because it is owned, or imported individually or by a
package import.

Following, there is the corresponding OCL specification, as

40

provided in the standard.

Namespace : : getNamesOfMember (e lemen t : NamedElement) :St r i ng [0 . .∗] ;
getNamesOfMember =

i f s e l f . ownedMember−>i n c l u d e s (e lemen t)
then Set{e lement . name}
e l s e l e t e l e m e n t I m p o r t s :Set(E lement Impor t)=s e l f . e l emen t Impo r t

−>s e l e c t (e i| e i . impor tedE lement = e lement)i n
i f e lemen t Impor t s−>notEmpty ()
then e lemen t Impor t s−>c o l l e c t (e l| e l . getName ())
e l s e s e l f. packageImpor t−>s e l e c t (p i|

p i . impor tedPackage . v i s ib leMembers ()−> i n c l u d e s (e lemen t))
−>c o l l e c t (p i | p i . impor tedPackage . getNamesOfMember (

e lemen t))−>a s S e t
e n d i f

e n d i f

In [11], the type returned by the observer defined is writ-
ten asString[0..*], notation not accepted in OCL 2.4
(the current specification [12]) and previous specifications.
The AO visibleMembers(), used by composition in
the above specification is bogus, as we will prove in the
following. As a consequence, the result returned by the AO
getNamesOfMember() will be incorrect in some cases.

In thePackage context, the queryvisibleMembers()
identifies those members of aPackage that can be accessed
outside it. The specification provided for the AO visibleMem-
bers() in [11] is:

body : member−>s e l e c t (m|m. oc l I sK indOf (Packageab leE lemen t)
and s e l f . makesV is i b l e (m))−>

c o l l e c t (oclAsType (Packageab leE lemen t))−>a s S e t ()

Analysing figure 12.1 Packages, pp. 29 from [11]
we wonder why the OMG has not proposed:
self.packagedElement->select(pe |
self.makesVisible(pe)). In this case, the condition
oclIsKindOf(PackageableElement), the cast at
PackageableElement, and the conversionasSet are
redundant.

The query makesVisible() specified itself in the
Package context, “defines whether aPackage makes an
element visible outside itself. Elements with no visibility and
elements with public visibility are made visible.”.

Package : : makesV is i b l e (e l : Namespaces : : NamedElement) :Boolean;
pre : s e l f . member−>i n c l u d e s (e l)
makesV is i b l e =
−− t h e e l e m e n t i s i n t h e package
(ownedMember−>i n c l u d e s (e l)) or
−− i t i s i m p o r t e d i n d i v i d u a l l y w i t h p u b l i c v i s i b i l i t y
(e lement Impor t−>s e l e c t (e i| e i . v i s i b i l i t y =
V i s i b i l i t y K i n d : : p u b l i c)−>c o l l e c t (impor tedE lement . oclAsType (

NamedElement))−> i n c l u d e s (e l)) or
−− i t i s i m p o r t e d t h r o u g h a package w i t h p u b l i c v i s i b i l i t y
(packageImpor t−>s e l e c t (p i| p i . v i s i b i l i t y =
V i s i b i l i t y K i n d : : p u b l i c)−>c o l l e c t (p i |
p i . impor tedPackage . member−>i n c l u d e s (e l))−>notEmpty ())

As regarding this specification, there are some things we
would like to analyze.

Firstly, the informal specification states that “Elements
with no visibility and elements withpublic visibility are
made visible.” As no explanation is offered regarding why
elements with no visibility are visible outside the package,
this requirement seems strange to us. Especially since in pro-
gramming languages (Java, for instance) only public members
of a package can be explicitly exported or referred by their

qualified name outside the owner package. That is why, at the
beginning of this section, we have emphasized the necessityof
an explicit description of the rationale behind certain decisions.

Secondly, it is easy to notice that the formal specifica-
tion does not comply with the informal one, since only the
visibilities of elementImport andpackageImport are
considered, without taking into account the visibility of the
element itself (irrespective if it being owned by the package,
imported individually or by means of a package import). More-
over, the authors of the OMG specification say nothing with
respect to what happens in particular cases, such as the one in
which the same element is imported both individually (with
visibility = VisibilityKind::private) and by
means of a packageImport with visibility =
VisibilityKind::public. In this case, evaluating the
specification above,makesVisible will be evaluated to
true, even if it is stated that the individual import has priority
compared to package import.

