Proposal for Improving the UML Abstract Syntax

Dan Chiorean, Vladiela Petrascu, loana Chiorean
Babes-Bolyai University, Cluj-Napoca, Romania
chiorean@cs.ubbcluj.ro, vladi@cs.ubbcluj.ro, ioana@roébcluj.ro

Abstract—Different types of consistency of UML models have to reach a stable and correct version is symptomatic and
been quCTIbEd in the I_|terature. The consistency of UML mod- triggers the necessity of a change of attitude in writinghsuc
els with the UML static semantics, usually referred as well- specifications. The approach proposed here is driven by the

formedness, and the consistency between different versions of . . .
the same model are among the most cited. The UML madels’ paramount importance of a complete, non-ambiguous informa

well-formedness is a precondition for any other kind of consis- SPecification, accompanied by relevant examples and by the
tency, being described by means of the UML abstract syntax. need of a thorough validation of all specifications, based on

Unfortunately, this abstract syntax specification is bogus. As a adequate test cases. The technical aspects concerningthe O
consequence, checking UML models’ consistency is not a natural specifications reported by previous papers, as well as thé ne

practice, as it should be. Beginning with 2000, there have been f a testi iented OCL ficati tt ¢
several papers reporting this state of facts, but without any vible ©' @ testing-oriente specification (meant to support an

consequences on the state of practice. In this paper, the autte efficient error detection and diagnosis [5]) are also ccersid.
propose a new approach (including specification techniques and Within the abstract syntax specification, the role of the
a IOFOCGTS) l;“eagt to Orefcome tt_his SfPeCifiC%tionthdfaWba_?_k- :?Ur informal (natural language) descriptions is twofold. Oa time
proposal is based on a long practice of improving the specification ; o ;
oM Wl Fomaines s e GELE 5 e oo
Index Terms—UML model consistency, UML abstract syntax, ’ ' N .
Well-Formedness Rules concepts, attributes and associations involved. On ther,oth
they describe the constraints that should be fulfilled by the
modeling concepts, as well as the additional operationd use
for querying the model or needed in the specification of
The purpose and relevance of the abstract syntax specifi¢éRs. This second role influences both the design of OCL
tion of MOF-based metamodels are explicitly mentioned in apecifications and their validation.
OMG documents and acknowledged by the entire communityUnlike previous work on the topic, this paper introduces
of modelers. As stated in [11], “The abstract syntax defines natural approach concerning the specification of a static
the set of UML modeling concepts, their attributes and thesemantics. Although the term “approach” may seem a bit
relationships, as well as the rules for combining these episc pretentious, we claim it is the most adequate, since it sdfer
to construct partial or complete UML models.” The sama process in which the involvement of the OMG standards’
document claims that “Relative to UML 1, this revision ofauthors is a must. The gaps and ambiguities residing in
UML has been enhanced with significantly more precighe standard specifications cannot be fixed in absence of
definitions of its abstract syntax rules and semantics, &maheir authors or in the absence of an explicit, unequivocal
modular language structure, and a greatly improved cdpabildescription, due to the risk of altering the original iniens.
for modeling large-scale systems.” Unfortunately, theestf Our proposal takes into account the major differences among
facts does not live up to these claims. The paper [14] praposke 2.x and 1.x versions of the UML standard.
by Wilke and Demuth at the OCL 2011 Workshop is a relevant The reading of the UML 2.x specifications is more de-
proof of this, through both its title and contents, even tiftou manding and tedious as compared to the 1.x versions. This
it has been written before [11]. The errors identified withiis due to the fact that most of the concepts are progressively
the abstract syntax specification and the solutions prapostescribed in several packages, their understanding regquir
for some of them concern all UML and MOF releases, witthe investigation of various diagrams and associated aéxtu
no exception (see [1] - [8], [13], [14]). Although there havelescriptions [2]. The amount of newly-introduced concepts
been enhancements in the abstract syntax specification frand their dispersed presentation are a strong argumentdswa
one version of the standards to the other, things could athet adoption of a complete, rigorous and clear description
should be seriously improved given the fact that: the regbrtstyle, as proposed by this paper.
errors, except compilation errors, have not been elimdhate
yet, new errors have emerged, the reading and analysis of!l- UML 2. X ABSTRACT SYNTAX - FROM GOALS TO
the UML 2.x specification is much more tedious compared to STATE OF FACTS
its 1.x version. Thus, the understanding of a single 2.x-well The primary purpose of an abstract syntax definition is
formedness rule (WFR) generally requires a detailed arsmlyghat of providing a complete, non-ambiguous and rigorous
of several class diagrams and additional operations (AOdgscription of a modeling language. These requirements are
The fact that the standard abstract syntax specificatiahs famandatory for both the correct understanding and consisten

