
Information Filtering and Retrieving of Context-Aware
Applications Within the MoBe Framework

Paolo Coppola1, Vincenzo Della Mea1, Luca Di Gaspero2, Stefano Mizzaro1,
Ivan Scagnetto1, Andrea Selva1, Luca Vassena1, and Paolo Zandegiacomo Riziò1

1 Department of Mathematics and Computer Science,
University of Udine, Italy

{coppola, dellamea, mizzaro,
scagnetto, selva}@dimi.uniud.it,
{lucavax, zandepaolo}@inwind.it

2 Department of Electrical, Management, and Mechanical Engineering,
University of Udine, Italy
l.digaspero@uniud.it

http://www.mobe.it

Abstract. Due to the appearance and widespread diffusion of new mobile de-
vices (PDAs, smartphones etc.), the traditional notion of computing is quickly
fading away, giving birth to new paradigms and to new non-trivial problems.
Hence, the scientific community is searching for models, technologies, and ar-
chitectures in order to suitably describe and guide the implementation of this
new computing scenario. It is clear that the notion of context (whether physical
or “virtual” or a mixture of both) plays a fundamental role, since it influences
the computational capabilities of the devices that are in it. The present work di-
rectly addresses this problem proposing MoBe, a novel architecture for sending,
in push mode, mobile applications (that we call MoBeLets) to the mobile de-
vices (cellular phones, smartphones, PDAs, etc.) on the basis of the current con-
text the user is in. The context is determined by both an ad-hoc MoBe infra-
structure and data from sensors on the mobile device (or in its surroundings).
To avoid a “MoBeLet overload”, our architecture exploits context-aware infor-
mation retrieval and filtering techniques, which are briefly discussed.

1 Introduction

We envisage a world in which the mobile devices that everybody currently uses (cel-
lular phones, smart phones, PDAs, and so on) constantly and frequently change their
functioning mode, automatically adapting their features to the surrounding environ-
ment and to the current context of use. For instance, when the user enters a shopping
mall, the mobile phone can provide him/her with applications suitable for shopping,
i.e., article locator, savings advertiser, etc; when entering in a train station, the same
device becomes a train timetable able to give information about the right platform,
delays, etc. Even if it is well known that current mobile devices can be used as com-
puters, since they have computational and communication capabilities similar to com-

puters of a decade ago, how to achieve this goal is not clear. One approach might be
to have an operating system continuously monitoring sensors on the mobile device,
thus adapting backlight, volume, orientation, temperature, and so on, to the changing
environment. Another approach is to have a Web browser showing to the user con-
text-aware data selected by means of information filtering techniques. In our opinion
both these alternatives suffer from a lack of flexibility and a waste of computational
power.

We propose a different approach, in which servers continuously push software ap-
plications to mobile devices, depending on the current context of use. Inspired by the
Nicholas Negroponte’s “Being Digital” term, we name our approach MoBe (Mobile
Being), and the context-aware applications, pushed and executed on the mobile de-
vice, MoBeLets. This is an interdisciplinary work: mobile agent community, context
aware computing, software engineering and middleware, interaction with mobile
devices applications, information retrieval and filtering, and privacy and security
management are all disciplines that are deeply involved in our project.

In this paper we describe our approach and some details of its ongoing implemen-
tation. In Section 2 we recall the state-of-the-art in the related literature. In Section 3
we describe the structure of our model, detailing the key submodules. Section 4 pre-
sents some examples of MoBeLets. Section 5 discusses the information retrieval and
filtering issues. The last section discusses several practical problems we found devel-
oping our first prototype of the MoBe architecture.

