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Preface

This book of Proceedings contains the accepted papers of the AIC 2015 - the International Workshop
on Artificial Intelligence and Cognition, held in Turin (Italy) on September 28th and 29th, 2015. AIC
workshops aim at fostering the collaboration between the researchers coming from the fields of computer
science, philosophy, engineering, psychology, neurosciences etc. and working at the intersection of the
Cognitive Science and Artificial Intelligence (AI) communities.

AIC workshops (Lieto and Cruciani 2013; Lieto, Radicioni and Cruciani, 2014) have produced, in the past
years, a recognized level of discussion in Europe on the crossborder themes between AI and Cognitive Sci-
ence and selected and expanded versions of their scientific papers have been published in dedicated special
issues on international journals such as Connection Science and Cognitive Systems Research (edited by
Lieto and Cruciani (2015), and Lieto and Radicioni (2016), respectively).

AIC 2015 has been made possible thanks to the “Fondazione Ricerca e Talenti” (http:// www.ricercaetalenti.it)
of the University of Turin that has fully sponsored the whole event. We would like to thank them for their
financial and organizational support. Also we are grateful to the members of the Scientific Program Com-
mittee for their valuable work. Finally, thanks should be given to our wonderful student volunteers for
their help in many practical issues.

In this workshop proceedings appear 2 abstracts of the talks provided by the keynote speakers Aldo
Gangemi and Amanda J. Sharkey and 13 peer reviewed papers accepted by the Program Committee Mem-
bers through a process of peer-review.

Specifically the 13 papers were selected out of 21 submissions coming from researchers of 16 different
countries from all the continents.

In the following, a short introduction to the content of the volume is presented.

In the paper “Cognitive Programming”, by Loizos Michael, Antonis Kakas, Rob Miller and Gyorgy Turan,
the authors point out some foundational issues regarding the design of cognitive systems and propose a
novel methodological approach for human-computer interaction based on what they call “cognitive pro-
gramming” paradigm.

In the paper “Towards a Visual Remote Associates Test and its Computational Solver”, by Ana-Maria
Olteteanu, Bibek Gautam and Zoe Falomir, the authors describe a computational solver for a visual version
of the Remote Associate Test (RAT, a test used for measuring creativity in humans) and present the result
of an evaluation done w.r.t. human responses.

The paper “Modeling the Creation and Development of Cause-Effect Pairs for Explanation Generation
in a Cognitive Architecture”, by John Licato, Nick Marton, Ron Sun and Selmer Bringsjord presents the
rationale for modelling the learning of causeeffects explanations in the CLARION cognitive architecture
by using, as reference point, a Piaget’s experiment introduced to understand how children generate expla-
nations.

The paper “A cognitive view of relevant implications”, by Claudio Masolo and Daniele Porello, presents
an interesting link between Relevance Logic and Conceptual spaces and It provides a cognitive view and
formalization of relevance implication. In the paper “Information-Theoretic Segmentation of Natural Lan-
guage”, by Sascha Griffiths, Mariano Mora McGinity, Jamie Forth, Matthew Purver and Geraint A. Wig-
gins., the authors extend to natural language a statistical model originally devised in the domain of music
perception and cognition; in particular, the authors adopt a statistical (information-theoretic) learning ap-
proach on sequential data.

In the paper “Pattern Recognition: A Foundational Approach” by Agnese Augello, Salvatore Gaglio,
Gianluigi Oliveri and Giovanni Pilato, the authors discuss some foundational issues regarding the “patterns
problem” and propose a three layer architectures as a suitable solution for pattern understanding.

In the paper “World Modeling for Tabletop Object Construction”, by Arda Inceoglu, Melodi Deniz Ozturk,
Mustafa Ersen and Sanem Sariel the authors dicuss the problem of scene recognition in a robotic environ-
ment and propose a framework not relying only on perceptual factors but also relying on a knowledge
updating process for their scene recognition approach.
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The paper “A Network-based Communication Platform for a Cognitive Computer”, by Mostafa W. Nu-
man, Jesse Frost, Braden J. Phillips and Michael Liebelt, presents a novel hardware-based approach for the
design of cognitive computer based on an energy efficient approach for computation with a parallel pro-
duction system. In the paper “Developing Fuzzy Cognitive Maps with Self Organizing Maps”, by Marcel
Wehrle, Edy Portmann, Alex Denzler and Andreas Meier, the propose the combination of SOM and FCM
in retrieving the semantic structure of web documents.

In the paper “Property-based semantic similarity: what counts the most?”, by Silvia Likavec and Federica
Cena, the authors discuss the problem of conceptual similarity in ontologies by exploiting the Tversky-
distance and by pointing out the importance of weighting the features (the object properties in ontological
terms), the values filling such features and the importance of the hierarchy of values.

In the paper “Do the self-knowing machines dream of knowing their factivity?”, by Pierluigi Graziani,
Alessandro Aldini and Vincenzo Fano, the authors the authors present a formal account of the ”GÃ¶delian
Argument”, according to which the human mind would be equivalent to a finite machine unable to under-
stand its own functioning.

The paper “Extracting Concrete Entities through Spatial Relations”, by Olga Lidia Acosta Lopez and C.
Antonio Aguilar, the authors describe system able to bootstrap the recognition of concrete entities from
medical domain texts by taking advantage of the use of the expression of spatial relationships.

Finally, the paper “A Framework for Uncertainty-Aware Visual Analytics in Big Data”, by Amin Karami,
proposes a framework combining Fuzzy SOM (self organising maps) within the MapReduce framework
to model uncertainty and knowledge visually within big data sets.

November 25, 2015
Torino

The AIC 2015 Chairs
http://www.di.unito.it/˜lieto/AIC2015/

program_committee.html
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Sponsoring Institution Message

This publication collects the papers selected for AIC2015 - International Workshop on Artificial Intelli-
gence and Cognition (Turin 28th-29th September 2015), an event organised with the support of Fondazione
Fondo Ricerca e Talenti.

Fondazione Fondo Ricerca e Talenti is one of the first university foundations in Italy, and the first to apply
innovative fundraising mechanisms to research activities. Its aim is twofold:

• promoting fundraising activities for the University of Turin, to which the Foundation belongs;

• financing scholarships and supporting scientific dissemination activities, for the benefit of young
researchers of our University.

We firmly and concretely believe in the importance of research. We know, as many do, that research is the
foundation of our competitiveness, of our health, of our capacity to deal with social and cultural challenges,
of our future.

We also believe in our researchers, as much as in research. We know that their ideas need an opportunity to
grow and show their potential. Our strive to provide such opportunity - even a small, but real opportunity
- is at the core of our mission.

For us, doing so means three very simple things: reward merit, be inclusive and engaging, do not hesitate
to think out of the box, stick to our vision and keep an eye on our future. These principles allowed us in
two years, with very few human and financial resources, to sponsor dozens of bursaries and dissemination
events, to create a network of hundreds of voluntaries supporting our initiatives on the field and to have
excellent echo on the media and at institutional level (including the European Commission).

We want to build ties with students, with the civil society and with the private sector in order to make the
University of Turin a forge of opportunities at the service of our youth and of our territories as a whole.

This is the reason why we particularly welcome spin-off initiatives like this publication, which contributes
to further develop and disseminate research ideas stemming from our financed seminars on cutting-edge
matters like Artificial Intelligence and Cognition.

In line with our spirit, we hope that this publication will highly benefit the scientific community and will
have a positive impact on they way we - as Human Intelligences and Cognitive Beings - understand and
live this complex world.