I. INTRODUCTION

use of the modeling language, and for enabling conformanseftware developers. An important cause of the existingrerr
verifications of user-models against it. Failure to fulfilese is the inappropriate informal specification. We will dealthvi
requirements triggers inability to fully validate modelada these issues in Section 5 of this paper.
the risk to encounter different interpretations of the same
specifications. Moreover, it compromises the chance torensu
a safe and predictable model transfer among tools, as egfjuir Beginning with 2000, several papers have focused on the
by [11]: “One of the primary goals of UML is to advance thespecification and usage of WFRs. In the following, we sum-
state of the industry by enabling object visual modeling toonarize the ones considered to be the closest to our approach.
interoperability. However, to enable meaningful exchanfe In [13], the authors have given a first quasi-exhaustive
model information between tools, agreement on semantits amnalysis of the WFRs specified in UML 1.3. The work has
notation is required.” focused on the Foundation::Core package (31 classes and
Modeling languages share far more commonalities th&7 associations) that has been specified in USE, in order
differences with programming languages. Therefore, similto check the corresponding 43 WFRs. Also, 28 Additional
to programs, compilability is a mandatory requirement o@perations were tested. Errors have been found in 39 out
models as well. However, the similarity among the two types 71 tested expressions. Four categories of errors have bee
of languages does not only involve compilability. Similardentified: syntax errors, minor inconsistencies, typeckirey
to programs, models should be executable, and the resaltsors, and general problems. The paper was the first to draw
should conform to the requirements [6]. The formal modein alarm with respect to the quality of the UML WFRs
specifications should be preceded by informal equivaldmits. specifications. The following statement worth mentiondebr”
informal description should be complete and non-ambiguodsture work we plan to extend the analysis to the complete
since, according to Kristen Nygaard “Programming is undedML metamodel including all of its wellformedness rules
standing”. Therefore modeling, similar to programmingp-ca and making it available in USE. This might not only be
not be imagined in the absence of a thorough problem undaseful for improving the state of the standard but also iagpli
standing. Mathematical proofs of specifications’ corresgh another very nice application: in principle, any UML model
are only seldom realized; testing remains therefore thé bean be checked for conformance to the UML standard.”. In
alternative, at least in the current context. Similar togoaon [2], authors from the same research team present a similar
development, ensuring model compilability is mandatorlyonanalysis performed with USE, this time for the UML 2.0
at some key points of model development (usually, prior tBuperstructure.
transforming the models or prior to performing simulatijpns In [8], the second published paper on this topic, the authors
Such a requirement is best captured in [10]: “ during modelaim having tested the entire set of WFRs specified in the
editing, the model will frequently be syntactically incect, context of the UML 1.3 metamodel. They report 450 errors
and the tool needs to be able to allow for syntactical incoof three kinds: non-accessible elements, empty names, and
rectness in this mode.”. Thus, it is easy to understand thescellanea. The proposed solutions for fixing the reported
reason why the static semantics is described exclusively psoblems seem a bit bizarre. Namely, they suggest to “Take
means of invariants (WFRs), without pre/post-conditiorss, ghe empty names into account in every rule of the metamodel
promoted by Design by Contract. Despite this, some of tl§g96 errors). Consider access and contents as two different
additional operations encountered in UML have preconatitio concepts (138 errors). Avoid two opposite association ends
We judge this practice as right and useful, since the additio with the same name (18 errors)”.
operations are not employed exclusively in the specifioatio In [3], the authors present two techniques for checking UML
of invariants. An AO being targeted to model navigation, thmodels. One, implemented in Rational Rose, that enables to
fulfillment of its precondition guarantees that its evaloiatis navigate and check the contents of the UML metamodel by
meaningful, while the fulfillment of its postcondition emesa means of an appropriate VBA specification, and the other
the correctness of the evaluation results. As regardingethdt by means of OCL AOs and WFRs. Some AOs and WFRs
of a model compilability check, this should provide morare analyzed both with respect to the identified bugs to the
than a simple yes/no message. In case of non-compilabiliagtions undertaken for correcting them. In [4], the same
it is essential to be provided with meaningful informatiomuthors analyze different kinds of errors identified in the
enabling efficient error diagnosing and allowing a realeimOCL specification. The focus is on proposing “good practices
model adjustment. meant to support “a correct, clear and efficient specificétio
The informal specifications included in the UML 2.x docuThe consistency among the formal and informal specification
ments (for both WFRs and AOs) fail to comply with the qualitghe clearness of OCL expressions, the fact that evaluat®g O
requirements mentioned in the beginning of this sectioapecifications instead of only compiling them is imperatasre
This is a high-priority issue, in our view. In the last UMLamong the proposed and exemplified practices. The paper [5]
specification, 2.5, WFRs are compilable - a step forwaid focused on describing OCL specification patterns intdnde
compared to the previous specification, 2.4.1. However, the support a specification style targeted at an easier model
runtime testing and debugging issues are much more tediale&bugging. In [6], the focus is on the similarities between
than the compilability ones, as unanimously acknowledged programming and modeling languages. The paper emphasizes