2 Related Work

Several research fields are related to this work. Context-aware computing is more
than 10 years old, as it was first discussed in [1]. However, the field seems still in its
infancy, as even the core definition of context is still unsatisfying. Some definitions
are, like dictionary definitions, rather circular, since they simply define context in
term of concepts like “situation”, “environment”, etc. Some researchers tried to define
this concept by means of examples [2, 3]; other researchers searched for a more for-
mal definition [2, 4, 5]; others identified context with location [1] or with location,
time, season, etc. [6, 7]. Another related research field concerns mobile agents [8].
Our approach tries to avoid all the resource load that these architectures usually carry
with, and to provide a simpler implementation. Information retrieval, context aware
retrieval, just-in-time information retrieval, and information filtering deal with the
information overload problem from different facets [9, 10]. As an example, Google is
starting to provide contextual (actually, localized) services as well. Peer-to-peer net-
works and wireless networks and technologies are of course involved as well.
A much related work is the AmbieSense System (www.ambiesense.com) which pro-
vides the user with context-aware information, while the MoBe framework is de-
signed to push both data and applications to mobile devices on the basis of the current
context they are in.

Figure 1. MoBe overall architecture.

3 The Overall Architecture of MoBe

Figure 1 shows the overall MoBe architecture. The mobile device runs a software
module called MoBeSoul which is responsible of managing the whole lifecycle of a
context-aware application. Let’s follow the events that lead to pushing, downloading,
and executing a MoBeLet on the mobile device.

3.1 Context Submodule

The process starts with context data received through:
• Physical sensors. Almost all mobile devices are equipped with some form of

wireless network technologies (GSM, GPRS, Edge, UMTS, Bluetooth, Wi-Fi,
Radio Frequency, IrDA, etc.), and can therefore sense if there is a network con-
nection around them (and the strength of the corresponding electromagnetic
field). Moreover, the device might be equipped with sensors capable of sensing
data about the physical world surrounding the mobile device (e.g., noise, light
level, temperature, etc.), some of which might be sent to the device by surround-
ing sensors.

• “Virtual” sensors. MoBeSoul might receive data from other processes running
on user’s mobile device, like an agenda, a timer, an alarm clock, and so on.

• MoBeContext sensors. MoBeSoul is capable of receiving context information
provided by an ad-hoc MoBe Context Server (MCS). The MCS pushes informa-
tion about the current context to the users’ devices, with the aim of providing a
more precise and complete context description. MCS might be implemented by a
Wi-Fi antenna, an RFID tag sensed by the mobile device, or any other technol-
ogy. The MCS also broadcasts a Concrete Context Descriptor, which might con-
tain a brief declarative description of the current context and a context ID (that, in
the case of a Wi-Fi antenna might be the network SSID and/or its MAC address).

• Explicit user actions. The user can explicitly communicate, via the user interface,
data about the current context. For instance, he/she might choose a connec-
tion/network provider, set the alarm clock, select the silent mode, and so on.

All these sensors data are processed by the MoBeSoul Context submodule. It is re-
sponsible of producing, storing, maintaining, and updating a description of the current
context(s) the user is in. The Context submodule starts its inferential activity from
concrete contexts (i.e., contexts directly corresponding to sensors data). By some
inferential mechanism (we are currently devising a mechanism that exploits Bayesian
Belief Networks) it derives abstract contexts (i.e., contexts which can be processed
more conveniently; some of the abstract contexts might be just concrete contexts).
The data and the inference are uncertain, and both the contexts and the inferred ab-
stract contexts have associated a probability measure representing the likelihood that
the user is indeed in those contexts. The inferential engine exploits a database con-
taining the history of past contexts and is tightly integrated with the Personalization
submodule (explained later), managing user’s preferences, current cognitive load,
degree of attention, etc.

Concrete and abstract contexts are represented by means of context descriptors; the
inferred abstract contexts descriptors are stored in a Current Context Working Mem-
ory, and they survive until the exit event from that context is inferred.

Examples of concrete contexts are: the temperature is 20 degrees (with probability
0.9); the time is 12:30:00PM (p = 0.99); the MoBeContext ID is 00:0d:93:3d:f2:9c (p
= 1.0); and so on. Examples of abstract contexts are: the user is in a shopping mall (p
= 0.75); the user is in the AirWood bookshop inside the shopping mall in Udine West;
the user is in his/her car (p = 0.56); the user is driving a car (p = 0.8); and so on.