Fondazione Fondo Ricerca e Talenti
The President

Gianmaria Ajani
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Mehul Bhatt, University of Bremen, Germany
Erik Cambria, Nanyang Technological University, Singapore
Angelo Cangelosi, University of Plymouth, UK
Cristiano Castelfranchi, ISTC-CNR, Italy
Antonio Chella, University of Palermo, Italy
David Danks, Carnegie Mellon University, USA
Mark A. Finlayson, Florida International University, USA
Christian Freksa, University of Bremen, Germany
Marcello Frixione, University of Genova, Italy
John Fox, University of Oxford, UK
Savatore Gaglio, University of Palermo and ICAR-CNR, Italy
Nicola Guarino, LOA-ISTC CNR, Italy
Anna Jordanous, University of Kent, UK
Antonis K. Kakas, University of Cyprus, Cyprus
Ismo Koponen, University of Helsinki, Finland
Oliver Kutz, University of Bolzano, Italy
Othalia Larue, Wright State University, USA
Francesca A. Lisi, University of Bari, Italy
Vincenzo Lombardo, University of Torino, Italy
Diego Marconi, University of Torino, Italy
Orazio Miglino, University of Napoli Federico II, Italy
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How Many (Polymorphic) Frames? Classic KR
in the World Wide Web

Aldo Gangemi

LIPN University Paris13-CNRS-Sorbonne France, ISTC-CNR Rome Italy

Abstract. The good old notion of frame, as introduced in the seven-
ties, is a natural hub for cognitive sciences, knowledge representation,
and natural language understanding. Developments in the last ten years,
mainly due to the socio-technical ontology of the Web, have apparently
changed the nature and scale of the notion, and pose new challenges. I
will present a bird’s eye view of the current situation, with a quick glance
at human-robot interfaces.
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Robot Ethics: Illusions, Challenges and Rewards

Amanda J. Sharkey

University of Sheffield, UK

Abstract. In this talk, I introduce the topic of Robot Ethics: pointing
out the growing use of robots in social roles, and the need to identify
and consider the ethical issues involved before they are too well estab-
lished. From ancient times to the present day, robotics has depended
on creating the illusion of life. This illusion is exploited in the devel-
opment of robot companions, and is helped by the human tendency to
be anthropomorphic and to behave as though robots were able to un-
derstand and respond to them. The risks posed by the development of
robot companions for older people, and for children were considered. The
main risks of robot companions for older people were identified as being:
loss of human contact, loss of dignity, deception, loss of privacy, and loss
of autonomy. However, for some people, such as those with dementia,
robot companions such as the Paro robot seal can result in health and
well being benefits. There are a related set of ethical concerns about the
introduction of robots as companions, or teachers of children. These in-
clude those related to human autonomy, attachment, deception, privacy
and social learning. A brief review of underlying ethical theories is pro-
vided that included the Capability Approach. It is concluded that despite
the serious ethical concerns raised by the idea of robot companions, there
are some circumstances where robots could be used to improve the lives
of vulnerable older people, or children with special needs, by increasing
their access to some of the capabilities that make life worth living.
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Cognitive Programming

Loizos Michael1, Antonis Kakas2, Rob Miller3, and Gyorgy Turán4

1 Open University of Cyprus, loizos@ouc.ac.cy
2 University of Cyprus, antonis@ucy.ac.cy

3 University College London, r.s.miller@ucl.ac.uk
4 University of Illinois at Chicago and MTA-SZTE

Research Group on Artificial Intelligence, gyt@uic.edu

Abstract. The widespread access to computing-enabled devices and the
World Wide Web has, in a sense, liberated the ordinary user from reliance
on technically-savvy experts. To complete this emancipation, a new way
of interacting with, and controlling the behavior of, computing-enabled
devices is needed. This position paper argues for the adoption of cognitive
programming as the paradigm for this user-machine interaction, whereby
the machine is no longer viewed as a tool at the disposal of the user, but
as an assistant capable of being supervised and guided by the user in a
natural and continual manner, and able to acquire and employ common
sense to help the user in the completion of everyday tasks. We argue
that despite the many challenges that the proposed paradigm presents,
recent advances in several key areas of Artificial Intelligence, along with
lessons learned from work in Psychology, give reasons for optimism.

1 An Emerging Need and The Overall Challenge

Today’s huge market pressure for the use of smart systems by everyone and in
every aspect of their daily life is forcing Artificial Intelligence (AI) to stand up
and deliver. What was perhaps thought out of reach in the past needs to become
a reality to satisfy the ever increasing desire of humans to use their new machines
— computer devices linked with the Internet — in their everyday activities.

Unlike anything we have seen to date, this new vision of user-machine in-
teraction will allow ordinary users without technical background to instruct or
program their devices in a natural and personalized manner, and will allow the
devices to assist (and enhance the abilities of) their users in dealing with every-
day tasks. This symbiotic relation splits the burden of communication among the
user and the device, offering a “programming paradigm for the masses”, avoid-
ing the extremes of using natural languages that are too complex for ordinary
devices, or programming languages that are too complex for ordinary users.

Early examples of such interactions already exist, ranging from the personal
assistant softwares provided by major smart-device manufacturers, to the (ex-
pected) applications for expert analysis of problems in specialized domains built
on top of the Watson engine. But perhaps the clearest example of this emerg-
ing form of interaction, which we shall call cognitive programming, is that
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of searching for information on the World Wide Web. The use of web search
engines constitutes a form of programming exercised by billions, independently
of technical ability, through a programming language of keywords in natural lan-
guage, in a manner compatible with the cognitive abilities of humans. Through
their searches, users gradually develop a sense of how to improve the way they
program or instruct the search engine with queries that achieve the users’ in-
tended aim. On the other side, search engines capture the preferences or typical
behaviors of users, to help propose search queries or choose how to rank results.

We will refer to systems interacting with users through cognitive program-
ming as cognitive systems, as these systems are, in spirit at least, of the same
kind as the cognitive systems proposed relatively recently in several works in AI;
see, for example, the new journal of Advances in Cognitive Systems, the journal
of Cognitive Systems Research, and works such as [26–28, 50].

Unlike work in existing autonomous agents / systems, we think of a cognitive
system as having an operational behavior similar or parallel with that of a hu-
man personal assistant. Its domain of application is limited to certain common
everyday tasks, and its operation revolves around its interaction with its user in a
manner that is compatible with the cognitive reasoning capabilities of the latter.
To understand (and correct when needed) the reasoning process of the system,
the user expects the system to use common sense to fill-in important relevant
information that the user leaves unspecified, and to be able to keep learning
about the domain and the user’s personal preferences through their interaction.

The goal for building systems that are cognitively compatible with humans
ultimately imposes a set of considerations on cognitive programming, as this
determines the communication channel between the user and the system. The
overall challenge of developing the proposed paradigm of cognitive programming
ultimately rests on fleshing out and addressing these considerations:

– Cognitive programming should be a process akin to human-human commu-
nication. The need for detailed operational instructions should be minimized.

– There should be a level of interaction between the user and the system where
the two understand and can anticipate the behavior of each other.

– Cognitive compatibility with the user should be accommodated by acknowl-
edging the central role that natural language has in human communication,
and in the way humans store, retrieve, and use commonsense knowledge.

– Cognitive programs should develop incrementally to meet the aims of the
user through an open-ended process. Cognitive systems should be able to
learn, and be able to improve from their past interaction with the user.

– Cognitive programs should be robust, never failing, but continuously im-
proving / completing their ability to offer personalized solutions to the user,
while adapting to a possibly new or changing user position, stance, or profile.

The emphasis of this position paper is on describing the desirable character-
istics and the technical challenges resulting from the aforementioned considera-
tions. It examines the salient and foundational issues that need to be considered,
and offers possible suggestions for a first version of a cognitive programming lan-
guage. This proposal is grounded in our recent experience of trying to automate

L.Michael et al. Cognitive Programming
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the cognitive task of story comprehension,5 and on the comparison of the re-
sulting psychologically-informed approach with earlier work in AI for addressing
other types of scientifically-oriented problems, such as problems of diagnosis and
planning that span beyond the ordinary capabilities of human intelligence.