Ill. RELATED WORK

the fact that, in the context of the model-driven paradigms, 3) The formal specifications of WFRs must be testing-
producing compilable models is a must, not an option. oriented [5]. Accomplishment of this requirement sup-

[14] is focused on the study of UML 2.3 Superstructure ports an easy error diagnosing of models that do not
WFRs. As acknowledged by its authors, there are many comply with the WFRs in question.
similarities between the topic and results reported inphiser ~ 4) Choosing the appropriate context for the specification
and those of [2]. The differences concerns the metamodels of WFRs that refer to features of several metaclasses is
(UML 2.3 in this last analysed paper and UML 2.0 in the also an important issue [6].
previous case) and the tools employed (Dresden OCL toolkit5) For both efficiency and clarity, the use of OCL specifi-
in the last paper and USE in the other). cation patterns is recommended, whenever the case.

The common feature of papers published by the teams from6) Indented and syntax highlighted OCL expressions en-
Bremen and Dresden is their focus on the compilation phase. able an easier lecture of specifications. Prefixing the
As regarding the papers published by our team, the analysis formal specifications with a short informal description
overpasses the mere compilation. The runtime results aid th of requirements (similar to comments in programming)
conformance to the informal specifications are also consitle is useful, as well.

In [9], the authors present coherence rules grouped on7) The WFRs which are specified in an informal man-
metamodel elements and diagrams. Although the idea looks ner exclusively should be complemented by relevant
nice, there are some drawbacks. Firstly, the rules are miex$e examples of their fulfillment or failure to be fulfilled,
exclusively in an informal manner (in spoken language); possibly accompanied by an overview of how the au-
moreover, for some rules the semantics is not clear enough. thors imagine the validation process. Obeying to this
Secondly, there are nho comments about incorrect rules and requirement allows a better understanding of the rules
about authors’ proposal for improving the existent sencanti and provides support in finding appropriate specification

Finally, in [7] and in some other papers on the same topic, and validation solutions.

A. Egyed presents "an approach for quickly, correctly, and Except for the forth recommendation, which seems to be
automatically deciding when to evaluate consistency rukes obeyed by almost all specifications of the UML, all the others
the title of the paper suggests, the author’'s work is focusgge not met. As illustrated in the following, taking themant
on doing an automated quick evaluation. In the experienggcount will help in increasing the quality of the standard
presented, only 24 rule were evaluated - some being WFgsecifications.

and others defined by model designers. There are no mentions
about the correctness of the evaluated rules. From thig poin
of view, the approach is significantly different from ours.
However, the author is convinced about the importance of The import in a namespace of elements from different

consistency checking in case of UML models. namespaces is one of the most important relationships in
both programming and modeling languages offering modular