Contexts are divided into a public and a private part: the former can be straight-
forwardly distributed to servers and other entities and contains, for instance, user’s
approximate location, cognitive load, and so on; the latter is kept private inside the
MoBeSoul and contains, for instance, user’s exact position, credit card information or
some other personal data, and so on. Of course, personal preferences of each user can
change the public/privacy status of each item in a context descriptor.

Context submodule does not send autonomously context descriptors to other parts
of the system; rather, it keeps a registry of interested observers/listeners, which are
notified by the Notifier when the events of context entry/exit happen. After the notifi-
cation, the observers can independently decide, using their own criteria, to request the
needed context descriptors to the context module.

Besides the dichotomies concrete-abstract and public-private, we also find useful
to categorize the contexts into artificial and natural: the former are those ascertained
from either a MoBeContext Descriptor provided by a MCS or the user him/herself;
the latter are those inferred from all the other sensors.

3.2 Personalization Submodule

The Personalization submodule consists of two components:
• The Personal Data Gathering component collects data about user’s preferences

and habits and stores them into an internal User Profile database. The database
contains several different kinds of data directly related to the user, like user’s
demographic information (age, gender, etc.), preferences about real world activi-
ties (e.g., restaurants, friends, etc.), habits (working hours, typical trips, etc.), and
so on. In addition, the User Profile database contains data about the behavior of
the user w.r.t. the MoBeLets. For example, the database keeps track of which
MoBeLets have been downloaded and executed in the past, for how much time,
which resources have been used, and so on. User’s data are collected both auto-
matically (monitoring user’s behavior) and manually, by explicit user interven-
tion.

• The Personalized Context Generation component interacts with the Context
submodule, affecting the inference process with the aim of making it more tai-
lored to individual needs. A useful metaphor to understand the interaction be-
tween Context and Personalization submodules is to see the Bayesian inferential
network inside Context as a graph painted on a sheet of paper, and to imagine the
Personalization activity as a transparent sheet of paper on top of it: the Personal-
ization layer is specific to the single user, it has a higher priority and is capable to
change the underlying (and more general) context network. The personalization

layer can remove (hide) nodes and arcs, change arcs weights (probabilities) either
in an absolute way (by specifying a new value) or in a relative way (by increasing
or decreasing the underlying weight of a given amount). This also allows to mod-
ify in a seamless way the Context network, being an activity that would allow to
include unforeseen contexts and inferences even after the system is deployed.

Summarizing, contextual information is derived by the mobile device on the basis of
physical, virtual, ad-hoc sensors, and user data; the Context and Personalization sub-
modules infer a more abstract description of the current context taking into account,
besides concrete context data, inference rules, user’s preferences (history, user model,
…), user’s current activities, cognitive load, degree of attention, other devices prox-
imity, etc. The clear separation between context and personalization might seem diffi-
cult, but has important benefits: independent modification of the Context network,
independent usage of well established techniques from both the personalization and
context-awareness fields, initial development of a non-personalized version of the
MoBeSoul, and so on.

3.3 Filter and Retrieval Submodule

The Filter and Retrieval submodule is in charge of selecting which MoBeLets to
retrieve and to download their code. Its activity is triggered by notifications of context
entry and exit events, received from the Context submodule. The Filter component
receives these notifications and, on the basis of its internal criteria, also depending on
user’s preferences, decides when to request the current public context descriptors to
the Context submodule and on their basis how to express a contextual query (i.e. a
query that might contain also elements of the current public context) to be sent to a
MoBe Descriptors Search Engine (MDSE). Furthermore, the MDSE can be also pro-
vided with explicit MoBeLet queries directly formulated by the user. The MDSE is in
charge of selecting, on the basis of the received contextual query, those MoBeLets
that are more relevant to user’s current context.

Since not all the MoBeLets selected by the MDSE will be actually downloaded
(nor executed), the MDSE does not store and send MoBeLet code, but just MoBeLets
descriptors. Each descriptor is a simple XML file that contains several structured and
unstructured data about the corresponding MoBeLet: a unique identifier, a textual
description, a manifest declaring which resources the MoBeLet will need and use
while executing, a download server from which the actual MoBeLet can be down-
loaded, and so on.