1.1 Scientific Position for Cognitive Programming

The scientific position underlying our approach and proposal for cognitive pro-
gramming is that symbolic AI can offer the tools needed for the aforementioned
considerations, as long as one abandons the traditional view of the role of logic
for reasoning, and one is strongly guided by work in Cognitive Psychology. To a
certain extent, then, this position takes us back to the early days of AI.

We embrace McDermott’s view in his paper “A critique of pure reason” [31],
that developing a logical theory alone — even a non-monotonic one — without
consideration of the reasoning process can not lead to human commonsense intel-
ligence. A vast amount of empirical work from Psychology (see, e.g., [12]) shows
that commonsense inferencing has a looser form than that of scientific reasoning,
and that the conventional structure and form of logical reasoning, as epitomized
by mathematical or classical logic, is not appropriate. Given strong evidence
from recent work in Psychology (see, e.g., [33]) in support of an argumentation-
based theory for human reasoning, we adopt a form of argumentation as the
basis for a cognitive system’s reasoning process. Drawing from work in Cogni-
tive Psychology (see, e.g., [13, 21, 23, 44]) on how human knowledge is (or might
be) structured and used, we base our approach on the cognitive process of com-
prehension, within which logical inference is only one component.

Although work in logic-based AI may accept, to a certain extent, the need
to deviate from strict logical reasoning (e.g., non-monotonicity, belief revision,
logic programming), efforts to automate reasoning still typically proceed on the
basis of developing proof procedures that are sound and complete against some
underlying semantics of “ideal inferences”. Unlike such work, on which cognitive
programming may be based and from which it may be guided, cognitive program-
ming shifts the emphasis from deep and elaborated reasoning to richly structured
knowledge, assuming that commonsense intelligence resides in the “complexity
of knowledge representation” rather than the “complexity of thought”. As in
many cases of Computer Science, data structures and data organizations matter
and can make all the difference in having an effective and viable solution.

2 Computational Model and System Architecture

The central notion underlying the computation of a cognitive system is that of
comprehension, a notion adopted from story or narrative text comprehension
in Cognitive Psychology (see, e.g., [22]). In our setting, comprehension proceeds

5 The system STAR: Story Comprehension through Argumentation, along with bench-
mark stories and other material, is available at: http://cognition.ouc.ac.cy/narrative/

L.Michael et al. Cognitive Programming

5



Personal
Profile

Information

Commonsense
Knowledge
Libraries

Narrative
Preparation

Knowledge
Retrieval

Input Language 
Pre‐processing

Response

Comprehension
Model

Construction

Response
Generation

User Query

Fig. 1. General Architecture of a Cognitive System

by first combining the explicit input given by the user with information that is
available in the user’s profile (i.e., personal facts), forming an input narrative
of the task at hand. This narrative is then synthesized with information that the
system has about the domain (i.e., commonsense knowledge) and its user (i.e.,
personal preferences), leading to the construction of a comprehension model.

A comprehension model is an elaboration of the input narrative with new
information, or inferences, capturing the (or a possible) implicit meaning or
intention of the narrative. Critically, the comprehension model is coherent, and
includes only inferences that are important for successful understanding, while
omitting cluttering details and speculations. If, for example, a user enquires for
“private celebration of wedding anniversary”, it is essential for the comprehension
model to include the inference “place for two people”, but not the side inference
“married for at least one year” or the mere possibility “dinner at fancy restaurant”.

The central hypothesis of our proposed cognitive programming framework is,
then, that the availability of a comprehension model allows the system to better
act and assist its user in the requested task. The general high-level architecture
of cognitive systems that follows from this hypothesis is depicted in Figure 1.

We shall analyze the various components of this architecture in subsequent
sections. For now, we shall discuss the interaction of the user with the system.

2.1 Cognitive Programming Interaction Modes

The most basic form of user-machine interaction is querying, whereby the user,
or the cognitive assistant of some other user, or even some sensor device, inputs
a specific request or query to the cognitive system. The system then identifies or
compiles relevant commonsense knowledge, perhaps even invoking a process of
online learning, and responds with some action (e.g., a suggestion of whether to

L.Michael et al. Cognitive Programming
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accept or not an offer) that would help in addressing the task that has prompted
the query. When an output is thus produced by the cognitive system, another
form of interaction, that of supervising, allows the user to give feedback to the
system on the appropriateness of its output. For example, a user may override
the suggestion or decision of a cognitive assistant with or without an explanation.
The overridden output is then treated as training data for the system to learn
(better) the user’s personal opinion or preference on the particular case at hand.

Independently of any given query, the user may interact by personalizing
the cognitive system through general statements about the user’s preferences,
such as “I like to spend the evenings with my family” or “Family is more important
than work for me”. The system responds by transforming such statements in an
appropriate internal language, and recording them in the user’s profile, which,
in turn, personalizes other aspects of the user’s interaction with the system.

In the context of a particular domain of application or discourse, interaction
through guiding allows the user to offer general information that would aid the
cognitive system to understand the salient aspects of the domain. Such informa-
tion is also provided indirectly when, for instance, the user interacts with the
system in any of the preceding ways. No matter how information is provided,
guiding initiates a process to recognize concepts that are relevant and important
for the user. In turn, this information can be used to prepare relevant knowledge
on these concepts, by directing a background process of offline or batch learning
of general commonsense knowledge that is related to the particular domain.

In what is arguably the lowest (i.e., closest to the machine, and analogous to
the use of traditional programming languages) level of interaction, instructing
allows the user to input particular pieces of knowledge to the cognitive system
on how to operate or react under very specific circumstances. Such inputs are
expressed in the system’s internal language, and can be imputed directly in the
user’s personal profile or personalized knowledge libraries. We do not envisage
that this would be the prevalent way of user interaction with cognitive systems.

2.2 Illustrative Example of a Cognitive System

Suppose that Bob wishes to manage his evening work appointments with the
assistance of a cognitive system. He cognitively programs the system by guid-
ing it with domain-specific information like “dinner plans, family time, work ap-
pointments, dietary constraints”, prompting the system to gather relevant com-
monsense knowledge. Bob further personalizes the system with facts, such as
“Bob is vegetarian”, and preferences, such as “I like to spend evenings at home”,
“Customers from abroad are very important”, and “I should never miss my chil-
dren’s birthday parties”. Some of this latter type of information might have also
been learned by the system by finding regularities in Bob’s past queries to the
system (e.g., if Bob often specified the keyword “vegetarian” in past queries),
or through supervision of past proposed suggestions by the system (e.g., if Bob
often declined suggestions by the system for late dinner outside his house).

When Bob’s cognitive system receives a request from Bob’s immediate boss,
John, for “Working dinner today with John”, the system combines this input with

L.Michael et al. Cognitive Programming
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facts in Bob’s profile or other current information the system has from sensors,
calendars, etc., to construct an expanded input narrative. This narrative is then
comprehended through the use of the system’s commonsense libraries, and the
comprehension model is used to decide on whether the request is to be accepted.

If no additional information is given to the cognitive system, the system will
reject the request, since having dinner with John would mean going to a restau-
rant that evening, which would conflict with Bob’s preference to be at home in
the evenings. Such inferences would be supported by commonsense knowledge of
the form “Normally, working dinners are at restaurants”, and “Normally, dinner is
in the evening”. In a more advanced case the system could generate alternative
suggestions, such as to have dinner with John at home that evening. The re-
quest would also be rejected if the system were to receive from the calendar the
information that “Today is the wedding anniversary of Bob”, giving an additional
reason for Bob’s inability to have dinner with John, since “Normally, a wedding
anniversary is celebrated privately”; this piece of common sense supporting the
decision could be offered as an explanation of the system’s response.

