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Abstract. PubMed, the main literature repository for the life sciences,
contains more than 23 million publication references. In average nearly
two publications per minute are added. There is a wealth of knowledge
hidden in unstructed format in these publications that needs to be struc-
tured, linked, and semantically annotated so that it becomes actionable
knowledge.
We present an approach towards large-scale processing of biomedical
literature in order to extract domain entities and semantic relationships
among them. We describe some practical applications of the resulting
knowledge base.

1 Introduction

Text mining technologies are increasingly providing an effective response to the
growing demand for faster access to the vast amounts of information hidden in
the literature. Recent comprehensive reviews of the field are [25, 15]. Biomedical
text mining involves different levels of document processing: document classifi-
cation, document structure recognition (zoning), domain entity recognition and
disambiguation detection of relations, to name just a few.

Several tools are becoming available which offer the capability to mine the
literature for specific information, such as for example protein-protein interac-
tions or drug-disease relationships. Examples of well known biomedical text min-
ing tools are MetaMap [3], MedEvi [14], WhatIzIt [18], ChilliBot [6], Gimli [4],
iHOP1 [12, 11], Open Biomedical Annotator [13], AliBaba [16], GOPubMed [8],
GeneView2 [30]. Some of the most commonly used frameworks for the develop-
ment of text mining systems include IBM LanguageWare, the Natural Language
Toolkit (NLTK), the GATE system (General Architecture for Text Engineering)
and IBM’s UIMA (Unstructured Information Management Architecture).

The biomedical text mining community regularly verifies the progress of the
field through competitive evaluations, such as BioCreative [2], BioNLP [17], i2b2
[29], CALBC [20], CLEF-ER [19], DDI [27], BioASQ [1], etc. Each of these com-
petitions targets different aspects of the problem, sometimes with several sub-
tasks, such as detection of mentions of specific entities (e.g. genes and chemicals),
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detection of protein interactions, assignment of Gene Ontology tags (BioCre-
ative), detection of structured events (BioNLP), information extraction from
clinical text (i2b2), large-scale entity detection (CALBC), multilingual entity
detection (CLEF-ER), drug-drug interactions (DDI), question answering in bi-
ology (BioASQ).

Evidence in support of relationships among biomedical entities, such as protein-
protein interactions, can be gathered from a multiplicity of sources. The larger
the pool of evidence, the more likely a given interaction can be considered to
be. In the context of biomedical text mining, this elementary observation can
be translated into an approach that seeks to find in the literature all available
evidence for a given interaction, and thus provides a reliable means to assign it
a likelihood score before delivering the results to an end user.

In this paper we present the results of an on-going collaborative project
between a major pharmaceutical company and an academic group with extensive
expertise in biomedical text mining, with the initial goal of extracting protein-
protein interactions from a large pool of supporting papers, later to be extended
to different entity relationships.

The OntoGene group3 at the University of Zurich (UZH) specializes in mining
the scientific literature for evidence of interactions among entities of relevance
for biomedical research (genes, proteins, drugs, diseases, chemicals). The quality
of the text mining tools developed by the group is demonstrated by top-ranked
results achieved at several community-organized text mining competitions [22,
24, 21]. As part of a project funded by a large pharmaceutical company, the
OntoGene group recently adapted their text mining, with the goal of detecting
evidence for specific protein interactions described in the input documents. Given
an input gene or protein, the system locates all interactions of that gene/protein
and present them as a ranked list, with evidence coming from all papers where
they are mentioned. The interface is structured in a way that allows easy inspec-
tion of the original evidence from the publications for any candidate interaction
suggested by the system. The ranking computed by the system takes into con-
sideration not only the local evidence in each paper, but also the global evidence
across the collection. In summary, the system has the following capabilities:

1. identify all interactions in which a given protein is involved
2. rank them based on evidence in the literature
3. enable curation by an end user through a user-friendly interface

In the rest of this paper we describe the methods that were used in the
development of the system (sec. 2), then we briefly report the results of an
evaluation (sec. 3), and finally we focus specifically on some applications (sec. 4).

2 Methods

The OntoGene group developed in recent projects an advanced text mining
pipeline which is used to provide all the basic text mining capabilities that are

3 http://www.ontogene.org/



needed for the successful realization of the activities described in this paper. Our
text mining system has been evaluated in several community-organized compet-
itive evaluation tasks and always shown to perform at state-of-the-art levels, for
example obtaining best results in the annotation of experimental methods [22],
in the annotation of protein-protein interactions [24], and in the discovery of
several other entity types [21].

The OntoGene system uses terminology derived from life science databases,
storing internally the several possible names for a given term and its unique iden-
tifier. All potential terms of relevance in the target collection are automatically
annotated with an approximate matching approach. The annotation process not
only identifies a string as a potential term of a given type (e.g. a protein), but
also associates to it the unique identifier of the term. In case of ambiguos terms,
several potential identifiers will be associated to the term. This high-recall ap-
proach is then followed by a machine-learning based filtering step which removes
false positives and disambiguates ambiguos terms. In the case of the application
considered in this paper, the reference database was BioGrid4 [7] for its good
coverage and quality curation. The result of the entity annotation phase is a
richly annotated version of the original document, in an XML format which can
be inspected with a customized interface, which we describe later in this paper.

