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Abstract. The Gödelian Arguments represent the effort done to inter-
pret Gödel’s Incompleteness Theorems in order to show that minds can-
not be explained in purely mechanist terms. With the purpose of proving
the limits of mechanistic theses and investigate aspects of the Church-
Turing Thesis, several results obtained in the formal setting of Epistemic
Arithmetic (EA) reveal the relation among different properties of knowl-
edge of machines, including self-awareness of knowledge and factivity of
knowledge. We discuss the main principles behind the Gödelian Argu-
ments and extend the results obtained in EA. In particular, we define
a machine that, in a specific case, knows its own code and the factivity
of its own knowledge, thus providing new insights for the analysis of the
Gödelian Arguments.

1 Introduction

In 1951 Gödel held one of the prestigious Gibbs Lectures for the American
Mathematical Society. The title of his lecture was Some basic theorems on the
foundations of mathematics and their implications [7]. The theorems in ques-
tion were precisely those of Incompleteness and the philosophical implications
were concerned with the nature of mathematics and the abilities of the human
mind 3. This was one of the few official occasions in which Gödel expounded his
opinion on the philosophical implications of his theorems. Without going into
details about Gödel’s paper, what is interesting here is the first part, where he
derives the thesis of essential incompleteness of mathematics from his famous
theorems. Such a thesis was sanctioned by the second theorem. Gödel’s idea is
that if one perceives with absolute certainty that a certain formal system 4 is
correct (sound), s/he will also know the consistency of the system, that is, s/he
will know the truth of the statement establishing the consistency of the system
itself. But, by Gödel’s second theorem, the formal system considered cannot
prove its own assertion of consistency, therefore the system does not capture
all arithmetical truths, and for this reason “if one makes such a statement he
contradicts himself” [7, p. 309].

3 A very accurate analysis of this work is proposed by Feferman [6], Tieszen [16], and
van Atten [17].

4 In this paper, the expression “formal system” indicates a system that is adequate to
derive Incompleteness Theorems.



But what does all of this mean? Does it mean perhaps that a well defined
system of correct (sound) axioms cannot contain everything that is strictly math-
ematical?

In the following, we first recall and discuss Gödel believes about the possible
answers to such a question and then analyze the so called Gödelian Arguments.
In the last decades many scholars dealt with these arguments, which represent
the effort done to interpret Gödel’s Incompleteness Theorems with the purpose
of showing that minds cannot be explained in purely mechanist terms. Among
them, we concentrate on the approach followed by Reinhardt [13], Carlson [3],
and Alexander [1], who demonstrated a series of results in the formal setting of
Epistemic Arithmetic, which encompasses some typically informal aspects of the
Gödelian Arguments about the knowledge that can be acquired by (knowing)
machines. These results emphasize several relations among different properties
characterizing the expressiveness of machines, including self-awareness of knowl-
edge and factivity of knowledge. As a contribution of this paper, we integrate
these results with novel insights, thus providing the formal base for additional
elements supporting the Gödelian Arguments 5.

2 Gödel Perspective

With reference to the previous question, Gödel believes that it has two possible
answers:

It does, if by mathematics proper is understood the system of all true math-
ematical propositions; it does not, however if someone understands by it the
system of all demonstrable mathematical propositions. [. . . ] Evidently no well-
defined system of correct axioms can comprise all [of] objective mathematics,
since the proposition which states the consistency of the system is true, but
not demonstrable in the system. However, as to subjective mathematics it is
not precluded that there should exist a finite rule producing all its evident ax-
ioms. However, if such a rule exists, we with our human understanding could
certainly never know it to be such, that is, we could never know with mathe-
matical certainty that all the propositions it produces are correct; or in other
terms, we could perceive to be true only one proposition after the other, for
any finite number of them. The assertion, however, that they are all true could
at most be known with empirical certainty, on the basis of a sufficient number
of instances or by other inductive inferences. If it were so, this would mean that
the human mind (in the realm of pure mathematics) is equivalent to a finite
machine that, however, is unable to understand completely its own function-
ing. This inability [of man] to understand himself would then wrongly appear
to him as its [(the minds)] boundlessness or inexhaustibility [7, pp. 309-310].

