
Dynamic Documents Indexing
in Evolving Contexts

Rolf Nossum1 and Vladimir Oleshchuk2

1 Department of Mathematics, Agder University College
Serviceboks 422, N-4604 Kristiansand

2 Department of Information and Communication Technology
Agder University College, Grooseveien 36, N-4876 Grimstad

NORWAY
{rolf.nossum,vladimir.oleshchuk}@hia.no

Abstract. In this paper we consider similarity between documents in
contexts defined by ontologies. Two documents have different similarity
degree depending on the context in which they are considered. We con-
sider a scenario where context evolves incrementally, necessitating con-
tinual revision of similarity measures between documents. We develop
algorithms that revise similarity between documents concurrently with
operations updating the ontology.

Key words – evolving ontologies, similarity degree, graph-based repre-
sentation.

1 Introduction

In this work we consider ontologies as knowledge structures that iden-
tify concepts, properties of concepts and relations among them to enable
share and reuse of knowledge. Ontologies collect and organize terms of
references. In that sense we consider ontologies as context descriptions.
Ontologies can be presented as graphs that reflect structural and semantic
relationships between concepts.

Documents articulation over ontologies means finding the linkage be-
tween ontology concepts and document contents. When ontology concepts
are related to specific terms, then articulation can be seen as syntactical
or structural matching between ontologies and the contents of documents.
Such articulations of documents can be used to index documents in the
context defined by a given ontology. Since ontology defines many concepts
on different abstraction levels, we can specify abstraction levels at which
documents are similar. Knowing the connection between documents on
different abstraction levels we can implement highly efficient search algo-
rithms.

2

In real applications however, context will often change dynamically.
The degree of similarity between documents will change when context
changes. Considering a large number of documents, it can become pro-
hibitively expensive to recalculate similarity every time context is modi-
fied. Therefore we seek to develop an incremental solution, where recal-
culations affect only relations that have been changed. The purpose of
our work is to improve efficiency of information retrieval and reduce the
workload imposed by dynamically changing contexts.

In this paper we describe a solution to the problem described above.
Starting with an algorithm which calculates similarity degrees in context
(we shall use the one described in [5]), we give a method for keeping track
of document articulations incrementally, defined inductively on an input
load of ontology manipulation primitives.

2 Graphical Representation of Contexts

We assume that contexts are given in the form of ontologies. In this work
we assume that an ontology O is presented as a directed labeled graph
G = (V,E) where vertices from V are labeled by elements from T and
edges from E are labeled by elements from R. We denote such an ontology
as O = G(T,R).

The mappings of vertices V and edges E are defined by surjective
functions τO : V → T and ρO : E → R respectively, that is, τO(V) = T
and ρO(E) = R.

Let T be a set of terms or concepts (for example, it can be a noun-
phrase in some language), and R a set of pre-defined semantic rela-
tions among the terms such as instance-of, subset-of, attribute-of,
member-of-group etc. The mappings τO and ρO describe how terms from
T is associated with vertices of G and how edges from G are labeled by
relations from R.

By choosing a set of concepts or terms T and a set of semantic relations
R, every G (T,R) can be interpreted as an ontology or context descrip-
tion. For example, one of the most common relations in the specification
of ontologies is hyponymy, also called the is a relation. This is a transi-
tive and asymmetric relation that defines a hierarchical structure between
more specific and more general concepts, where terms inherit all charac-
teristics from their ancestor terms. We take R to represent hyponymy-like
relations, and then from (a, b) ∈ R it follows that b represents a more gen-
eral concept then a.

3

We define a sub-ontology relation v similar to the subgraph relation.
Let Oi = Gi (Ti, Ri) where Gi = (Vi, Ei), i = 1, 2 be two ontologies.

We say that O1 is a sub-ontology of O2 (denoted O1 v O2) if the
following properties are satisfied:

– Graph G1 is a subgraph of graph G2;
– T1 ⊆ T2 and R1 ⊆ R2;
– τO1 ⊆ τO2 and ρO1 ⊆ ρO2

3 Semantic Similarity between Documents

In this section we introduce some new notation, give a formal definition of
semantic similarity, and explain how we can calculate similarity between
two documents at different abstraction levels, based on context defined
in the form of ontology.

3.1 Document articulation

In order to compare documents with respect to a given ontology, we have
to find their articulations with respect to that ontology. In this section we
present a modified version of the algorithm from [5]. A document t is to be
articulated with respect to an ontology O = G(T,R) where G = (V,E).
The articulation of t with respect to O is a sub-ontology denoted Ot such
that Ot v O. Let term(t, O) denote the set of terms from T that occur
in t, that is, term(t, O) ⊆ T .