If (possibly after the initial rejection of the request) additional information is
given that “John will be accompanied by important customers from abroad”, this
new piece of the story will be incorporated in the input narrative, leading to a
revision of the comprehension model, and to the retraction of the system’s ear-
lier decision, as now the request is supported by Bob’s preferences. The system
would then suggest to accept the request, and perhaps reschedule the celebration
of the wedding anniversary for another evening. Had further additional informa-
tion been available that “Bob’s son is having a birthday party tonight”, a further
revision would have been caused that would again reject the request, but possi-
bly suggesting an alternative plan through the use of commonsense knowledge
such as “Normally, a pre-dinner drink (and an apology) is an alternative to dinner”.

3 Foundations of Cognitive Programming

What is an appropriate theoretical model of computation and semantics of pro-
gramming that would underlie the development of the cognitive programming
paradigm? What is the form of the internal language of the cognitive system,
which would support the computational cognitive metaphor of story or narrative
text comprehension as the central form of program execution? This internal lan-
guage ultimately determines the form of representation of knowledge used by the
cognitive system. Adopting a symbolic representation raises several questions:
What is an appropriate logic and form of reasoning? Is logic alone sufficient
to capture the cognitive requirements, such as that of a natural language user-
interface and a computational model of comprehension? If not, what are the
cognitive elements that would need to accompany a logical approach?

We turn again to Cognitive Psychology (see, e.g., [16, 21, 53]) for guidance:

– Knowledge is composed of loose associations between concepts, that, unlike
logic rules, are stronger or weaker depending on the context.

L.Michael et al. Cognitive Programming
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– Reasoning gives rise to a single comprehension model, avoiding the cogni-
tively expensive task of considering possible non-deterministic choices.

– Reasoning proceeds lazily by drawing only inferences that are grounded di-
rectly on the explicit concepts given in the narrative, in an incremental man-
ner as parts of the narrative become available. When conflicting information
is encountered, the comprehension model is suitably revised [43].

– Cognitive economy — necessitated by human cognitive limitations, which
are bound to appear also in cognitive systems with massive knowledge li-
braries — is achieved by requiring the comprehension model to be coherent,
including inferences that are tightly interconnected, and excluding inferences
(even undisputed ones) that are peripheral to the understanding of the given
narrative [1, 15, 32, 49], or to the completion of another cognitive task [45].

The above guidelines leave, nonetheless, several key issues on the treatment
of knowledge unanswered. Below we elaborate on two of those: a more detailed
view of knowledge representation, and the process of knowledge acquisition.

3.1 Representation of Cognitive Programs

In constructing the comprehension model, the cognitive system needs to retrieve
relevant commonsense knowledge and possibly to adapt this to the narrative
(and hence to the particular query and task) at hand for subsequent reasoning.
This imposes two desired properties for knowledge representation that seem at
odds with each other: knowledge should be represented in a fashion sufficiently
flexible to be easily accessible and adaptable (e.g., in terms of the vocabulary
and syntax being used), but at the same time knowledge should be represented
in a fashion sufficiently concrete to be amenable to symbolic reasoning. We refer
to this problem of representation as the challenge of knowledge plasticity.

A way to address this challenge might be the adoption of multiple repre-
sentations for the internal language of the cognitive system, and hence, of the
commonsense knowledge that the system handles. Representations can exist, for
instance, to capture a general categorization of the knowledge, typical or exem-
plar entities and situations, detailed knowledge for specific cases, etc. Perhaps the
system’s commonsense knowledge is represented at a more general and abstract
level when it is initially acquired through offline or batch learning. When queries
are provided by the user, a form of knowledge compilation might turn the
relevant general knowledge into a task-specific form that can be directly used to
link the knowledge with the input query (and resulting narrative) for reasoning.

How the knowledge is structured in such levels and how a user input is
compiled down these levels to the specific one on which the execution / reasoning
occurs presents one of the central challenges for cognitive programming. We posit
that an argumentation perspective might be useful in capturing the important
aspects of the most specific of these levels, where knowledge is already compiled
into a form appropriate for formal reasoning. This representation framework
falls under the general scheme of abstract argumentation frameworks [11] that
have been used to formalize and study several problems in AI (see, e.g., [3, 4]),

L.Michael et al. Cognitive Programming

9



including story comprehension [5, 9], and natural language interpretation [6].
Abstract argumentation will need to be suitably relaxed and adapted to reflect
the cognitive requirements that we have set for cognitive systems (see, e.g., [39]).

Based on our work on story comprehension [9] and our attempts to develop a
cognitive programming language for that task [10], we offer below some pointers
on what a cognitively-guided argumentation framework might look like.

Arguments are built via simple association rules, each comprising a small set
of concepts as its premise and a single concept as the conclusion that is supported
or promoted (but not necessarily logically entailed) when the premise holds. In
relation to the example discussed in Section 2.2, a relevant association rule would
be “{dinner at(Person,Place), with boss(Person)} restaurant(Place)”, capturing
the argument that having dinner with one’s boss normally happens at a restau-
rant. We view such association rules not as components of scientific theories
(e.g., of causality, of norms and obligations, of the mind), relying on elabora-
tive and careful reasoning, but rather as phenomenological manifestations of the
inferences that would follow from such theories, via a “flat” representation.

Even so, not all association rules can be applied in parallel. Different associa-
tion rules may promote conflicting conclusions, not all of which can be included
in a comprehension model. Resolving conflicts is the essence of the argumenta-
tive stance we employ. We adopt the view that association rules are annotated to
denote their (possibly relative) level of strength, so that when in conflict, these
strengths ensure that the stronger rules will draw inferences, effectively qualify-
ing (by offering a strong counter-argument to) the use of the weaker rules.

With the addition of a time dimension, such association rules are sufficiently
expressive to represent causality. Thus, if we mark the conclusion of an associa-
tion rule as holding temporally after the premise, the conclusion could correspond
to the effect that is brought about when the premise holds. Such causal links are
known from Psychology to be important in ascertaining the coherence of a com-
prehension model. Analogously, if we mark the conclusion of an association rule
as holding temporally before the premise, the conclusion could correspond to an
explanation of why the premise came to be. Drawing such explanatory inferences
(when justified to do so) is again critical in the process of comprehension.

Such aspects of causality in world knowledge have featured prominently in the
foundations of Artificial Intelligence (cf. the Situation Calculus [30], the Event
Calculus [25], and several action languages [14, 19, 29, 46]). The central problems
of frame, ramification, and qualification will need to be addressed within the cog-
nitive programming framework, but only in a simplified and qualitative form, as
it suffices for our treatment of cognitive programs as phenomenological theories.

3.2 Acquisition of Cognitive Programs

Key in a cognitive system’s working is the availability of relevant knowledge, or
cognitive programs. Even though the user could contribute to this knowledge by
directly instructing the system, we envision that the main mechanism through
which cognitive programs would be acquired will be offline or batch learning.

L.Michael et al. Cognitive Programming
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The most promising source of training material for learning commonsense
knowledge is currently natural language text, both because of the existence of
parsing and processing tools that are more advanced than those that exist for
other media (e.g., images), but also because of the high prevalence of textual
corpora. The World Wide Web has, typically, played the role of such a textual
corpus for machine learning work seeking to extract facts (see, e.g., [41]). When
seeking to extract, instead, knowledge appropriate for reasoning, an additional
consideration comes into play: knowledge encoded in text from the World Wide
Web is biased and incomplete in several ways with respect to our commonsense
real-world knowledge, and would be more aptly called websense [36]. We posit,
however, that certain deficiencies that a cognitive system could have by employ-
ing websense would be overcome through the user’s feedback and supervision.