In order to exemplify our reasoning, let us consider the
model shown in Figure 2. As illustrated there, between
packagesP2 andP1 there is an<<import>> relationship.
The packageP1 owns the classA having visibility
= VisibilityKind::private. In the context of the
P1 package, we are interested to see ifel = A is visible
outside its owning package. The classA is a member
of P1, so we have to evaluate themakesVisible()
AO. P1.ownedMember->includes(A), therefore
makesVisible() = true. Thus, due to the
packageImport relationship, A is added to theP2
namespace and can be accessed by name, in case there are
no name collisions betweenA and other elements of the
P2 namespace. This result is incorrect, since the element in
question has private visibility.

Thirdly, when the element is imported in the package
by packageImport, the result returned will be wrong
if the visibility of the element transmitted by parameter
(el) is VisibilityKind::private. A sample situation
is illustrated in Figure 3. In the packageP2, the private
class A is imported by theimportPackage relationship
stereotyped<<import>>. In P3, private classA is im-
ported by means of theimportPackage relationship, also
stereotyped<<import>>, betweenP3 andP2. In the OCL
specification ofPackage::makesVisible (see above),
this corresponds to the OCL expression following the second
or (imported through a package with public visibility). Similar
to the previous case, the result is wrong, due to the visibility
of classA.

Concluding, we notice that even though the
makesVisible() AO is compilable, its returned results do
not fully comply with the informal specification. Even more,
the usefulness ofelements with no visibility has not been
explained and taken into account in the formal specification.
Apart of these, there could be particular cases, like those
mentioned above, when the results are debatable.

A possible solution would be to include in the precondition
the restriction regarding the visibility ofel.

41

P2P1
<<import>>

A <<private>>

Fig. 2. Import of a private class through a single package import

P2P1
<<import>>

A <<private>>
P3

<<import>>

Fig. 3. Import of a private class through double package import

Package : : makesV is i b l e (e l : Namespaces : : NamedElement) :Boolean;
pre : s e l f . member−>i n c l u d e s (e l) and

e l . v i s i b i l i t y = V i s i b i l i t y K i n d : : p u b l i c

or

Package : : makesV is i b l e (e l : Namespaces : : NamedElement) :Boolean;
pre : s e l f . member−>i n c l u d e s (e l) and

(e l . v i s i b i l i t y = V i s i b i l i t y K i n d : : p u b l i c or
e l . v i s i b i l i t y . o c l I s U n d e f i n e d

)

Since we have no idea about the semantics of
el.visibility.oclIsUndefined in this case,
and due to other particular cases, our opinion is that the first
thing to do is to clarify the informal specification.

In a namespace, aNamedElement is valid if it is dis-
tinguishable from any other element owned by the names-
pace [11], [6]. The WFR checking this requirement uses the
AO isDistinguishableFrom(p1,p2). This operation
is firstly defined within theNamedElement context, and
redefined in theBehavioralFeature context. As stated
in the [11] (pp. 73), “...By default, two named elements are
distinguishable if (a) they have unrelated types or (b) theyhave
related types but different names.”

con tex t NamedElement : : i s D i s t i n g u i s h a b l e F r o m (n : NamedElement ,
ns : Namespace) :Boolean

def : i s D i s t i n g u i s h a b l e F r o m (n : NamedElement ,
ns : Namespace) :Boolean =

i f s e l f . oc l I sK indOf (n . oc lType) or
n . oc l I sK indOf (s e l f . oc lType)

then ns . getNamesOfMember (s e l f)−> i n t e r s e c t i o n (
ns . getNamesOfMember (n))−> isEmpty ()

e l s e t r u e
e n d i f

The formal specification fully complies with the informal
requirements. However, stating that two elements having un-
related types are distinguishable could cause unpleasant situa-
tions, such as the one in which a package contains both a class
and an enumeration having the same name (e.gTest). In this
case,enumeration.oclIsKindOf(class.oclType)
and class.oclIsKindOf(enumeration.oclType)
are always evaluated tofalse, irrespective of the
enumeration instance of the metaclassEnumeration
and class instance of the metaclassClass (see Fig-
ures 4 and 5). By consequence, the type of an attribute

testKind:Test belonging to a different class of the same
package is uncertain. This is due to the fact that we cannot
distinguish between these two types having the same name. In
order to fix this bug, the simplest solution would be to remove
“part a)” from the above requirements. However, the best
decision would be to provide a clearer specification, including
suggestive examples of models with both distinguishable and
not distinguishable named elements.