IV. THE PROPOSEDAPPROACH FORSPECIFYING THE development support. This allows the imported elements to
ABSTRACT SYNTAX be directly referred by their name or by an alias, whenever
The state of facts in specifying the abstract syntax of UMlthere is no name conflict among the imported elements and
together with a thorough analysis of the published liteatn the elements belonging to the namespace which performs the
the topic allow us to argue that a significant amount of all tHenport. In case of conflict, the use of a qualified name is
existing specification errors are due to failure in obeyim@t mandatory. The programming languages come with clear spec-
number of elementary requirements, validated by the soffwafications concerning the import relationship. Thus, weuarg
engineering practice. Given our experience in the field, what any differences in the import rules specified for UML
propose conforming to the following rules when specifyingand MOF compared to the programming languages should be
the abstract syntax of UML/MOF. clearly justified. Even more, examples are needed to iltstr
1) A complete and non-ambiguous informal equivalent dhe manner in which various cases tolerated by modeling
all OCL specifications (both WFRs and AOs) is théanguages can be coded in a programming language (direct
first and the most important of these rules. Moreovegngineering) or the reverse (reverse engineering). Otherw
there should exist a full conformance among the irthe support offered by modeling languages to the MDA, MDE
formal specification and its formal correspondent. @nd MDD paradigms remains only in statements.
would be helpful if the informal specification would Similar to programming languages, the UML allows two
be accompanied (possibly in an attached document) b{pes of import:
examples illustrating cases of validation and invalidatio 1) explicit, by defining an individual import relation-
of each rule, as well as exceptional cases that may arise ship for each imported element (which should be a
throughout the evaluation of AOs. Packageabl eEl enent). Such an import relationship
2) Runtime validation of formal specifications on signifi- is modeled by theEl enent | nport concept (direct
cant data sets (models) is mandatory. Mere compilability ~ descendent obDi r ect edRel ati onshi p), that has
is not enough. two attributesvi si bi | i ty andal i as. Graphically,

V. ANALYZING IMPORT RELATIONSHIPS ONUML
NAMESPACES

’ i A “enumerations®
{readOnly, union, subsets member, i
subsets ownedElement} “;T'b"'t"m"d

) public
+ [ownedMember NamedElemen {subsets owner} {subsets ownedElement} private
N o mvame : String [0..1] + namedElement + nameExpression p.utf:gted
: e il Stri i package
* | + fqualifiedName : Siring [0..1] {readOnly} bl 0.1 0.1 StringExpressian
+ visibility : Visibilitykind [0..1] " -
+ /member
Par: terableElement
{readOnly, union} | ame |
‘ {readOnly, subsets member}
k- /memberNamespace Namespace * + f/importedMember J PackageableElement
{readOnly, union} * + nameaspace * =| * visibility : VisibilityKind [0..1] = public {redsfines visibility}|

2)

+ importedElement

{subsets memberNamespace} 1 {subsets target}

0.1
{subsets directedRelationship]
+ .l’na_meepace {subsets ownedElement, subsets *| + import
{readOnly, union, subsets directedRelationship}
memberNamespace, 1 + elemantimport Elementimpor!
subsets owner} + alias : String [0..1]
+ importingNamespace * | = visibility : VisibilityKind = public

{subsets source,
subsets owner}

\
i
{subsets source, {subsets ownadElement, subsets
subsets owner} directedRelationship}
+ importingNamespace + packagelmpc-rﬂ PackageImpor! |

1 + |+ visibility : VisibilityKind = public|

+ packageImport
* {subsets directedRelationship]

bsets target]
{subsets namespace} {subsets ownedMember} 1 iSIiJmS;mte?jEJai age

+ context + ownedRu
‘]-] Constraint Package

0..1

Fig. 1. TheNanmespaces diagram of theConst r uct s package (Figure 7.5 of [11])

El ement | nport is represented by a “a dashed arrow package import.”

with an open arrowhead from the importing namespacethe concepts involved in the import relationships and their
to the imported element. The keywordnport iS jnterconnections are illustrated in Figure 1. Even if not ex
shown near the dashed arrow if the visibility is publicyjicitly stated, the set mport edMenber is needed when
otherwise the keywordccess is shown to indicate compyting the set of potential servers of a model element or
private visibility. If an element import has an alias, thigyhen checking if an element is legally imported.

is used in lieu of the name of the imported element. The |, ihe following, we will analyze the formal OCL speci-

aliased name may be shown after or below the keywoflasions (and their informal descriptions) regarding the i

?rrppr.t." , i , port relationship defined between Manespace and a
implicit, by means of an import relationship amongbackageabl eEl ement or aPackage.
the importing namespace and the imported package,, the Narespace context the AO