Input: A document t, ontology O = G(T,R) where G = (V,E).
Output: Document articulation Ot.
Algorithm: TextArticuation
Step 1: Select Vt ⊆ V such that τO(Vt) = term(t, O).
Step 2: Let Gt = (Vt, Et) be the subgraph of G = (V,E) spanned by
Vt.
Step 3: Expand Gt upwards as follows:

V ′′ ← {v | (u, v) ∈ E ∧ v 6∈ Vt}
while V ′′ 6= ∅ do

E ← ∅; Buf ← ∅
for all u ∈ V ′′ and v ∈ V such that (u, v) ∈ E do

E′′ ← E′′ ∪ {(u, v)} ;Buf ← Buf ∪ {v}
Vt ← Vt ∪ V ′′; Et ← Et ∪ E′′; V ′′ ← Buf

Step 4: Define Ot as Gt(Tt, Rt) where
Gt = (Vt, Et), Tt = τO(Vt), Rt = ρO(Et)
τOt = τO|Vt is a restriction τO to Vt

ρOt = ρO|Et is a restriction ρO to Et

4

3.2 Assignation of abstraction levels

The articulation of a document t relative to an ontology O = G(T,R)
with G = (V,E) is in general a forest of trees, i.e. a sub-ontology of O.
Parent vertices represent more abstract concepts than their children, and
root vertices represent the most abstract concepts. Abstraction levels are
assigned inductively as follows:

– All root vertices have abstraction level 0
– Every non-root vertice has abstraction level 1 more than its parent.

We denote the abstraction level of a vertex v ∈ V as level(v), that is

level : V → {0, 1, 2, ...}

3.3 Computation of similarity

We are now ready to define the similarity of two documents t1, and
t2 relative to an ontology O = G(T,R) where G = (V,E). Let Oti =
Gti(Tti , Rti), i = 1, 2 denote articulations of t1 and t2 with respect to
O. Similarity is measured as a number between 0 and 1, at each level
of abstraction. Each number is calculated as the ratio of the number of
common terms to the total number of terms, at the relevant abstraction
level.

Assuming that Gti = (Vti , Eti), let V j
i be the set of vertices at abstrac-

tion level j in the articulation of ti relative to O, let mi be the highest
value of j such that V j

i 6= ∅, i = 1, 2, and let m = min(m1,m2),M =
max(m1,m2).

The similarity of t1 and t2 relative to O is a vector Sim(t1, t2, O) =
〈s0, · · · , sM 〉 where

sj =

∣∣∣V j
1 ∩ V j

2

∣∣∣∣∣∣V j
1 ∪ V j

2

∣∣∣ for 0 ≤ j ≤ m

sj = 0 for m < j ≤M

4 Evolution of Ontologies

In this section we describe operations that can be applied to modify con-
text (ontology) such as: add concept, remove concept, add relation be-
tween existing concepts, remove relation between existing concepts. We

5

also describe how these changes of context influence document articu-
lations. In order to efficiently track changes of document articulations
(caused by ontology modification) that may affect existing similarity re-
lations between documents, we introduce a set Pt that used to collect
abstraction levels where changes occur.

4.1 Adding a concept

When a new concept a is added into the ontology O = G(T,R), it is
initially added as a new vertex unconnected to any other vertices. That
gives rise a modified ontology O′ = G′(T ∪ {a}, R) where G′ = (V ′, E),
V ′ = V ∪{v′} such that v′ /∈ V and τO′ = τO ∪ (v′, a). Suppose the newly
added concept a represents a term that occurs in a document t, that is,
a ∈ term(t, O′). Then the sub-ontology Ot = Gt(Tt, Rt) which articulates
t with respect to O′ must be augmented by the concept a at abstraction
level 0 as described in the following algorithm AddConcept.

Input: A document t, an ontology O, an articulation Ot, a new con-
cept a

Output: A revised articulation Ot and Pt

Algorithm: AddConcept

Let O = G(T,R) where G = (V,E), and Ot = Gt(Tt, Rt) where
Gt = (Vt, Et).
if a ∈ term(t, O) and a /∈ term(t, Ot) then

Vt ← Vt ∪ {v} where v /∈ Vt

Tt ← Tt ∪ {a}
τOt ← τOt ∪ (v, a); Pt ← {0}

4.2 Adding a relation between concepts

When a new semantic relation r between concepts a and b is to be inserted
into an ontology O = G(T,R) where G = (V,E), it is assumed that
r ∈ R, a, b ∈ T , and there are vertices u, v ∈ V such that τO(u) = a and
τO(v) = b. This gives rise to a modified ontology O′ = G′(T,R ∪ {r})
where G′ = (V,E ∪ {(u, v)}), ρO′ = ρO ∪ {((u, v), r)}, and necessitates
revision of document articulations and similarity vectors.