Acquisition of knowledge could proceed in several ways. For one, the cogni-
tive system may memorize fragments of text that describe exemplars of certain
concepts or scenarios (e.g., a typical restaurant scenario). In a somewhat more
structured form, the cognitive system may compute and store statistics about
word co-occurrences, e.g., in the form of n-grams, or in the form of frequencies
of words appearing in a piece of text conditioned on certain other words also ap-
pearing. This last form of statistical information can be interpreted as a weighted
association rule, with the weight indicating the “strength” or “probability” of
the association holding. In an even more structured form, statistics as above can
be stored not on words, but on relations extracted by parsing the text.

Beyond statistical information, one can attempt to learn reasoning rules over
words or relations, using typical machine learning techniques. Some such tech-
niques represent learned rules in a form understandable by humans (e.g., DNF
formulas). Recent work has shown, in fact, that one can learn not only deductive
rules, but also abductive ones, which provide possible explanations given a cer-
tain input to be explained [18]. Learning causal rules can also proceed naturally
by treating consecutive sentences in a textual corpus as the before and after
states needed for causal learnability [35]. Treating fragments of texts as partial
observations of some underlying, even if unknown, truth or reality can be shown
to guarantee [34] that rules learned in this manner will draw inferences that are
not explicitly stated in, but follow from, a given piece of text. This task, known
as textual entailment [8], contributes to one of the necessary processes (namely,
the drawing of relevant inferences) for constructing a comprehension model.

The amount of knowledge that can be extracted from text is massive, and
measures need to be taken to account for this. Section 2.1 has already pointed
out that the user guides, explicitly or implicitly, the cognitive system on what
concepts the system needs to focus on, and in turn these concepts determine what
training material the system will seek for learning knowledge. Even with such
guidance, the system may need to refrain from learning knowledge in the most
specific form possible, since that would commit the knowledge to a very rigid
representation that could not be used later in the context of different queries.
Instead, the system should probably choose to retain the learned knowledge in
a general representation, some examples of which we have discussed above.
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This type of batch and query-independent learning could operate continu-
ously, with the learned knowledge guiding its further development by identifying
those concepts for which more training is needed. This process ensures, then, the
gradual improvement of a system’s cognitive programs, and hence their perfor-
mance. When a query is posed, the process of knowledge compilation may invoke
a further (online) form of learning, treating the offline-learned general knowledge
as training data. This query-driven learning is much more focused (and could, in
fact, be done implicitly [17]), and should, therefore, be sufficiently efficient to be
carried out in real time between the user posing a query and receiving a response.
The results of this online learning may be stored, and be reused for future query
answering. Supervision by the user may provide additional training material for
online learning, which would produce, therefore, user-specific knowledge.

In all cases, learning should proceed in a manner that anticipates reasoning.
Valiant’s Probably Approximately Correct (PAC) semantics for learning and rea-
soning [47, 48] points to how one could establish formal guarantees on the quality
of learned cognitive programs and the comprehension models and inferences they
produce. Recent work has proposed PAC semantics for two situations that are of
particular interest to cognitive systems: when reasoning involves the chaining of
multiple pieces of knowledge [37]; and, when a user’s interaction with a cognitive
system is personalized by learning to predict the user’s intentions [38, 40].

4 Major Challenges for Cognitive Programming

Developing cognitive systems through the cognitive programming paradigm poses
major technical challenges. We group and summarize below certain such chal-
lenges that would need to be overcome to make progress in this direction.

User-Machine Interaction. Cognitive systems need to interact with human
users in a natural way through some fragment of natural language. Hence, the
natural language processing capabilities of the supporting modules of cognitive
programming are important. In particular, central questions include:

– How do we structure and restrict the complexity of natural language for the
user-interface fragment of natural language, without, on the one hand, losing
the expressiveness required by the applications, and while keeping, on the
other hand, a form of natural communication with human users?

– How can we use existing natural language processing (NLP) systems for
the syntactic and grammatical analysis of the user input to ascertain the
concepts involved and to extract the narrative information? The use of better
NLP tools should help us develop incrementally improved cognitive systems.

– How does the user become aware of the language and knowledge capabilities
of the underlying cognitive programming framework? How can we develop
useful schemes of dialogues between the user and cognitive systems for user
feedback and for natural forms of supervision of the system by the user?

L.Michael et al. Cognitive Programming
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Reasoning with Common Sense. The basic form of argumentative cognitive
reasoning and comprehension depends critically on many factors, when this is
to be scaled up to be applied in many (if not all the) domains of discourse of
common sense. The major questions that need concrete technical answers are:

– Does commonsense knowledge have a generic and task-independent vocabu-
lary and form? What is an appropriate such form and how is this adapted (in
real time, through knowledge compilation) into a useful task-specific form?
In particular, how do we address the need for syntactic plasticity of com-
monsense knowledge, so that it can be adapted in a manner syntactically
compatible with the vocabulary that the current input narrative is using?

– How are relevant parts of commonsense knowledge identified efficiently and
reliably given an input narrative? In particular, how do we address the need
for conceptual plasticity of commonsense knowledge, so that the concepts
referred to in the input narrative are matched to concepts in the knowledge
base? Is a meta-level form of “context indexing” of the knowledge needed?

– How do we integrate effectively the “pure reasoning” with the process of
comprehension, while being guided by the central principle of coherence?

Acquiring Common Sense. Given that we have an appropriate representa-
tion for commonsense knowledge, we are then faced with the challenge of how
to automatically learn and populate a commonsense library. Questions include:

– Is an offline or batch learning process for commonsense knowledge acquisition
the only form of learning required, or do we also need a form of online learning
at the time of query processing and knowledge compilation?

– How do we distinguish learned user-specific knowledge from learned generic
commonsense knowledge given that the user supervises both processes, and
how could learned knowledge be reused across users and cognitive systems?

– What are the main technical problems of “mining” commonsense association
rules from the World Wide Web? What NLP techniques, search and down-
load tools, storage and indexing schemes would be required? How do we
overcome the possibly biased and incomplete nature of learned knowledge?

– How do we learn the annotations and priority tags of commonsense associa-
tion rules? Can this process be automated, or is it ultimately user-specific?

To address many of these challenges, further empirical study with the help of
Cognitive Psychology will be needed to help reveal possible answers and guide
the development of the computational framework. The availability of a compu-
tational framework would then facilitate the experimental examination of the
computational viability and effectiveness of various guidelines in improving the
cognitive programming framework and the programming experience of the users.
In particular, the central and major issues of knowledge plasticity and knowledge
compilation are amenable to empirical psychological investigation.

In general, the development of cognitive programming needs to be informed
and guided by the psychological understanding at different levels of human cog-
nitive processes. Understanding how the mind operates at some higher concep-
tual level when dealing with everyday cognitive tasks can help us in developing
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possible models of computation in cognitive programming. On the other hand,
understanding how humans introspectively perceive or understand the opera-
tion of their cognitive processes can help us develop human-compatible models
of computation: models of computation that humans can naturally relate to.

5 Concluding Remarks

Ideas and proposals related to one form or another of cognitive systems go back
to the very beginning of the history of AI, and it would be an interesting topic
in itself to explore the development and confluence of these ideas. Among work
carried out in more recent years on cognitive computing and systems, Watson is,
perhaps, closest to a complete system, and has attracted the most attention from
the media. Unlike its emphasis towards “help[ing] human experts make better
decisions by penetrating the complexity of Big Data”,6 our proposal focuses on
assisting ordinary people by supporting their everyday decision making.

Although both Watson and our envisioned systems seek to solve a cognitive
task, the difference in emphasis outlined above suggests that for the latter sys-
tems it is crucial that the problem-solving process itself be cognitive, inspired
by human heuristics and transparent to the ordinary people’s way of thinking.
It could be argued that the label “cognitive” should be reserved for such types
of systems, and not be conferred to every system that solves a cognitive task.

Adopting this more stringent view of cognitive systems points to a second —
in addition to developing intelligent machines — end for building them. Through
their operation, cognitive systems could be used to empirically validate or fal-
sify the theoretical models they implement, supporting the scientific process of
hypothesizing, predicting, and revising. This iterative process would allow AI to
contribute to the refinement of psychological theories of human cognition.