‘_‘Conceptually, a_package import_ is_e_quivalent to hav-et NamesCf Menber () previously specified in the
ing an element import to each individual member ol myE| ement context “is overridden to take account of
the imported ‘namespace, _unless" ther_e IS alreadyin‘ffborting. It gives back the set of names that an element
separately-defmed eleme'nt 'mp‘?”- Slm!lar to the C38%fould have in an importing namespace, either because it is
of an element import, this relationship is modeled by neq: or if not owned, themported individually; or if not

the Packagel nport metaclass, having an anal()gouﬁ\dividually, then from a packagde

graph!cal representation. It is shown using a dashe a"In our opinion, the last part of the second phrase (marked by
row W't.h an open arrowhead from the |mport|ng packag[tﬁe underlined words) is a bit confusing. A clearer and more
to the imported p'acka.ge. A'keyvx_/ord is shown near theexplicit statement (at least for a non-native speaker)da:bet
dash_ed_ arrow to identify Wh'.Ch kind of pacl_<age IMPOLither because it is owned, or imported individually or by a
that is intended. The predefined keywords iampor t package import.

for a public package import, anaccess for a private Following, there is the corresponding OCL specification, as

provided in the standard. gualified name outside the owner package. That is why, at the
Namespace :: getNamesOfMember(element: NamedElemesitring [O..*];b(:"glmﬁ'mg of this section, we have empha5|zed the nece}a‘sny

getNamesOfMember = an explicit description of the rationale behind certainisiens.
if self.ownedMember>includes (element) P . ipe
then Set{element.namp Secondly, it is easy to notice that the formal specifica-

else let elementimportsSet(Elementimport)=self.elementimporttion does not comply with the informal one, since only the
—>select(eiei.importedElement=element)n PRI
if elementimportssnotEmpty () V|S|b|_I|t|es of e_l enent | _n‘po_rt and packagel r_rpo_r_t are
then elementimports>collect(el|el.getName ()) considered, without taking into account the visibility dfet
else self packagelmport>select(pi ; : ; e ;
pi. importedPackage.visibleMember&(}includes(element)).element IFse_If _(|rrespect|ve if it bemg owned bY the pa(*ag
—>collect(pi|pi.importedPackage .getNamesOfMember (|mported |nd|V|duaIIy or by means of a package |mport). More
endif element);->asSet over, the authors of the OMG specification say nothing with
endif respect to what happens in particular cases, such as th@one i

]] which the same element is imported both individually (with
In [11], the type returned by the observer defined is writz; o pi | i ty = VisibilityKind::private) and by

ten asStri ng[O..._*]) notation not accepted in OCL ?'4means of apackagel nport with visibility =
(the current specification [12]) and previous specification; sj pj | j t yKi nd: : publ i c. In this case, evaluating the
The AO vi si bl eMenbers(), used by composition in ghecification abovemakesVi si bl e will be evaluated to

the above specification is bogus, as we will prove in the,e even if it is stated that the individual import has fitio
following. As a consequence, the result returned by the A&)mpared to package import.

get NamesOf Merrber () will be incorrect in some cases.

e In order to exemplify our reasoning, let us consider the
~ InthePackage context, the queryi si bl eMenbers() model shown in Figure 2. As illustrated there, between
identifies those members ofRackage that can be accessedpackageggz and P1 there is an<<i npor t >> relationship.

outside it. The specification provided for the AO visibleMem,o packageP1 owns the classA having vi si bility

bers() in [11] is: = VisibilityKind::private. In the context of the
body: member>select (mm. oclisKindOf (PackageableElement) P1 package, we are interested to seeelf = A is visible
A e A e (D vageableElementyasset) Outside its owning package. The clags is a member

of P1, so we have to evaluate theakesVi si bl e()
Analysing figure 12.1 Packages, pp. 29 from [11AO. P1. ownedMenber - >i ncl udes(A), therefore
we wonder why the OMG has not proposedrakesVisible() = true. Thus, due to the
sel f. packagedEl enment - >sel ect (pe | packagel nport relationship, A is added to theP2
sel f. makesVi si bl e(pe)). In this case, the condition namespace and can be accessed by name, in case there are
ocl I sKi ndOF (Packageabl eEl enment), the cast at no name collisions betweeA and other elements of the
Packageabl eEl ement, and the conversiorasSet are P2 namespace. This result is incorrect, since the element in
redundant. guestion has private visibility.