Let us first consider revising an existing articulation Ot of a document
t with respect to O, so that it becomes the articulation of t with respect
to O′. Given a new edge (u, v), we assume that level(u) ≥ level(v).

6

Input: A document t, an ontology O′ augmented with a new concept
r that connects concepts a and b, Ot is an articulation t with respect
to O.
Output: A modified articulation Ot and Pt

Algorithm: AddRelation
Let O′ = G(T,R) where G = (V,E) and Ot = Gt(Tt, Rt) where
Gt = (Vt, Et)
Let u and v be such that τO′(u) = a and τO′(v) = b and ρO′(u, v) = r
Buf1← {(u, v)}; Buf2← ∅; Pt ← ∅
while Buf1 6= ∅ do

for all (α, β) ∈ Buf1 do
Et ← Et ∪ {(α, β)};
ρOt ← ρOt ∪ {((α, β), ρO(α, β))}
if β 6∈ Vt then

Vt ← Vt ∪ {β};Buf2 ← Buf2 ∪ {(β, δ) | (β, δ) ∈ E};
Pt ← Pt ∪ {level(β)}

Buf1← Buf2;Buf2← ∅

4.3 Removing a relation between two concepts

Removing a relation r connecting concepts a and b from an ontology O =
G(T,R) means removing an edge (u, v) from the graph G(V,E) where
τO(u) = a, τO(v) = b and r ∈ ρO(u, v). It gives rise to O′ = G′(T,R′)
where G′ = (V,E \ {(u, v)}), and if |ρO(E)| = 1 then R′ = R′ \ {r}
otherwise R′ = R. It necessitates revising an existing articulation Ot =
Gt(Tt, Rt) of a document t with respect to O′. We have to take into
consideration all edges from Et of Gt = (Vt, Et) that have been included
into Ot as the result of expansion caused by inclusion of the relation
r connecting a and b into O. More generally, we should exclude those
edges those occurrence in Ot caused by occurrence an of edge (a, b). To
simplify presentation, we introduce two sets BUFt(α) = {β|(α, β) ∈ Et

and level(α) ≥ level(β)} and BUF t(β) = {α|(α, β) ∈ Et and level(α) ≥
level(β)}.

Input: Document t, a revised ontology O′ where relation r connecting
concepts a and b is removed, Ot is an articulation of t with respect to
O
Output: Revised articulation Ot with respect to O′ and Pt

Algorithm: RemoveRelation((a, b), Ot)
Let Ot = Gt(Tt, Rt) where Gt = (Vt, Et)
Let u and v be such that τ(u) = a and τ(v) = b

7

Et ← Et \ {(u, v)}
α← v; Pt ← ∅
while BUF t(α) 6= ∅ do

for all β ∈ BUF t(α) do
if |BUFt(β)| = 1 then

Et ← Et \ (α, β)
ρOt ← ρOt \ {(α, β), ρOt(α, β)}
if α /∈ term(t, O′) then Vt ← Vt \ {α}
Pt ← Pt ∪ {level(α)}

α← β

4.4 Removing a concept

Removing a concept a from O = G(T,R) gives rise to O′ = G′(T ′, R′) and
G′ = (V ′, E′) where V ′ = V \ {v}, E′ = E \ {(α, β) | α = v or β = v}),
τO(v) = a, T ′ = τO(V ′) and R′ = ρO(E). It necessitates revising an
existing articulation Ot = Gt(Tt, Rt) of a document t with respect to O.

Input: A document t, an ontology O′ with removed concept a, an
articulation Ot with respect to O, a concept a
Output: A revised articulation Ot with respect to O′ and Pt

Algorithm: RemoveConcept
Let Ot = Gt(Tt, Rt) with Gt = (Vt, Et)
Let u be such that τ(u) = a
Vt ← Vt \ {u};
τOt ← τOt \ {(u, a)}
Pt ← {level(u)}
for all (α, β) ∈ Et such that α = u or β = u}) do

(Ot, P
′
t)← RemoveRelation((α, β), Ot)

Pt ← Pt ∪ P ′
t

5 Maintaining similarity vectors incrementally

Similarity vectors represent relations between documents. We consider
two documents t1 and t2 where Ot1 and Ot2 are articulations of these
documents relative to an ontology O. The ontology O can be modified
by applying the operations described in previous subsections. Not every
modification of O necessarily causes changes in Ot1 and Ot2 . However,
only modifications that change the number of vertices will cause modifi-
cation of the similarity vector. We use a set Pt to represent the abstraction
levels at which the number of vertices were changed in the articulation Ot.