In order to produce candidate interactions the system first generates all pair-
wise combinations of the pairs (term,identifier) seen in the document, and
scores them using information from the original database, as described below. A
threshold on the score can then be used to select the best candidate interactions.
For each of these interactions, evidence snippets from the text are provided.

BioGrid provides for each protein-protein interaction at least one reference,
i.e. a paper where that interaction is mentioned. Our initial collection for the
experiment described in this paper consisted of 20,000 PubMed abtracts, selected
from the references of BioGrid, in order to insure that at least one protein-protein
interaction would be detectable. In addition to the abstract itself, we use also
the MeSH keywords and list of Chemical substances which are associated to the
abstract in PubMed.

For every annotated term, and for every possible identifier for that term,
we compute a concept score, which is based on the likelihood of that (term,

identifier) pair to participate in a curated interaction in the reference database.
Additional factors, such as the position in the document (title vs abstracts) are
used as weights.

For every pairwise combination of concepts (term identifiers) we also compute
a sentence score, based on all the sentences which contain annotated terms with
the identifiers of the two concepts (excluding cases where the two identifiers
happen to refer to the same term). Such sentences (using a distant-learning
approach) are assumed to be positives if the pair of identifiers is provided in the
reference database as a curated interaction. This probability, estimated with a
Näıve Bayes (NB) model having a bag of words as its features, tries to capture

4 http://thebiogrid.org/



the linguistic context in which the interaction can occur. For more technical
details about the approach described in this section, please consult [23, 9].

3 Evaluation

The evaluation of the extracted interactions was performed using a 10-fold cross
validation. The results are compared against the reference database (BioGrid in
this case) taken as a gold standard. Care must be taken in the interpretation
of these results, since the reference database does not provide the position of
possible interactions, but only the fact that two interacting entities have been
identified in a given paper. Therefore any results provided by the system in the
form of a triple (article/id0, entity/id1, entity/id2) is considered positive if and
only if the interaction (id1, id2) can be found in the database associated with
paper id0.

Extending this approach to the evaluation of the detection of domain entities,
we can consider a detected term as a true positive if it is associated to an identifier
which is part of a curated relation for the analyzed article. This approach has
the advantage that we can use the manually curated database as a gold standard
for evaluation, but it has of course the disadvantage that a correctly annotated
term might nonetheless be considered as a false positive simply because it is not
part of one of the curated interactions.

Using the approach mentioned above, we evaluated the performance of the
entity recognition component using the conventional evaluation measures. The
basic system, as described above, reaches a recall of 70.6%, with however only a
precision of 11.6% (F-score: 19.9%). After inspecting the results, we introduced
a small number of exclusion rules for very frequent false positives, which lead to
an improvement of precision (14.6%) at a small cost for recall (70.0%), leading
to a clearly better F-score (24.2%).

There are several reasons for the relatively low level of these results. The low
level of precision can be partly explained by the indirect evaluation mechanism,
i.e. an annotated term is only considered a positive if it is part of an interaction,
which results in several false positives which could actually be perfectly correct
entity annotations. The recall is affected by the fact that while database curators
have access to the full articles, the system analyzes only abstracts.

In any case, our main concern in this experiment is the retrieval of interac-
tions, therefore we aim for for a relatively high recall at the entity level, even at
the cost of a low precision. The metric used for the evaluation of the detected
interactions is Threshold Average Precision (TAP-k) [5], which is a measure of
ranking quality. TAP-k can be described in informal terms as “precision after
having seen k false positives”. The main reason for the choice of this metric is
that while it unrealistic to expect the system to produce high levels of precision
and recall, we aim at producing the best possible ranking of the results, since
we expect the users to inspect only the top results produced by the system.

Since relations are pairwise combinations of detected entities, an upper bound-
ary for the recall of relation extraction can be estimated from the entity recog-



Fig. 1. Example showing best ranked interactors for the protein TP53

nition recall. Given the current recall value of 0.7 for entity recognition, rela-
tion extraction is not expected to exceed 0.5 (0.7 × 0.7). Precision in relation
extraction, just like in entity extractions, is limited by the type of evaluation
methodology. Relations which have not been curated in the reference databases
will be considered as false positives, even though they might be mentioned in the
text as legitimate interactions. Using different variants of the parameter which
combines the concept score and the relation score we were able to obtain a best
value of 0.229 for the TAP-10 score of extracted relations.

4 Applications

In the previous section we described an approach towards semi-automated se-
mantic annotation of PubMed abstracts (or full papers, when available), using
unique identifiers from reference databases. A web-based user interface allows
interaction of the expert user with the text mining system in order to achieve an
efficient and accurate annotation. The automated annotations are also used in
a large-scale application which enables a semantic search for interactions among
domain entities.

4.1 Large-scale interaction extraction and interaction validation

As an application of the methods described in the previous section, we have an-
alyzed the whole of PubMed, and produced a database of the extracted protein-
protein interactions. Each interaction is characterized by a confidence score (de-
rived from the relation score) which summarizes in a compact form the reliability
of the interaction based on the evidence spread across the entire literature.