The received MoBeLet descriptors are filtered once again by the Filter component
on the basis of the private context descriptors. As a result of this step, the probability
that the user will desire to run each MoBeLet is determined. Then the Download
component retrieves, on the basis of its own internal criteria, the MoBeLets code,
from the MoBe MoBeLet Server (MMS) specified in the corresponding descriptors.
The stream of MoBeLets is then passed to the Execution submodule (see the follow-
ing subsection).
This design allows:
• To encapsulate inside the Filter component adequate strategies to send to the

MDSE the contextual queries, for a more efficient resource usage: the Filter

might send a new query containing the new context descriptors at each context
change or, rather, it might collect a certain number of context descriptors (per-
haps removing those corresponding to context exit events received meanwhile)
before sending a new query. Other possible strategies include sending contextual
queries at fixed time points, and so on.

• To separate public and private context data: only the public data is considered to
form the queries to be sent to MDSE, but both public and private are used to filter
the MoBeLet descriptors received.

• To cache in a straightforward way both MoBeLet descriptors and code, in order
to minimize bandwidth usage.

• To have the user controlling the whole process and to participate in MoBeLets
filtering and selection: the user might proactively stop an undesired MoBeLet, or
be requested a preference to a rather resource demanding MoBeLet, and so on.
On the other side, the two stage filtering allows a lower cognitive load to the
user.

3.4 Execution Submodule

The last entity of the pipeline is the Execution submodule. Its aim is to run each
downloaded MoBeLet inside a Sandbox, managed by a Security Manager, in order to
avoid malicious MoBeLets to use resources against user’s will. Once downloaded, the
code of each MoBeLet is first checked by a Code Integrity Checker component which
verifies whether it has been corrupted during the download (and in this case asks the
Filter & Retrieval submodule to repeat the download).
 After this phase each MoBeLet is passed to the Scheduler, which has in charge its
actual execution. This component is capable of starting, pausing, stopping, and de-
stroying the MoBeLets and is notified of context exit (and entry) events, to stop or
pause those MoBeLets that go out of context. Each MoBeLet can register itself with
the Registry component inside the Context submodule, in order to be directly notified
of relevant context change events.

The MoBeLets that have to use resources outside their sandbox are allowed to ac-
cess those resources only through the Security Manager, which denies requests that
are incompatible with MoBeLet manifest and prompts the user to confirm more heavy
resource usages.

3.5 Current Status of the Framework

The framework is at its early stages of implementation. On the server side, simple
prototypes for MDSE, MMS, and MCS have been realized (the latter providing only
simple localization information; therefore, we currently handle only artificial con-
texts). On the client side, developed prototype modules include the Execution (with
the exception of Security Manager), the Download and a rough Context module. The
framework is currently being exploited for domotics applications.

4 A MobeLets Portfolio

In order to show the feasibility of the proposed approach in this section we provide a
list of realistic MoBeLets. Here we present only few of them; the reader can further
imagine several sensible examples to confirm that the scenario described above is
feasible.
MoBeDisc: MoBeLet designed in order to provide to the user the following informa-

tion and services: map of a discotheque, illustrating the different rooms along with
the relative activities; possibility to get in contact with people with similar inter-
ests (matches inferred according to the information of the user profiles); in case of
emergency the nearest safety exit is indicated.

MoBeCrash: in the case of a car accident this MoBeLet can automatically perform an
emergency call, alerting both the rescue units and the police and an information
center which, in turn, can alert other car drivers to pay attention when passing near
the zone of the car accident. The information sent by the MoBeLet can be very ac-
curate, including the geographic position, the identity of the driver and other use-
ful information items obtained by querying the computer system of the car. Thus,
the rescuers can have a clear idea of the number of cars involved in the accident
and plan an adequate intervention.

MoBeBus: this MoBeLet informs the user about the route performed by the bus,
displaying all the stops. It can also suggest the nearest stop for the desired destina-
tion, alerting the user when the bus is approaching it.