The visibleMembers() AO analyzed at the beginning
of this section is used by composition in computing the set of
elements imported in a namespace.

“The importedMember property is derived from the
ElementImports and thePackageImports.”

importedMember = s e l f . e l emen t Impo r t . impor tedElement−>a s S e t ()
−>un ion (s e l f . package Impor t . impor tedPackage−>c o l l e c t (p |
p . v i s ib leMembers ())−> a s S e t ())

Here, the drawback is due to previously-discussed
visibleMembers(). Another problem is that both in case
of a direct elementImport and packageImport, we
have to consider also the elements havingvisibility
= VisibilityKind::private and marked with the
stereotype <<access>>, not only those marked with
<<import>>. That is why, the importedMember in theP3
namespace of Figure 6, will returnSet{A, C, B, D, E},
so the visibleMembers() has a negative influence by
means of<<access>> packageImport also.

Since in case of name-clashes the imported elements can
be referred only by means of theirqualifiedName, let us
take a short look at the derived attributequalifiedName,
specified in theNamedElement metaclass. In the standard it
is stated that this attribute “is constructed from the namesof
the containing namespaces starting at the root of the hierarchy
and ending with the name of theNamedElement itself.” The
specification of thequalifiedName():String AO is:

body :
i f s e l f . name<>n u l l and s e l f . a l lNamespaces()−> s e l e c t (ns|

ns . name= n u l l)−>isEmpty ()
then s e l f . a l lNamespaces()−> i t e r a t e (ns : Namespace ;

agg :St r i ng = s e l f . name |
ns . name . c o n c a t (s e l f . s e p a r a t o r ()) . c o n c a t (agg))

e l s e n u l l
e n d i f

42

Fig. 4. The classes defined in the DataTypes diagram - from [11], Figure 11.18

Fig. 5. The Classes diagram of the Constructs package - from [11], Figure 11.15

P2

P1

A <<private>>

P3

<<import>>

C<<private>> B

<<access>>

P4

D

E

<<access>>

<<import>>

Fig. 6. Package import

43

While this specification is compilable and roughly
correct, there can arise a little problem, because an
empty String is not forbidden as a name value, and
self.’’->notEmpty() = true, the value computed
for qualifiedName in such cases, is meaningless. That is
why, such cases must be forbidden. More general, we consider
that rules similar to those applied in programming languages
must be used in modeling language as well.

The aspects analyzed in this section prove that, even in
simple cases, the specifications must be realized carefully,
not in a superficial manner. The reccomendations made in the
previous section must be taken into acount.

VI. CONCLUSIONS

The purpose of this paper has been to propose a change of
attitude with respect to the definition of the UML’s abstract
syntax, expected to positively affect the quality of the standard
specifications. This improvement is a “sine qua non” condition
for attaining the target of model-driven technologies and
paradigms.

Our proposal is argued by means of meaningful examples
taken from the latest UML specification [11]. The first re-
quirement to be accomplished concerns the quality of the
informal specifications: they have to be complete, accurateand
clear. Once this precondition is accomplished, the associated
postcondition is that the formal OCL specifications must
fully conform to their informal equivalents. Our experience
has proved that this conformance is achievable through an
iterative process. The results obtained by evaluating the formal
specifications must be compared to the informal ones and
should trigger a synchronization among the two, if needed.
This is an important contribution through which the OCL
specifications may increase the quality of abstract syntax
definitions, in general.