Therefore, not only does the previous question pose the problem of the in-
exhaustibility or incompleteness of mathematics considered as the totality of all

5 Although there are some very interesting connections between Gödel’s Theorems and
contemporary research on deep learning, we do not analyze them in this contribute.
On this issue you can see [15].



true mathematical propositions; but it also raises the question as to whether
mathematics is in principle inexhaustible for the human mind, that is to say,
whether the human minds demonstrative abilities are extensionally equivalent
to a certain formal system, or to the Turing Machine (TM) connected to it (the
TM that enumerates the set of theorems of the corresponding formal system).
The question, then, requires due consideration precisely of the relation between
what Gödel calls objective and subjective mathematics.

First, let T be the set of mathematical truths expressible within first-order
arithmetic, and call this objective arithmetic, or, following Gödel, “objective
mathematics”, that is “the body of those mathematical propositions which hold
in an absolute sense, without any further hypothesis” [7, p. 305]. By Tarski’s
theorem, T is not definable within the language of arithmetic, hence T is not re-
cursively enumerable. Let us then define K as the set of arithmetical statements
that a human being can know and prove absolutely and with mathematical cer-
tainty, that is what one can derive 6 and know to be true. Let us call it subjective
arithmetic or, following Gödel, “subjective mathematics”, which “consists of all
those theorems whose truth is demonstrable in some well-defined system of ax-
ioms all of whose axioms are recognized to be objective truths and whose rules
preserve objective truth” [6, p. 135-136]. What is then the relation between K
and T? Quoting Feferman, we could synthesize Gödel’s answer by saying that if
K was equal to T:

then demonstrations in subjective mathematics [would not be] confined to any
one system of axioms and rules, though each piece of mathematics is justified
by some such system. If they do not, then there are objective truths that can
never be humanly demonstrated, and those constitute absolutely unsolvable
problems [6, p. 136-137].

That is, if the equivalence K=T held, the human mind would not be equiv-
alent to any formal system or TM connected to it. In fact, having established
characteristics of T, for each formal system there would be a provable statement
by the human mind, but not within the formal system. Hence, the mechanistic
thesis would certainly be false: T non-recursive enumerability entails, in fact, the
non-existence of any effective deductive system whose theorems are only and all
truths of arithmetic. If, on the contrary, K did not coincide with T, and thus the
human mind were equivalent to a given formal system or to the TM related to
it, the existence of arithmetical statements humanly undecidable in an absolute
sense would follow. In fact, as underlined by Gödel, the second incompleteness
theorem does allow this conclusion: the proposition expressing the consistency
of K, say ConK, is true but is not provable within the system itself; the negation
of ConK is false and is not provable in K. Having established the equivalence
between the human mind and a formal system, ConK is not even provable by
the human mind. Finally, since ConK can be put in the form of a Diophantine

6 As Feferman [6, p. 140] emphasizes, Gödel believes that “the human mind, in demon-
strating mathematical truths, only makes use of evidently true axioms and evidently
truth preserving rules of inference at each stage”.



problem, it is an absolutely undecidable problem. Such a proposition is, thus,
an unknowable truth. These arguments lead Gödel to the idea that from the
incompleteness results one can at the most derive the following disjunction:

Either [subjective] mathematics is incompletable in this sense, that its evident
axioms can never be comprised in a finite rule, that is to say, the human mind
(even within the realm of pure mathematics) infinitely surpasses the powers
of any finite machine, or else there exist absolutely unsolvable diophantine
problems of the type specified (where the case that both terms of the dis-
junction are true is not excluded, so that there are, strictly speaking, three
alternatives) [7, p. 310].

So, following Tieszen [16], and considering the translatability between the
concept of a well defined formal system and that of a TM, we can say that Gödel’s
Incompleteness Theorems show that it could not be true that: (i) the human
mind is a finite machine (a TM) and there are for it no absolutely undecidable
Diophantine problems.