MoBeShop: news about particular offers and discounts. Possibility to be informed
about the availability of a given product and to pay electronically (with an even-
tual separate shipment of the goods), using the mobile device by means of a secure
connection to a payment gateway.

MoBeWakeUp: the usual alarm clock application, already installed on today mobile
phones. Since the alarm clock is used in well specific contexts (i.e., before going
to sleep and at wake up), it might be a (very simple) MoBeLet as well, thus free-
ing the resources when it is not used (during the day).

MoBeJam: this MoBeLet downloads a traffic profile of the current road and monitors
the car sensors to detect abnormal traffic situations. In case a traffic jam is de-
tected, the data are sent back to a centralized server, which informs all the other
MoBeJam users about the traffic jam and suggests them alternative roads.

MoBeQueue: when standing in a queue, a user can use this MoBeLet in order to
register him/herself, obtaining a virtual ticket with its position in the queue. Then
he/she can make some queries in order to know the average time needed to serve
him/her and other useful information.

MoBeSales: when the traveling salesman/saleswoman comes back to the factory, this
application updates his/her records about the products (including newly produced
ones) and the payment situations of his/her customers.

MoBeMuseum: when a tourist enters a museum empowered with the MoBe technol-
ogy, this MoBeLet can be both an effective navigation aid (showing to the user a
detailed map of the building with clear indications about the rooms and their con-
tents) and a rich source of information about the item the user is currently looking
at.

MoBeAirport: when a traveler enters into an airport, this MoBeLet can warn him
about the scheduling time of his/her check-in. Moreover, the right path through the
terminals can be indicated by means of a visual map. Other useful information
displayed by the MoBeLet can be the locations of toilets, emergency exits etc.

MoBeHome: a useful suite of MoBeLets being able to control several facilities of a
modern house. For instance, it is possible to enable/disable the alarm system
(when exiting/coming back to home respectively). Moreover, for each room it is
possible to control the temperature, to switch on/off the lights and to control sev-
eral household-electric appliances (e.g.: TV, microwave oven etc.).

MoBeCar: this MoBeLet can ease the interaction with several electronic components
of a modern car. For instance, it can automatically program the satellite navigator
in order to show the best route to the next destination, according to the current
time and the appointments recorded in the PDA’s agenda. Moreover, it can show
diagnostic information about critical components of the car by communicating
with the on-board computer, alerting the driver if there is something wrong.

MoBeLibrary: when the user wants to quickly find a book about a particular topic,
without disturbing the librarian, he/she can use this MoBeLet. Specifying some
search keywords, it is possible to query the library database in order to find only
the relevant records, suggesting the best path to reach them from the current posi-
tion in the building.

5 Filtering and Retrieval of Context Descriptors, MoBeLet
Descriptors, and MoBeLets

Following MoBe approach, dozens, hundreds, or perhaps even thousands of
MoBeLets will be potentially relevant to a user in each instant, depending on the
current context. To filter the MoBeLets in an effective way (i.e., to avoid a
"MoBeLets overload" on the user), an appropriate and novel mix of Information Re-
trieval (IR) and Information Filtering (IF) techniques has to be exploited, and appro-
priate contextual IR models have to be designed. In this section we present a brief and
preliminary discussion about several IR issues that are relevant to MoBe, and we
show how MoBe would provide a rather novel environment for IR.

A first issue is the dichotomy IR vs. IF, i.e., whether to adopt a push or pull ap-
proach. MoBe does not endorse a simple “MoBeLet filtering” approach, since it
would not be viable to continuously waste the available bandwidth by pushing
MoBeLets that will usually not be executed. Conversely, a pull-only approach would
leave to the mobile device, or to the user, the responsibility of continuously asking for
the right MoBeLet. Instead, MoBe endorses a threefold approach that integrates: (i)
filtering of context descriptors, which are pushed on the mobile; (ii) on the basis of
the filtered context descriptors, automatic query construction and retrieval, through
MDSE, of MoBeLet descriptors, which are therefore pulled by the mobile device; and
(iii) filtering of the retrieved MoBeLet descriptors, on the basis of the private parts of
the context descriptors.