Another important message is that the mere compilability
of formal specifications does not value much if these spec-
ifications are not validated on comprehensive models. Tech-
nical aspects related to the particularities of the specification
language and the support that the formal specification style
brings in achieving compilable models are important as well.
In this respect, we recommend the adoption of a testing-
oriented specification style, as introduced in [5].

Apart from the advice related to the specification style, all
the others have been validated in Software Engineering. That
is why, noticing that so much good specification practice has
not been considered comes as an unpleasant surprise.

Achieving a good specification of MOF-based languages
is a tedious process, requiring a quality feedback both from
scientists and users. Our intent has been to make a first step,
by proposing a set of “good practices” to be considered in the
process, as well as a number of examples supporting our pro-
posal. Hoping that our proposals will be analyzed, improved
and extended by the OMG and thus a better abstract syntax
specification will support a more efficient and widespread
usage of modeling languages.

REFERENCES

[1] Bauerdick, H., Gogolla, M., Gutsche, F. - Detecting OCL Traps in
the UML 2.0 Superstructure: An Experience Report. - In Baar,T.,
Strohmeier, A., Moreira, A., Mellor, S.J., eds.: UML 2004 - The Unified
Modelling Language. Volume 3273 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2004) pp. 188-196

[2] Fabian Bttner and Martin Gogolla - On Generalization andOverriding
in UML 2.0 - in UML’2004 Modeling Languages and Applications.
UML’2004 Satellite Activities, Springer 2004

[3] Chiorean, D., Carcu, A., Pasca, M., Botiza, C., Chiorean, H., Moldovan,
S. - UML Model Checking in Studia Informatica vol XLVII (2002)pp.
71-88

[4] D. Chiorean, A Carcu, C Botiza, etc. Ensuring UML models
consistency using the OCL environment - Electronic Notes in
Theoretical Computer Science - ENTCS/102, 2004, pag. 99-110,
http://dx.doi.org/10.1016/j.entcs.2003.09.005

[5] D. Chiorean, V. Petrascu, I. Ober. Testing-Oriented Improvements of
OCL Specification Patterns. In Proceedings of the 2010 IEEE Inter-
national Conference on Automation, Quality and Testing, Robotics -
AQTR. Volume II, pp. 143-148. IEEE Computer Society, 2010

[6] D. Chiorean, V. Petrascu. Towards a Conceptual FrameworkSupporting
Model Compilability. In Proceedings of the Workshop on OCL and
Textual Modelling (OCL 2010). Volume 36(2010), ECEASST

[7] Alexander Egyed, Automatically Detecting and Tracking Inconsistencies
in Software Design Models, In IEEE Transactions on SoftwareEngineer-
ing, vol. 37, no. 2, pp. 188-204, 2011.

[8] J. M. Fuentes, V. Quintana, J. Llorens, G. Genova, R. Prieto Diaz. Errors
in the UML metamodel? ACM SIGSOFT Software Engineering Notes
28(6):3-3, 2003.

[9] Hugues Malgouyres, Jean-Pierre Seuma-Vidal, Gilles Motet, Regles de
coherence UML 2.0 - Version 1.1 - INSA - Toulouse, online at: http:
//www.lesia.insa-toulouse.fr/UML/CoherenceUMLv1 1 100605.pdf

[10] Michael Moors - Consistency Checking;
Rose Architect, Spring Issue, April 2000,
http://www.therationaledge.com/rosearchitect/mag/index.html

[11] Object Management Group (OMG) - OMG Unified
Modeling Language (OMG UML) Version 2.5, 2015,
http://www.omg.org/spec/UML/2.5/PDF

[12] Object Management Group (OMG) - Object Constraint Language ver-
sion 2.4 - formal/2014-02-03, http://www.omg.org/spec/OCL/2.4

[13] M. Richters, M. Gogolla. Validating UML models and OCL constraints.
In Evans et al. (eds.), UML 2000 The Unified Modeling Language.
Advancing the Standard: Third International Conference Proceedings.
Lecture Notes in Computer Science 1939, pp. 265-277. Springer, 2000.

[14] Claas Wilke and Birgit Demuth - UML is still inconsistent! How
to improve OCL Constraints in the UML 2.3 Superstructure - paper
proposed at: OCL 2011 Workshop

44