There are several potential applications for this database. As a demonstration
we implemented an interface (using Apache Solr) which allows examination of
the results. The user can enter an arbitrary protein name, and the system will



Fig. 2. Example showing top-ranked snippets for the interaction TP53 - MDM2

provide a list of candidate interactors, ranked according to the confidence score
(see figure 1). Once the user selects one of these interactions, the system will
deliver the textual snippets which are considered to be most relevant for that
particular interaction. Figure 2 shows precisely this final step (best evidence for
a given interaction) from the current version of the interface.

In another application we have been given by a domain expert a list of several
hundred proteins of interest in a particular biological study (see figure 3). The
researcher was interested in what are the potential interactions among those
proteins. Since the number of potential interactions is quadratic to the number
of input proteins, it is useful, before planning an experimental validation, to have
some pre-filtering technique that allows to narrow down the space of interactions
to be investigated. Using the database described above we were able to reduce
considerably this set, removing a huge number of potential interactions for which
there is no evidence whatsoever in the literature. Additionally, the remaining
set of candidate interactions is ranked according to our confidence score, thus
providing a potential way to further narrow down the scope of the experimental
investigation (see figure 4), by selecting the highest ranked interaction interaction
candidates which are not yet known to the domain expert.



Fig. 3. Validation of interaction set: example of input proteins.

4.2 Assisted curation

Biomedical curators are professionals with a strong background in the life sci-
ences who read the literature in search of particular items of information (e.g.
newly detected protein interactions), and store such information in public data-
bases, which can in turn be accessed later by the biologists. For example, UniProt
[31] collects information on all known proteins. IntAct [10] is a database col-
lecting protein interactions. PharmGKB [26] collects interactions among genes,
drugs, and diseases. BioGrid [28] is a well-known database describing gene and
protein interactions. Most of the information in these databases is derived from
the primary literature by a process of manual revision known as “literature cu-
ration”. The full scope of curation that has to be done on a single publication
is part of ongoing research and leads to the development of new ontologies and
to the definition of the most relevant relations that have to be considered.

Despite the significant improvements in the last couple of years, most ex-
perts agree that, at least for the time being, it is unrealistic to expect fully
automated text mining systems to perform at a level acceptable for tasks that
require high accuracy, such as automated database curation. However, existing
systems can already achieve results which are sufficiently good to be used in a
semi-automated context, where a human expert validates the output of the sys-
tem. One application where this support is badly needed is biomedical literature
curation.

In order to satisfy this need, we have implemented a user-friendly web based
interface which interfaces our text mining system and allows a domain expert
to inspect the results of the automated annotation process (see Figure 5). The
purpose of the system is to enable a human annotator/curator to leverage upon



Fig. 4. Validation of interaction set: best interactions detected by the system.

the result of a advanced text mining system in order to enhance the speed and
effectiveness of the annotation process.

In case of ambiguity, the curator is offered the opportunity to correct the
choices made by the system, at any of the different levels of processing: entity
identification and disambiguation, organism selection, interaction candidates.
The curator can access all the possible readings given by the system and select
the most accurate. Candidate interactions are presented in a ranked order, ac-
cording to the score assigned by the system. The curator can, for each of them,
confirm, reject, or leave undecided. The results of the curation process can be
fed back into the system, thus allowing incremental learning.

The documents and the annotations are represented consistently within a
single XML file, which also contains a record of the user interaction, thus allow-
ing advanced logging support. The annotations are selectively presented, in a
ergonomic way through CSS formatting, according to different view modalities,
While the XML annotations are transparent to the annotator (who therefore
does not need to have any specialized knowledge beyond his biological exper-
tise), his/her verification activities result in changes at the DOM of the XML
document through client-side JavaScript. The use of modern AJAX methodology
allows for online integration of background information, e.g. information from
different term and knowledge bases, or further integration of foreign text mining
services. The advantage of a client-side presentation logic is the flexibility for the



Fig. 5. A screenshot of the curation system’s interface

end user and the data transparency. For text mining applications, it is important
to be able to link back curated metainformation to its textual evidence.

In a recently approved NIH-funded project (“High Throughput Literature
Curation of Genetic Regulation in Bacterial Models”) we intend to leverage the
capabilities of the OntoGene/ODIN system in order to improve the efficiency
of the curation process of the RegulonDB database. RegulonDB5 is the primary
database on transcriptional regulation in Escherichia coli K-12 containing knowl-
edge manually curated from original scientific publications, complemented with
high throughput datasets and comprehensive computational predictions.

5 Conclusion

We have presented an advanced text mining architecture, which is capable of
automatically annotating the biomedical literature with domain entities of rele-
vance for specific applications, and to detect interactions among those entities.
In particular, we have discussed and evaluated a specific scenario for protein-
protein interactions.

Additionally, we discussed an application in assisted curation, and an appli-
cation for the filtering of potential interactions among a given set of proteins. In
order to support a process of assisted curation we provide a user-friendly web-
based interface, which is currently being used by life science databases within
the scope of large curation projects.

5 regulondb.ccg.unam.mx
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