The query makesVi si bl e() specified itself in the Thirdly, when the element is imported in the package
Package context, “defines whether Rackage makes an by packagel nport, the result returned will be wrong
element visible outside itself. Elements with no visilyiland if the visibility of the element transmitted by parameter

elements with public visibility are made visible.”. (el)isVisibilityKind::private. A sample situation
Package :: makesVisible (el:Namespaces:: NamedElemeBodiean; 1S IHUStr_ate_d n Flgure 3. _ln the paCkagéz’ the _prlvate
pre: self.member>includes (el) class A is imported by thei nport Package relationship
makesVisible = H : [P
““the element is in the package stereotyped<<i npor t >>. In P3, private chssA is im-
(ownedMembe»mglqu_s(_zl))lfr i oublic visibili ported by means of thenpor t Package relationship, also
— it is imported individually with public visibility :
(elementimport>select (el ei. visibility = stereotypedk<i nport >>, betweenP3 andP2. In the OCL

VisibilityKind :: public)—>collect (importedElement . oclAsType (Specification ofPackage: : makesVi si bl e (see above),
NamedElement)y >includes (el)) or . ; ;
__ it is imported through a package with public visibility NS corresponds to the OCL expression following the second

(pacgallgelmpzrbseglec;(pi\ pil.I Visibility = or (imported through a package with public visibility). Siamil
VisibilityKind :: public)—>collect (pi . f TR
pi. impor{edpackgge,memwmcludg’sl(el)bnmEmpty()) to the previous case, the result is wrong, due to the vigibili
of classA.
As regarding this specification, there are some things weConcluding, we notice that even though the
would like to analyze. makesVi si bl e() AO is compilable, its returned results do

Firstly, the informal specification states that “Elementsot fully comply with the informal specification. Even more,
with no visibility and elements withpublic visibility are the usefulness oélements with no visibility has not been
made visible.” As no explanation is offered regarding whegxplained and taken into account in the formal specification
elements with no visibility are visible outside the packagdpart of these, there could be particular cases, like those
this requirement seems strange to us. Especially sinceoin pmentioned above, when the results are debatable.
gramming languages (Java, for instance) only public mesber A possible solution would be to include in the precondition
of a package can be explicitly exported or referred by thdine restriction regarding the visibility afl .

1 1

P1) p2
<<import>>

A <<private>>

Fig. 2. Import of a private class through a single package impor

1 1
P1 P2 -

<<import>> <<import>> 3

A <<private>>

Fig. 3. Import of a private class through double package import

— t est Ki nd: Test belonging to a different class of the same
Package :: makesVisible (el:Namespaces:: NamedElemeBopiean;
pre: self.member>includes (el) and package is uncertain. This is due to the fact that we cannot
el.visibility = VisibilityKind :: public distinguish between these two types having the same name. In
order to fix this bug, the simplest solution would be to remove
— — . — — “part a)” from the above requirements. However, the best
bro Ssli memberaincludes (e1) and oo omedElemamdlean - decision would be to provide a clearer specification, iniclgd
(el.visibility=VisibilityKind :: public or suggestive examples of models with both distinguishabte an
o vistbility oclisUndefined not distinguishable named elements.
: : : Thevi si bl eMenbers() AO analyzed at the beginning
Since we have no idea about the semantics gf this section is used by composition in computing the set of
el .visibility.ocllsUndefined in this case, elements imported in a namespace.
and due to 'other pa.rticular'cases, our opi.niorj is that the firs«The j nport edMenber property is derived from the
thing to do is to clarify the informal specification. El enent | nport s and thePackagel nports.”
In a namespace, BanedEl enent is valid if it is dis- - .
. ishable from anv other element owned bv the namelglporte_dMember =se|f.e|ement|_mport.|mportedEIemeni>asSet()
tinguisha y - : - y —>union(self. packagelmport.importedPackagecollect(p |
pace [11], [6]. The WFR checking this requirement uses thep . visibleMembers(}}->asSet())
AO i sDi sti ngui shabl eFron{pl, p2). This operation

is firstly defined within theNarmedEl enent context, and .H(_arbel, thibdrawba(;lf 'i due blto pre;]noubsly;]d!scussed
redefined in theBehavi or al Feat ur e context. As stated V' S! eMenber s() . Another problem is that both in case

in the [11] (pp. 73), “...By default, two named elements ar%]c a directel ement | nport and packagel nport, we

i - have to consider also the elements haviigsi bility
distinguishable if (a) they have unrelated types or (b) theye . CoeE T .
related types but different names.” = VisibilityKind::private and marked with the

o — (= stereotype <<access>>, not only those marked with
context NamedElement::isDistinguishableFrom (n:NamedElement,
ns:Namespace Boolean <<I MpOrt >>. That is why, the importedMember in te3