Following a vision where humans and machines share a similar level of com-
mon sense, we have proposed cognitive programming as a means to build cogni-
tive systems. Cognitive programming adopts the view of a machine as a personal
assistant: a human asks for the completion of a task, perhaps without fully and
unambiguously specifying what is needed, but relying on the assistant’s experi-
ence, and, ultimately, common sense, to perform the task. Cognitive program-
ming aims to bring the flexibility of traditional programming to the masses of
existing technology users, enabling them to view their personal devices as novice
assistants, amenable to training and personalization through natural interaction.

Our proposal offers a blueprint of what needs to be done and the challenges
that one will have to face. We are optimistic that it can be realized to a large
extent by building on existing techniques and knowhow from Artificial Intelli-
gence, especially when one takes a pragmatic view by synthesizing the theory
and methods of AI with empirical results and ideas from Cognitive Psychology.

Unsurprisingly, the representation and reasoning requirements for cognitive
programming are reminiscent of those of production rules as one finds in Compu-
tational Cognitive Psychology (see, e.g., [2, 20, 52]). For cognitive programming,

6 See, for instance, this website: http://www.research.ibm.com/cognitive-computing/
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production rules need to include the element of causality in their representation,
be enhanced with a declarative form of representing and handling conflicts, and
use some notion of (relative) strength of knowledge — or, of the arguments built
from the underlying commonsense knowledge — when drawing inferences.

Logic Programming, and recent developments from this [24], have moved
in this direction of production or reactive systems with such enhancements, but
remain largely bound to the strict formal logical semantics. Similarly, frameworks
for autonomous agents, such as BDI agents [42] and robotic agent programming
[7], which aim amongst other things to give cognitive abilities to agents, also rely
on strict logical or operational semantics. These approaches serve, therefore, a
different class of problems from those aimed to by cognitive systems based on
commonsense knowledge, and for which the role of comprehension is important.

One may argue that progress on natural language understanding would suffice
to realize our vision of cognitive programming. Despite the important role of such
progress, a fully automated natural language system would seem to require a
machine architecture similar to that of the human brain. Given the gap between
the formal logic-driven machine architectures of today (with long, rigid, and
error-intolerant chains of computation — a limitation already identified by von
Neumann [51]), and the cognitive capabilities and constraints of the human mind,
our proposal of cognitive programming hopes to provide the middle-ware needed
today to move closer to the ideal of an automated natural language system.
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Abstract. The Remote Associates Test (RAT) is a test used for mea-
suring creativity as relying on the power of making associations, and it
normally takes a linguistic form (i.e., given three words, a fourth word
associated with all three is asked for). The aim of this paper is towards
generalizing this test to other domains, checking for its possible applica-
tion in the visual domain (i.e., given three images, an object associated
to them is asked for). A pilot visual version of the Remote Associates
Test (RAT-V) was created and given to human participants. A previous
solver of the compound linguistic Remote Associates Test (comRAT-C)
was adapted to become a prototype which can solve the visual Remote
Associates Test (comRAT-V).

Keywords: Remote Associates Test, Human Creativity, Visual Asso-
ciates, Computational Creativity, Cognitive Systems

1 Introduction

Humans are capable of creativity across a wide variety of tasks and domains,
including the linguistic (e.g. riddles, novels), visual (e.g. visual arts, design), au-
ditory (e.g. musical), tactile (e.g. fashion and fabrics, texture), gustatory and
olfactive (e.g. culinary creativity, perfumery), etc. Creativity in many domains
runs across various sensory or linguistic modalities (e.g. literature, scientific dis-
covery, innovation).

Complex creativity tasks, like the solving of insight problems, might ellicit
both linguistic and visual creativity. Creativity tests which include both visual
and linguistic elements do exist - like the Torrance Tests of Creative Thinking
(TTCT), which contains both verbal and figural tests [6]. However, no such tests
exist which can be given separately in both linguistic and visual forms, thus af-
fording cross-domain comparison of a particular set of creative processes. The
usefulness of such a test would be to: (i) check whether the same creative pro-
cesses act across domains; (ii) compare performance results in various domains;
and (iii) posit domain-relevant differences.
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Aiming to fill this gap, this paper takes a well established creativity test, the
Remote Associates Test [7] – for which a previous computational linguistic solver
was implemented (comRAT-C [10]) under a theoretical creative problem-solving
framework (CreaCogs [9, 8]) – and describes our approach towards developing a
visual derivate of this test.

The rest of the paper is organized as follows. The Remote Associates Test
and the construction of its visual counterpart (vRAT) are discussed in Section
2. A study with human participants who were given vRAT queries is described
in Section 3. A short description of the linguistic comRAT-C together with its
current prototype adaptation to solve visual queries is discussed in Section 4.
Results on the experimentation carried out with human participants are pro-
vided in Section 5, while results of the computational comRAT-V prototype are
described in Section 6. A discussion of this pilot test and prototype system are
provided in Section 7 and further work is proposed.

2 Outlining the Remote Associates Test (RAT) and its
Visual Counterpart

Imagine you are given three words - like cream, skate and water - and asked
which is a fourth element common to all of them. This describes the Remote
Associates Test originally devised by Mednick and Mednick [7]. The answer to
this particular query is ice.

The Remote Associates Test has been used in the literature [1, 5], and adapted
to various languages [2, 4]. To check whether this creativity test could be adapted
to more than linguistic examples, the authors decided to work towards a visual
version of the RAT.

Different versions of the RAT [7] exist, after some researchers have argued
that the items in the test were not all equal. Worthen and Clark [11] argued
that some of these items are functional, and others structural. Functional items
are those between which a non-language relationship is present (e.g. items like
“bird” and “egg”), while structural items have previously been associated within
a syntactic structure (e.g. items like “black” and “magic”). Compound remote
associates correspond to structural associates in Worthen and Clark’s catego-
rization.

Normative data from compound remote associates [3] has been used before by
the authors to evaluate a computational solver of the RAT [10] implemented us-
ing language data. In this paper, the authors use their understanding of this task
to build a visual Remote Associates Test. In a previous formalization [10], the
Remote Associates Test was described as follows: 3 words are given, wa, wb, wc,
and a word needs to be found, wx, which relates to all three initial words. In
the compound RAT case, terms (wa, wx), (wb, wx) and (wb, wx) or their reverse,
(wx, wa), (wx, wb), (wx, wc) have to be successive or composed terms in the lan-
guage in which the RAT is given in. In the case of composed terms, wz might
be another word composed of one of the initial terms and the solution term,
like (wxwa) or (wawx). For example, for the query aid, rubber and wagon,
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the answer term band constructs composed terms with some of the query terms
(band-aid, bandwagon), but not with others (rubber band). Note that the
answer term is also not in the same position in the three linguistic structures.

In order to devise a visual RAT, the same mechanism was applied, with
entities wa, wb, wc and wx being visual representations of objects and scenes.
Thus, given entities wa, wb, wc, there exists an entity wx, which generally co-
occurs visually with the other shown entities wa, wb and wc.

For example, Fig. 1 provides the following entities: handle, glove and
pen. hand is an appropriate answer to this query, being a visual entity which
co-occurs with each of the given three. The visual entity hand can be considered
a visual associate of each of the initial objects handle, glove and pen.

Fig. 1. Example of a visual RAT question. This is the first training query, showing the
participants the following visual entities: handle, glove and pen.

Each initial object is considered to have a variety of other visual associates.
Therefore, this work assumes that visual associates are terms which play the
role that word terms play in the language-based RAT. Visual associates which
co-occur together, in a previously encountered visual scene or experience, play
the same role as composed words or linguistic structures in which wa and wx co-
occur. Thus, visual experiences containing the visual entities (handle, hand),
(hand, glove) and (pen, hand) are required to solve the visual query shown
in Fig. 1.