Also, an IR component is needed when the context mechanism does not work, e.g.,
because a context descriptor fails to reach the mobile device, or because the inferen-

tial mechanism makes a wrong inference, or simply because the current context is not
foreseen by the designers. In such a case, the user him/herself can run a search for
MoBeLets, manually inputting a query describing the context he/she is in.

A second dichotomy is whether MDSE should be implemented as a content-based
retrieval system or whether a social/collaborative approach could be effective as well,
if not more. Collaborative filtering might have an important role since MoBeLets,
being Java code, should be indexed manually through the MoBeLet descriptors. Actu-
ally, one might envisage descriptorless MoBeLets, retrieved on the basis of a collabo-
rative approach: if two MoBeLets tend to be downloaded in the same contexts, those
two MoBeLets can be considered as similar: therefore, if one of the two happens to be
downloaded in a new context, it is likely that the other one will be relevant to the new
context as well. The differences from standard collaborative filtering, still to be fully
understood, include at least two issues: MoBeLets are retrieved on the basis of auto-
matic queries (rather than filtered) and the feedback is implicit (i.e., based on
MoBeLet downloading rather than user preferences/selections).

A third issue is the significant relationship with XML retrieval, which is gaining
much attention today as witnessed, for example, by the INEX exercise. Both context
descriptors and MoBeLet descriptors are XML files. Context descriptors are filtered
as incoming XML documents, and then used as XML queries for MDSE, which re-
turns MoBeLet descriptors as retrieved documents. MoBe might be an interesting
environment in which to exploit the results obtained in the in XML retrieval field.

A fourth related field is software retrieval, i.e., the usage of IR techniques to re-
trieve items from a software repository. Again, here the situation is different since,
within MoBe, it is neither the programmer which is interested in retrieving the rele-
vant software entity (from a software library), nor the user which wants to install a
new application, but a software module, on behalf of the user, which is interested in
proactively retrieving the right software to be executed in the current context, which
is continuously changing.

A fifth, and final, issue that is crucial for this research is the relationship between
MoBe approach and context-aware retrieval [10]. So far, approaches to exploitation of
context in IR have been focusing mainly on enriching a search engine query by add-
ing information about the context (usually, geographical location only) with the aim
of improving the precision of the search, and in defining innovative IR models that
are capable of taking the notion of context into account (e.g., [12]). Again, MoBe has
a novel standpoint: the context is the main, if not the only, component of the query;
the query is automatically generated; the context is partially provided by the environ-
ment; and so on.

Thus, summarizing, MoBe is different from each of the above issues, for various
reasons, and tries to integrate all of them. Turning to more theoretical issues, one
might discuss which context retrieval models would be adequate in the MoBe sce-
nario. Classical IR models (probabilistic, vector space, tf.idf, etc.) give different im-
portance (weight) to terms with different features (e.g., very common terms, aka
stopwords, are not used/useful for retrieval). Some models with similar features
should be designed for MoBe: a rather common (and general) context should be less
important than an uncommon (and specific) one, i.e., the former should be often fil-
tered out, whereas the latter should be sent to the MDSE to obtain the corresponding
(and more specific) MoBeLet descriptor.

Let’s briefly see which kind of issues we need to study, and let’s start by taking
into account location only. On the basis of location only, a natural approach is to
apply a weighting scheme analogous, for instance, to tf.idf: we might name it lf.ilf
(location frequency – inverse location frequency). Given two MoBeLets m1 and m2,
we refer to the locations in which m1 and m2 can be executed on user’s mobile device
by l(m1) and l(m2). If l(m1) ⊆ l(m2), then m1 should be preferred over m2. For instance,
if m2 were the MoBeLet of a shopping mall and m1 the MoBeLet of a shop inside the
shopping mall, this means that when the user is in the shop (and therefore in the shop-
ping mall too), m1 should be preferred over m2, as it is reasonable. However,
area(l(m1)) < area(l(m2)) is not enough to assume that m1 should be preferred over m2,
since l(m1), though smaller, might be a more common place l(m2) (both for a particu-
lar user and for the average user), and thus the choice between m1 and m2 is not obvi-
ous.