or

def: isDistinguishableFrom (n:NamedElement, namespace of Figure 6, will retuet {A, C, B, D, E},
ns:Namespace Boolean = P ; ;
if self.oclisKindOf(n.ocIType) or so thevi si bl eMenber s() has a negative influence by
A n.ocIIsKindOf(s;elf-ol;:ITyplf) _ . means of<<access>> packagel nport also.
e N amesoMomber o ieemmo (oo Since in case of name-clashes the imported elements can
else true be referred only by means of thejual i fi edNane, let us

endif take a short look at the derived attribugenal i fi edNane,

The formal specification fully complies with the informalspecified in theNamedEl ement metaclass. In the standard it
requirements. However, stating that two elements having uf stated that this attribute “is constructed from the naofes
related types are distinguishable could cause unpleaiaat s the containing namespaces starting at the root of the kiteyar
tions, such as the one in which a package contains both a cl@gd ending with the name of tidanedEl ement itself.” The
and an enumeration having the same nameTest). In this Specification of thequal i fi edNanme(): String AO is:
case,enuner ati on. ocl | sKi ndOf (cl ass. ocl Type) pody:

and cl ass. ocl | sKi ndOf (enuner ati on. ocl Type) if self.name>null and self.allNamespaces{?;;elEectt(n(s)
. . ns.name=nu isEmpty
are always evaluated tof al se, irrespective of the then self.allNamespacesf>iterate (ns:Namespace;
enuner ati on instance of the metaclassnumer ati on ﬁggr:]itn:éngc;czﬂglrf\ams |a ator (). concat (agg))
.S r .
and cl ass instance of the metaclas€l ass (see Fig- else null P 99

ures 4 and 5). By consequence, the type of an attributendif

Classifier

JA

7

DataType

datatype ownedAttribute Property

0..1 {subs ets namespace, {ordered «

subsets featuringClassifier, Subsets aftribute,
subsets classifier) Subsets ownedMember}

datatype ownedOperation Operation

o

) \ 0.1)
L) {subsets redefinitionContext, {ordered
subsets namespace, subsets feature,
subsets featuringClassifier} SUDS&Ls owne dMem ber}

NamedEiement

PN

PrimitiveType Enumeration enumeration ownedLiteral| EnumerationLiteral
-

0.1 *

{subsets namespace} {subsets ownedMember,
ordered}

Fig. 4. The classes defined in the DataTypes diagram - frofy Fidure 11.18

{subsets classifier, subsets namespace} {ordered, subsets attribute, subsets ownedMember}

+ class + ownedAttribute

Class = Property
+ isAbstract : Boolean = false 0.1 -
{subsets featuringOassifier, {ordered, subsets feature,
subsets redefinitonContext, subsets redefinableElement,
subsets namespace} subsets ownedMember}
+ class + ownedOperation
. Operation
0.1 4
{redefines genaral}
+ superClass
+ class

{subsets classifier}

Fig. 5. The Classes diagram of the Constructs package - fidf Figure 11.15

1

P2

A <<private>>

P4

<<access>>

<<import>

<<access>> .

1

P1 |

C<<private>> B

Fig. 6. Package import

While this specification is compilable and roughly
correct, there can arise a little problem, because
empty String is not forbidden as a name value, and
self.’ " ->not Enpty() = true, the value computed
for qual i fi edNanme in such cases, is meaningless. That is
why, such cases must be forbidden. More general, we considey
that rules similar to those applied in programming langsage
must be used in modeling language as well. 3]

The aspects analyzed in this section prove that, even in
simple cases, the specifications must be realized caryeful:g1
not in a superficial manner. The reccomendations made in t é
previous section must be taken into acount.

(5]
VI. CONCLUSIONS

The purpose of this paper has been to propose a change of
attitude with respect to the definition of the UML's abstractl®]
syntax, expected to positively affect the quality of thendrd
specifications. This improvement is a “sine qua non” cooditi [7]
for attaining the target of model-driven technologies and
paradigms. (8]

Our proposal is argued by means of meaningful examples
taken from the latest UML specification [11]. The first re- 9l
quirement to be accomplished concerns the quality of th%
informal specifications: they have to be complete, acclaate
clear. Once this precondition is accomplished, the asteutia
postcondition is that the formal OCL specifications must
fully conform to their informal equivalents. Our experienc[11]
has proved that this conformance is achievable through an
iterative process. The results obtained by evaluatingdhed! (1]
specifications must be compared to the informal ones and
should trigger a synchronization among the two, if needeld?!
This is an important contribution through which the OCL
specifications may increase the quality of abstract syntax
definitions, in general. (14

Another important message is that the mere compilability
of formal specifications does not value much if these spec-
ifications are not validated on comprehensive models. Tech-
nical aspects related to the particularities of the spextifia
language and the support that the formal specification style
brings in achieving compilable models are important as.well
In this respect, we recommend the adoption of a testing-
oriented specification style, as introduced in [5].