The incompleteness theorems show that if we think of the human mind as a TM
then there is for each TM some absolutely undecidable Diophantine problem.
The denial of the conjunction (i) is, in so many words, Gödel’s disjunction.
In formulating the negation of (i) Gödel says that the human mind infinitely
surpasses the powers of any finite machine. One reason for using such language,
I suppose, is that there are denumerably many different Turing machines and
for each of them there is some absolutely diphantine problem of the type Gödel
mentions. So Gödel’s disjunction, understood in this manner, is presumably
a mathematically established fact. It is not possible to reject both disjuncts.
[16, pp. 230-231].

The disjunction leaves open the three following possibilities:

(I) human intelligence infinitely surpasses the powers of the finite machine (TM),
and there are no absolutely unsolvable Diophantine problems (see [7, p. 310]).

(II) human intelligence infinitely surpasses the powers of the finite machine (TM)
and there are absolutely unsolvable Diophantine problems. That is, although
human intelligence is not a finite machine, nevertheless there are absolutely
irresolvable Diophantine problems for it.

(III) human intelligence is representable through a finite machine (TM) and there
are absolutely irresolvable Diophantine problems for it.

Gödel was convinced that (I) held, but he was also aware that his incomplete-
ness theorems did not make the existence of a mechanic procedure equivalent
to human mind impossible. Gödel, however believed that from his theorems it
followed that if a similar procedure existed we “with our human understanding
could certainly never know it to be such, that is, we could never know with
mathematical certainty that all the propositions it produces are correct”. This
exactly means that “the human mind (in the realm of pure mathematics) is
equivalent to a finite machine that, however, is unable to understand completely
its own functioning”. In 1972 Gödel expressed further on the matter saying [18]:



On the other hand, on the basis of what has been proved so far, it remains
possible that there may exist (and even be empirically discoverable) a theorem-
proving machine which in fact is equivalent to mathematical intuition, but
cannot be proved to be so, nor even be proved to yield only correct theorems
of finitary number theory.

This formulation is significantly different from that of 1951, as now Gödel
appears to recognize that the mind, at least in his doing mathematics, could be
a machine and we could not recognize this fact or not be able to prove it.

3 Knowing Machines

After the speculative ideas formulated by anti-mechanists, like the famous ar-
gument by Lucas [8, 9], several authors, like Benacerraf [2], Penrose [10–12],
Chihara [4], and Shapiro [14] (see [5] for a comprehensive survey), proposed
more formal lines of reasoning on the implications of Gödel’s Theorems. Here,
we consider the results by Reinhardt [13], Carlson [3], and Alexander [1], who
analyzed a formal theory, called Epistemic Arithmetic (EA), encompassing some
typically informal aspects of the Gödelian Arguments about the knowledge that
can be acquired by (knowing) machines. EA is the language of Peano Arithmetic
enriched with a modal operator K for knowledge (or for intuitive provability).
The formal interpretation of K passes through the definition of the properties
at the base of an epistemic notion of knowability :

– Logic Consequence: if φ and φ→ ψ are known, then ψ is known.

– Infallibilism: what is known is also true.

– Introspection: if φ is known then such a knowledge is known.

The basic axioms of knowledge are:

B1. K∀xφ→ ∀xKφ
B2. K(φ→ ψ) → Kφ→ Kψ

B3. Kφ→ φ

B4. Kφ→ KKφ

where B2-B4 formalize the intuitions above and are stricly related to, e.g., the
modal system S4, while B1 expresses a first-order condition stating that the
assertion “φ is known to be valid” implies the knowledge of each element that
can be assigned to x in φ and the truth of the formula under each such assign-
ment. 7 Assumed that the K-closure of φ is the universal closure of φ possibly
prefixed by K, the axioms of EA are the K-closure of B1-B4 and of the axioms
of Peano Arithmetic. The theory of knowledge defined in such a way extends
conservatively the classical interpretation of Peano Arithmetic.

7 We are assuming that φ is a formula with one free variable x.



Under this theory of knowledge, variants of Church-Turing Thesis are in-
vestigated to analyze the relationship between properties that are weakly K-
decidable 8 and the TMs that formalize the decision algorithm for these proper-
ties. In the following, we assume that We is the recursively enumerable set with
Gödel number e.