The situation becomes more complex when extending the above argument from lo-
cation to context: if we denote by c(m1) and c(m2) the contexts in which m1 and m2 can
be executed on user's mobile device, we do still have that if c(m1) ⊆ c(m2), then m1
should be preferred to m2, but context inclusion is a much more complex matter than
location inclusion, since it is not based on topological reasoning only.

6 Discussion and Open Problems

The architecture proposed in this paper is still in early development phase and in this
section we briefly discuss some open issues. Since the MoBe framework is still in an
early development stage, this section is rather speculative. Nonetheless, the following
discussion can be useful in order to forecast some realistic scenarios of deployment of
the MoBe architecture, highlighting in advance some crucial implementation prob-
lems and possible solutions.

6.1 Scalability Issues

MoBe architecture should be scalable for what concerns MCS and MMS: simply,
more servers can be added at will, since each of them does not provide a centralized
service. The bottleneck of this architecture is the MDS: in some cases, the MoBeLet
descriptors request will be sent to some local server (when the MCS provides a con-
text ID); but in some other cases the MoBeLet contextual queries will be sent to the
main MDSE server (when the ID can’t be provided). In the last case, there is the risk
of overloading the main MDSE server. To understand if this is a serious problem, let
us try to compare it to nowadays Google statistics. Google receives, and processes
almost immediately, thousands of queries per second (let’s say 1000). If MoBe will be
adopted, we can estimate about 1 billion of MoBe enabled mobile devices, each of
which will probably perform, on average, about 1000 context change per day (in
daytime, about 50-100 context change per hour; no context change during the night).
This would mean a total of 1012 context change per day, i.e., (1012) / (24 * 60 * 60) ≈

107 ca. context change per second. Not all of them will be taken into account from
MoBeSoul, since the Filter component selects and queues some public context de-
scriptors, but let us be pessimistic and assume that this does not decrease significantly
the number of requests to the public server. Let us assume instead that the local server
allow to decrease of another factor of 10, leading to 106. This is 1000 times higher
than today’s Google, but it is not so frightening; at worst, we might deploy 1000
MDSE around the world, and configure the MoBeSouls so that each of them talks to
one of these (e.g., randomly, or statically), thus distributing the load. As a last note on
this issue, let us remark that in principle MCS, MDSE and MMS can be the same
server.

6.2 Structured vs. Unstructured Approach

Turning to more general issues, we see two trends in current computer science and
web technologies. The first trend is to provide structure in the produced data: in data-
bases, data are stored and retrieved accordingly to well defined schema; XML,
HTML, XHTML can instill semantic information in otherwise almost unstructured
natural language text; Web services are described on the basis of specific XML for-
mats; Semantic Web is a hot word in the community; and one might go on. Research
within the second trend is devoted to empower current algorithms, techniques, and
software applications in order to deal with unstructured data: search engines are the
second activity of web users (after email); Google GMail fosters an unstructured view
of one’s own mailboxes; images, sounds, and videos are often searched on the basis
of their semantic content, which is hard to encapsulate in a priori textual descriptions;
and so on. MoBe tries to combine both approaches: a context descriptor is made of
structured data; a MoBeLet descriptor can be mainly made of structured data, pro-
vided by the MoBeLet creator, but in principle it is possible to have also unstructured
data like, e.g., the comments inserted in the code by the programmer and to exploit
state-of-the-art software retrieval and filtering techniques [11]. Also comments by
other users are exploitable through social and collaborative filtering techniques.