Next section explains the visual RAT test carried out by human participants.

3 Study with Human Participants: Answering the Visual
RAT and Providing Visual Associates

The study carried out on human participants contained two parts. Participants
where asked: (1) to solve some visual RAT queries and (2) to provide visual
associates to some concepts not included in the previous queries. Participants
were split in 4 groups, each group being given part of the RAT queries to solve,
and the objects in the other queries to provide visual associates for.

Part 1
20 visual RAT queries plus 2 initial examples were set-up for initial experimen-
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tation with human participants. Each of the queries showed 3 visual stimuli:
objects (5 in training, 54 in test) or scenes1 (1 in training, 6 in test).

The given training examples are showed in Fig. 1 and Fig. 2. The answer
item is not contained in either of the initial images. The expected process is
that participants could ellicit their visual memory about such co-occurrences of
visual associates. Note that, Fig. 2 avoids presenting the sea while presenting the
image of a beach, as the expected answer to this visual RAT query is water.

Fig. 2. The second training vRAT query showed the items above to the participants:
bathtub, glass and beach.

Participants were instructed that:

– they would be presented with three objects or scenes, and asked to find a
fourth element that is related to each of them;

– they could then choose between various ways in which they first perceived
the answer when they arrived at it: (i) Visual imagery (they imagined the
answer), (ii) Word (they thought of the answer verbally) and (iii) Other (in
this case, they were asked to specify);

– they should provide a difficulty rating for each test item on a Likert scale,
with a range from 1 (Very Easy) to 7 (Very Hard).

Afterwards, the test with the visual RAT queries followed.

Part 2
Participants were asked to contribute visual associates to a set of objects, which
were query items for queries they have not received, as explained before. This
task was explained as follows:

Visual associates are things you see when you imagine a particular object.
These might be other objects, which are situated next to the object that
you are imagining in some circumstance, or specific parts of the object
you are imagining.

1 A scene is considered a visual display in which multiple objects might be considered
salient. Parts of other objects may also be present when showing an object entity,
but these parts were clearly not salient stimuli.
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For example, visual associates for “glove” might be: hand, thorns, snow,
scalpel, hot pan, bike, dirt. Visual associates for “pen” might be: pa-
per, notebook, letter, test, form, cheque, desk, ink, drawing, writing, pen
holder, ear, pen case, pencil, etc.
Imagine each item, and then write the visual associates that come to
mind.

Grouping Procedure
The test was administered to four groups, via four different surveys developed
using Google forms. The participants were asked to select their group themselves
using a randomizer2 which presented two Euro coins, on head or tails position.
Depending on the coins arrangement provided by the randomizer, participants
proceeded to one of the four groups tasks. All groups were shown the same initial
two training examples. The 20 questions were split in four 5-question groups.
Each of the four groups was asked to solve 3 sets of questions (thus 15 vRAT
queries), and asked to offer visual associates for the objects in the fourth group
of queries (thus 15 objects). The types of tasks (questions + visual associates)
given to each group are specified in Table 1.

Table 1. The four groups in the study and their assigned tasks. Note that “Q” denotes
a question, and n the number of participants in each group.

Study items Group 1 Group 2 Group 3 Group 4 Answers
n = 8 n = 15 n = 8 n = 12 per item

vRAT Training Examples Yes Yes Yes Yes Shown to all

vRAT Q1-5 Yes Yes Yes No Gr. 1, 2, 3 (n = 31)
vRAT Q6-10 Yes Yes No Yes Gr. 1, 2, 4 (n = 35)
vRAT Q11-15 Yes No Yes Yes Gr. 1, 3, 4 (n = 28)
vRAT Q16-20 No Yes Yes Yes Gr. 2, 3, 4 (n = 35)

Visual associates Q16-20 Q11-15 Q6-10 Q1-5 all objects
for objects in questions across groups

Note that participants did not provide visual associates to a vRAT test item
that they have previously answered, in order to avoid bias towards mentioning
associations which were already made salient by the test items. The design we
used in this study allowed for visual associations to be given to all objects across
participants.

4 A Visual Computational Solver (comRAT-V)

This section describes how the computational visual RAT problem-solver works
by describing its knowledge base content (Section 4.1) and its query solving
process (Section 4.2).

2 https://www.random.org/coins/?num=2&cur=60-eur.germany-1euro
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4.1 Knowledge Base in comRAT-V

A previous system, comRAT-C, solved the compound RAT using language data
[10]. Specifically, the most frequently occurring words appearing together as
a tuple (2-grams or bigrams) were obtained from a genre-balanced Corpus of
Contemporary American English (COCA)3.

As the authors could not find in the literature any visual linked and anno-
tated database which included the concepts used in the 20 queries included in
the human test, the strategy followed was to ask the participants in the study for
visual associates, as the previous section explains. Therefore, visual associates
were obtained for all objects appearing in the 20 vRAT queries, that is, par-
ticipants provided visual associates for a total of 60 objects. The objects were
presented in such a way that a common associate will not be salient. These visual
associates where used for the Knowledge Base (KB) of comRAT-V in the same
way in which 2-gram relations were used by comRAT-C.4

Data thus obtained was cognitively valid data of visual associates obtained
via introspection. This data was given to comRAT-V, which used it to construct
its (visual) Concepts and Links knowledge base. The queries to be shown to
humans were then given to comRAT-V. For each query, the three Concepts or
Objects given in the query were ellicited from the KB, then Links were used to
yield their visual associates. comRAT-V then offered the item(s) it converged
upon as a possible answer.

A faster automatic way of extracting object associates from visual scenes
data can be envisaged (see Section 7). However, the current prototype served
our purpose to check whether comRAT will work with visual domain queries,
and what was its performance.

4.2 Query Solving Process

The comRAT-C organized the data in its KB in Expressions, Concepts and
Links between co-occurring Concepts. The comRAT-C solved RAT queries by
activating the Concepts involved in each query in its KB, using the Links to nav-
igate to syntactical items which those Concepts co-occurred with, and offering
as a possible answer those items upon which this search and activation process
converged, as shown in Fig.3.

The comRAT algorithm has been generalized to solve the linguistic and the
visual RAT, which are equivalent in the nature of the processes they ellicit,
although the type of data they input is different. Thus the likelihood of finding
an answer based on frequency of the known items is computed in comRAT-V
as in comRAT-C [10] when the system needs to choose one of multiple possible
answers. When no 3-item convergence is made, comRAT-V checks for 2-item

3 Corpus of Contemporary American English (COCA): http://corpus.byu.edu/

coca/
4 Thus an object and its visual (and implicitly spatial) associate is considered to be

similar to a language term and its syntactic neighbour.
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Fig. 3. Visual depiction of the search and convergence process in comRAT-C.

convergences. If multiple such terms are found, comRAT-V proceeds to compute
the most likely of the terms and offers it as an answer.

5 Results from the Visual RAT Test with Human
Participants

This section describes the participants to the visual RAT and vRAT results.
Participants

43 participants completed the study, 30 male and 13 female. The ages of the
participants ranged between (btw.) 20 and 60 years old (y.o.), as follows: 6
btw. 20-30 y.o, 19 btw. 30-40 y.o., 14 btw. 40-50 y.o., 4 btw. 50-60 y.o. The
self-assessed English level of the participants ranged between Intermediate and
Native, as follows: 9 Intermediate, 21 Advanced, 10 Proficient, 3 Native.

Results
As shown in Figure 4, the percentage of participants solving the set of queries
varied, between 6.45% (Q5) and 97.1% (Q20), with an average query solving
percentage of 63%. Based on this, some queries may be classiffied as the three
most difficult (Q5, Q13, Q16) and others as the three easiest (Q8, Q18, Q20).