8

Generally, when an ontology O is modified as a result of using any opera-
tion described in the former section, the set Pt contains those abstraction
levels of articulation Ot that were modified. It means that similarity vec-
tor Sim(t1, t2, O) should be revised. Given two documents t1 and t2, the
following algorithm describes similarity vector revision in the case of ap-
plying any of the operations of adding or removing a vertex or an edge of
ontology O.

Input: Articulations Ot1 and Ot2 with corresponding sets Pt1 and Pt2

and similarity vector Sim(t1, t2, O) = 〈s0, · · · , sM 〉.
Output: Revised similarity vector Sim(t1, t2, O)
Algorithm: SimilarityUpdate

for all k ∈ Pt1 ∪ Pt2 do
sk ← |V 1

k ∩ V 2
k |/|V 1

k ∪ V 2
k |

6 Comparison with some other approaches

In [7], Zhang and Lee develop a taxonomy integration method which
uses support vectors to capture structural similarities between ontologies.
Their approach is, however, different from ours in its reliance on implicit
knowledge gained from particular sets of test examples.

In [2], Doan et.al. propose a multistrategy learning approach to auto-
matically finding mappings between the query interface and the schemas
of data sources. Their approach applies multiple learner modules, where
each module exploits a different type of information, in the schemas of the
sources or in their data. Learner modules employ nearest-neighbor clas-
sification to entity recognition and information retrieval. Their system
exploits domain integrity constraints, user feedback, and nested struc-
tures in XML data.

In [6], Roddick et.al. develop a model of semantic distance in which a
graph-based approach is used to quantify the distance between two data
values. Their notion of semantic distance includes both a simple traversal
distance and one based on weighted arcs. Transition costs, such as an
additional expense of passing through a node, are also accommodated.
Multiple distance measures are accomodated and relevant information is
allowed to take precedence over less relevant information. An SQL based
implementation is given.

In [3], Doan et.al. take a probabilistic approach to finding seman-
tic mappings between ontologies. Their system, GLUE, employs machine
learning techniques to find such mappings. Given two ontologies, for each

9

concept in one ontology GLUE finds the most similar concept in the other
ontology. Probabilistic definitions of several different similarity measures
are used. This is in contrast to most existing approaches, which deal
with a single similarity measure. GLUE uses multiple learning strategies,
each of which exploits a different type of information either in the data
instances or in the taxonomic structure of the ontologies.

Finally, in [1], Benerecetti et.al. take on a significant challenge in at-
tempting to incorporate semantical annotations when matching ontolog-
ical schemata. They obtain some criteria for soundness and adequacy,
but observe, correctly we think, that developing semantically competent
autonomous agents seems to be out of reach of current methods. Their ap-
proach is in stark contrast to ours, which focuses exclusively on structural
properties of ontological representation.

In [4], there is a comprehensive review of several more methods.

7 Conclusion

Just as people interpret the world in different ways, we can use ontologies
to provide context filters for documents to gain different world views.
Depending on the context, documents may or may not be similar. Our
method can be used in a plug-in fashion, where different ontologies may be
used to provide different world-views. Considering any set of documents
and an ontology, the similarity relation studied in this paper induces
a semantic interconnection between documents. It produces an implicit
web of documents and can be utilized for finding related documents in
a dynamically changing environment. A next step will be to integrate
this method in efficient algorithms for information retrieval in evolving
contexts.

References

1. M. Benerecetti, P. Bouquet, and S. Zanobini. Soundness of semantic methods for
schema matching. In Meaning Coordination and Negotiation Workshop (MCNW-
04), 3th International Semantic Web Conference (ISWC-04). 2004.

2. Anhai Doan, Pedro Domingos, and Alon Halevy. Learning to match the schemas of
data sources: A multistrategy approach. Mach. Learn., 50(3), 2003.

3. AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to
map between ontologies on the semantic web. In WWW ’02: Proceedings of the
eleventh international conference on World Wide Web, 2002.

4. Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the art.
Knowl. Eng. Rev., 18(1), 2003.

10

5. Vladimir Oleshchuk and Asle Pedersen. Ontology based semantic similarity compar-
ison of documents. In Proceedings of the 14th International Workshop on Database
and Expert Systems Applications, DEXA’03. 2003.

6. John F. Roddick, Kathleen Hornsby, and Denise de Vries. A unifying semantic
distance model for determining the similarity of attribute values. In CRIPTS ’16:
Proceedings of the twenty-sixth Australasian computer science conference on Con-
ference in research and practice in information technology, 2003.

7. Dell Zhang and Wee Sun Lee. Web taxonomy integration using support vector
machines. In WWW ’04: Proceedings of the 13th international conference on World
Wide Web, 2004.