Apart from the advice related to the specification style, all
the others have been validated in Software Engineeringt Tha
is why, noticing that so much good specification practice has
not been considered comes as an unpleasant surprise.

Achieving a good specification of MOF-based languages
is a tedious process, requiring a quality feedback both from
scientists and users. Our intent has been to make a first step,
by proposing a set of “good practices” to be considered in the
process, as well as a number of examples supporting our pro-
posal. Hoping that our proposals will be analyzed, improved
and extended by the OMG and thus a better abstract syntax
specification will support a more efficient and widespread
usage of modeling languages.

(10]

REFERENCES

] Bauerdick, H., Gogolla, M., Gutsche, F. - Detecting OCkafs in

the UML 2.0 Superstructure: An Experience Report. - In Bday,
Strohmeier, A., Moreira, A., Mellor, S.J., eds.: UML 2004 -€Ttnified
Modelling Language. Volume 3273 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2004) pp. 188-196

Fabian Bttner and Martin Gogolla - On Generalization @wkrriding

in UML 2.0 - in UML'2004 Modeling Languages and Applicatians
UML'2004 Satellite Activities, Springer 2004

Chiorean, D., Carcu, A., Pasca, M., Botiza, C., Chior¢dn Moldovan,

S. - UML Model Checking in Studia Informatica vol XLVII (200p.
71-88

D. Chiorean, A Carcu, C Botiza, etc. Ensuring UML models
consistency using the OCL environment - Electronic Notes in
Theoretical Computer Science - ENTCS/102, 2004, pag. 99-110
http://dx.doi.org/10.1016/j.entcs.2003.09.005

D. Chiorean, V. Petrascu, |. Ober. Testing-Oriented lovpments of
OCL Specification Patterns. In Proceedings of the 2010 IE&ErH
national Conference on Automation, Quality and Testing, digb -
AQTR. Volume II, pp. 143-148. IEEE Computer Society, 2010

D. Chiorean, V. Petrascu. Towards a Conceptual FrameBagporting
Model Compilability. In Proceedings of the Workshop on OCLdan
Textual Modelling (OCL 2010). Volume 36(2010), ECEASST
Alexander Egyed, Automatically Detecting and Trackingdnsistencies

in Software Design Models, In IEEE Transactions on Softviargineer-
ing, vol. 37, no. 2, pp. 188-204, 2011.

J. M. Fuentes, V. Quintana, J. Llorens, G. Genova, Ri&ieaz. Errors

in the UML metamodel? ACM SIGSOFT Software Engineering Notes
28(6):3-3, 2003.

Hugues Malgouyres, Jean-Pierre Seuma-Vidal, Gillesdtjdkegles de
coherence UML 2.0 - Version 1.1 - INSA - Toulouse, online dtph
IIww.lesia.insa-toulouse.fr/'UML/CoherenceUML1_1_100605.pdf
Michael Moors - Consistency Checking;
Rose Architect, Spring Issue, April 2000,
http://www.therationaledge.com/rosearchitect/maghritenl
Object Management Group (OMG) - OMG
Modeling Language (OMG UML) \ersion 2.5,
http://www.omg.org/spec/UML/2.5/PDF

Object Management Group (OMG) - Object Constraint Laaggiver-
sion 2.4 - formal/2014-02-03, http://www.omg.org/spec/QZ4

M. Richters, M. Gogolla. Validating UML models and OCLnsiraints.

In Evans et al. (eds.), UML 2000 The Unified Modeling Language
Advancing the Standard: Third International Conferencecedings.
Lecture Notes in Computer Science 1939, pp. 265-277. Spri2ge0.

Unified
2015,

] Claas Wilke and Birgit Demuth - UML is still inconsisténHow

to improve OCL Constraints in the UML 2.3 Superstructure - grap
proposed at: OCL 2011 Workshop