Theorem 1 (Reinhardt’s schema [13]). ∃eK∀x(Kφ↔ x ∈We) is not con-
sistent in EA9.

Informally, Reinhardt’s schema states that a TM exists for which it is known
that it enumerates all (and only) the elements (for which it is known) that make
φ true. More precisely, as the assignments making φ true are a known recursively
enumerable set, we then derive the computability, through a known TM, of the
(weak K-) decision problem for φ. Following Carlson, the intuitive interpretation
is: I am a TM and I know which one. A weaker version of Reinhardt’s schema is
conjectured by Reinhardt himself and proved by Carlson, in which the outermost
K operator prefixes the statement.

Theorem 2 (Carlson’s schema [3]). K∃e∀x(Kφ↔ x ∈We) is consistent in
EA.

Quoting Carlson, I know that the set of x for which I know φ(x) is recursively
enumerable, or, by rephrasing an analogous hypothesis studied by Benacerraf
independently [2], I know I am a TM but I do not know which one. Carlson uses
the term knowing machine to denote any recursively enumerable proof system
that represents a model for the theory of knowledge, and shows that, indeed, EA
integrated with his schema is a knowing machine. As a corollary of this result,
the schema obtained by removing the outermost K operator is still consistent in
EA.

The proofs of the results above rely on the validity of K(Kφ → φ), stating
that in the formal system the factivity of knowledge is known. In between these
two limiting results, Alexander has recently proved a dichotomy: a machine can
know its own factivity as well as that it has some code (without knowing which,
as stated by Carlson’s schema), or it can know its own code exactly (proving the
consistency of Reinhardt’s schema) but cannot know its own factivity (despite
actually being factive). Providing that the axioms of EA mod factivity consist
of the axioms of EA except for the universal closure of B3 prefixed by K (that
represents knowledge of factivity of knowledge), it is possible to prove that:

Theorem 3 (Alexander [1]). Reinhardt’s schema is consistent in EA mod
factivity.

and then to construct the previous dichotomy.
In this setting, we show a result related to a specific case. An interpreter fu

is a function mimicking the behavior of any other function. Formally, fu(x, y) =
fx(y). For instance, the universal TM is an interpreter. Interpreters represent a

8 The assignments of x satisfying φ are known.
9 The inconsistency of this schema is proved as a consequence of first Gödel’s theorem.



classical tool in computability theory and play a fundamental role for program-
ming languages. Now, let us consider Reinhardt’s schema in EA mod factivity
and φ(x) := (fx(x) = 1). Then, from:

∃eK∀x(Kφ↔ x ∈We)

by taking x = e we derive:

∃eK(Kφ(e) ↔ e ∈We) (1)

and:
K(Kφ(e) → φ(e)) (2)

which expresses a limited form of knowledge of factivity that is allowed in EA
mod factivity. More precisely, we have a machine that, for (at least) a specific
choice of the function φ and of the input x, i.e., the interpreter function and the
Gödel number of the machine itself, knows its own code and its own factivity.
We have to note that taking x = e roughly speaking means that if I allow the
machine to know its own identity, then of course it will possess this knowledge.
Attributing this capacity to a machine is very natural for us and in our opin-
ion it shows that Alexander’s framework is adequate to analyze the machines’
knowledge 10. By virtue of such a choice, the intuition that we stem is that
the machine knows its own code and is aware of the factivity of the knowledge
resulting by interpreting its own code, while such an awareness, according to
the dichotomy above, is lost when interpreting other inputs. As a consequence,
by rephrasing Carlson and Benacerraf intuitions, we could say: If I know which
universal TM I am, then I know the factivity of my knowledge.11 Hence, to some
extent, self-reference increases the expressiveness of knowledge, provided that
the machine is an interpreter. In our opinion, this is an interesting enhancement
of the tradeoff result provided by Alexander that can represent an additional
formal element for the analysis of the Gödelian Arguments.
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