6.3 Applications vs. Data

Within MoBe, applications are sent around, not just data. Of course, this is an arbi-
trary distinction. However, from an abstract/semantic viewpoint, it is perfectly rea-
sonable to distinguish between the two. Therefore, MoBe approach is different from
current mainstream, that relies on Web browsers based on HTTP-like protocols,
which, we believe, is a short-sighted view or from systems like AmbieSense which
are limited to sending context-aware data to mobile devices. Using a well known
metaphor, we might be experiencing the QWERTY of mobile/contextual applica-
tions/devices. MoBe is a much more flexible and powerful architecture. Of course, we
are aware that it has its own weaknesses: someone has to write a particular kind of
content (i.e., software, not just data – this is another reason, besides portability, to use
J2ME: it is rather easy to find Java programmers today); sending applications might
lead to a proliferation of malicious MoBeLets (i.e., viruses); privacy issues, that we

tackled by distinguishing between public and private context parts, are indeed much
more complex, and so on.

6.4 Context and Personalization

Downloaded and executed MoBeLets can be selected not only on the basis of the
current context, but also exploiting the Statistics & Log databases inside the Filter &
Download and Executor submodules.
This is another point in which the above mentioned separation between context and
personalization is, although tricky, advantageous, since context histories management
can be simplified and empowered by such a separation. Indeed, statistics and logs of
MoBeLet usage by a user are rather sensible data, and therefore they can be exploited
at Personalization (rather than Context) level. On the other side, average statistics on
MoBeLets download and usage could be kept on the MDS, to provide a more effec-
tive filtering by the public context descriptors. Finally, the distinction between con-
text-aware and personalization (and public and private context) is a not simple issue
that deserves further work.

7 Conclusions

We have presented a novel approach for retrieving and filtering context-aware appli-
cations on mobile devices, and discussed the important role that information retrieval
and filtering techniques have in this novel scenario. Since MoBe architecture is not
fully developed yet, there is plenty of work to be done, on both the theoretical and
practical sides. We are currently working at refining the contextual model we
sketched in Section 5, at a complete and formal definition of context, and at complet-
ing the implementation of the infrastructure. We are also implementing the first
MoBeLets and a set of MoBeLets descriptors to evaluate our approach.

References

1. B. N. Schilit and M. M. Theimer. Disseminating active map information to mobile hosts.
IEEE Network 8(5): pp. 22-32. September/October 1994.

2. G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research, 2000
3. B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In Proceedings of

IEEE Workshop on Mobile Computing Systems and Applications, pages 85-90, Santa Cruz,
California, December 1994. IEEE Computer Society Press.

4. A. Schmidt, K. Asante Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven, and W. Van
de Velde. Advanced interaction in context. In Proceedings of First International Symposium
on Handheld and Ubiquitous Computing, HUC'99, pages 89-101, Karlsruhe (Germany),
September 1999. Springer Verlag.

5. A. K. Dey and G. D. Abowd. Towards a Better Understanding of Context and Context-
Awareness. Technical Report GIT-GVU-99-22, Georgia Institute of Technology, College of
Computing, June 1999. <ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf>

6. P. J. Brown, J. D. Bovey and X. Chen. Context-aware applications: From the laboratory to
the marketplace. IEEE Personal Communications 4(5): pp. 58-64. October 1997.

7. N. Ryan, J. Pascoe and D. Morse. Enhanced reality fieldwork: the context-aware archaeo-
logical assistant. Computer Applications and Quantitative Methods in Archaeology. V.
Gaffney, M. van Leusen and S. Exxon, Editors. Oxford (UK), 1998.

8. M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.
9. B. J. Rhodes, P. Maes. Just-in-time information retrieval agents, IBM Systems Journal, 39(3-

4) 685 – 704, 2000
10. G.J.F. Jones, P.J. Brown. Context aware retrieval for ubiquitous computing environments,

In F. Crestani, M. Dunlop, S. Mizzaro (eds.) Mobile and ubiquitous information access,
Springer Lecture Notes in Computer Science, Vol. 2954, pp. 227-243, 2004,

11. R. Gonzales, K. van der Meer. Standard metadata applied to software retrieval. Journal of
Information Science, 30(4): pp. 300-309, 2004.

12. J.R. Wen, N. Lao, and W.Y. Ma. Probabilistic Model for Contextual Retrieval. Proceedings
of ACM SIGIR ’04, pp. 57–63, 2004.