As shown in Figure 5, participants declared they first perceived the answer
mostly visually (56.6%) or as a word (38.9%). Some participants also declared
that they did not know (3.26%) or that they perceived the answer via another
sense, like feeling the heat when the answer was fire (0.16 %).

6 Results of the Computational Visual RAT (comRAT-V)

Visual associates provided by the participants to our study were added to comRAT-
V’s knowledge base. With this data, and no use of query frequency comRAT-V
was already solving 14 of the 22 query items (63.64%). Then comRAT-V cal-
culated the frequency of occurence of the visual associates, in order to apply
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Fig. 4. Percentage of correct answers per query, as solved by the human participants.

Fig. 5. Type of solution appearance as self-declared by participants.

the same frequency-based likelihood algorithm as comRAT-C [10] when select-
ing the answers. Given this data, comRAT-V managed to answer correctly 16
out of the 22 items, as shown in Table 2. Out of these, 13 correct answers came
from 3 known items convergences, with 3 answers coming from 2 items known
convergences.

Table 2. Analysis of the accuracy of responses provided by the system.

1 item known 2 items known 3 items known Total

Correct 0 3 13 16
Plausible 0 3 0 3

Not solved 2 1 0 3

Total 2 7 13 22

Accuracy - 42.86% (85.71%) 100% 72.73%

Some queries encountered two or more possible answers. For Q8, two answers
are possible from a 3-known items convergence - meat and cheese. However, the
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correct answer, meat, is chosen due to the frequency based likelihood. Similarly,
Q21, in which a comb, razor and shampoo are presented, encounters a larger
set of possible correct answers. Amongst the possible three-item convergence
answers (e.g.water, bathroom, mirror, etc.), the correct answer hair was
chosen by comRAT-V. Queries can be answered correctly based on a two item
convergence - for example Q14 was answered in this way, as only two of the
visual associates linked the query items to the answer.

7 Discussion and Further work

Our current visual RAT prototype showed promise, as human participants were
able to solve it (63%), a variety of difficulties were present in the different queries
and 56.6% of participants said they arrived at the answer through visual imagery.
Moreover, various participants declared that they enjoyed the vRAT test.

Whether queries were or were not solved through a visual imagery process
is yet to be proven, as subjective reports are not reliable in this case. A fMRI-
based experiment showing different language-based compound queries and vRAT
queries might be able to show whether this is indeed the case. Humans might
still translate visual stimuli in language stimuli, especially as the answer was
asked for in language, and semantic relations are hard to avoid altogether.

However, as comRAT-V performed well based on visual associates provided
by the human participants, we can assume that the queries can be solved using
visual associations by humans as well. More visual affordance data is required
to strengthen the current results, as these are based on visual associates and
frequency of visual associates provided by the participants. As further work, the
authors will focus on gathering more data for the comRAT-V knowledge base.
Two ways to gather such data are envisioned:

– Get more human participants to provide visual affordances to all the objects
used in the vRAT test, without giving them the test and/or

– Find a way to extract such visual associates automatically from images de-
picting indoor and outdoor scenes.

The authors plan to analyze whether there is a relationship between the
results obtained with comRAT-V and human results in the vRAT. The authors
also plan to increase the number of queries for the vRAT, since a larger set of
queries might provide more insight and stronger results. A future focus will also
be to investigate the different classes of difficulty in such queries, the preferred
answers in multiple queries and the relation between fluency in providing visual
associates by human participants and ability to solve the vRAT.
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Abstract. The ability to generate explanations of perceived events and
of one’s own actions is of central importance to how we make sense of the
world. When modeling explanation generation, one common tactic used
by cognitive systems is to construct a linkage of previously created cause-
effect pairs. But where do such cause-effect pairs come from in the first
place, and how can they be created automatically by cognitive systems?
In this paper, we discuss the development of causal representations in
children, by analyzing the literature surrounding a Piagetian experiment,
and show how the conditions making cause-effect pair creation possi-
ble can start to be modeled using a combination of feature-extraction
techniques and the structured knowledge representation in the hybrid
cognitive architecture CLARION. We create a task in PAGI World for
learning causality, and make this task available for download.

Keywords: Explanation, Cognitive Architecture, CLARION, Analogy,
Causality

1 Introduction

Faced with some unfamiliar event, an agent1 will attempt to make sense of it
by constructing an explanation, even if the explanation that ultimately gets
accepted is not entirely coherent. Generating explanations is also important to
artificial cognitive systems, particularly those that need to communicate with
other humans, for example, to present rationales for its own actions.

1 In this paper, ‘agent’ will refer to any actor (artificial or natural) capable of cognitive
thought, ‘cognitive system’ will refer to any system that attempts to model cognitive
phenomena, and ‘cognitive architecture’ will refer to full cognitive systems (such as
CLARION) satisfying the definition of cognitive systems in [20].
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Previous work (e.g., [6, 9, 14]) modeled the generation of explanations by
using structured representations of cause-effect pairs. In an extremely simple
case, explaining some explanandum e involves finding a cause-effect pair (c, e),
where c is either believed to be true by the reasoner or plausible to the reasoner
in some sense. More complicated explanations can be generated by collecting
a sequence of cause-effect pairs and lining them up to produce a causal chain
[14], by drawing from multiple source analogs simultaneously [8, 9], or a number
of other possible approaches. But these approaches all seem to presuppose the
existence of cause-effect pairs, and little is done in the way of actually modeling
how the initial cause-effect pairings are initially created.

In this paper, we attempt to understand how the sort of cause-effect pairs that
are used in explanation generation can be created in an autonomous agent, in a
psychologically plausible way. Section 2 reviews some literature on the emergence
of causality in children, focusing on a classical Piagetian experiment we will call
the floating task. We then describe a task, implemented in the simulation envi-
ronment PAGI World, for testing abilities that underly the autonomous creation
of cause-effect pairs, along with an algorithm to perform this task, implemented
in the cognitive architecture CLARION (Section 3). Section 4 discusses future
work and concludes.

2 The Development of Causality

If we are to understand how cause-effect pairs can be created automatically by
a cognitive system, it would be very helpful to understand how the ability to
reason causally develops in humans. We will start with a particularly relevant
Piagetian experiment.

2.1 The Piagetian Floating Task

In one of Jean Piaget’s early works, The Child’s Conception of Physical Causal-
ity, Piaget introduced a task to elicit clues from children as to how they generate
explanations. In what we will refer to here as the floating task, Piaget presents
a series of objects to a child (e.g., a wooden boat, a pin, a pebble, and so on)
and asks the child to predict whether or not the object (the candidate floating
object) would float. The child makes his prediction, explaining his or her reason-
ing when possible, and then the object is placed in the water. The child watches
whether or not his prediction was correct, and then is asked to explain why the
object did or did not float.

Piaget found that the responses given by children seemed to be roughly cat-
egorizable into four stages. These stages are to be seen as continuously changing
behavioral phenomena, meant to describe general trends noticed in subjects’ ex-
planations. In the first stage, explanations are characterized by “animistic and
moral reasons,” e.g. a boat will float “because they must always lie on the wa-
ter,” or a piece of glass will sink “because it’s not allowed to put glass on the
water” [17, p.136]. Piaget described stage-1 explanations as moral because they
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seemed to him to imply a sense of social obligation on the part of the inanimate
objects, as opposed to adherence to some natural law.

In the second stage, starting at about 5 years of age, we see the appearance
of dynamism, or the invocation of an abstract force in explanations. Children
explain that boats float because they’re heavy, big, or because the “water is
strong.” However, they apply their explanations in inconsistent or contradictory
ways. Compare this to the third stage (starting at about 5 or 6 years), where
children instead tend to use the explanation that boats are light, rather than
heavy. The difference here, according to Piaget, is subtle but important: floating
is no longer explained by an appeal to a simple property of the candidate floating
object. Rather, the lake “produces an upward-flowing current which sustains the
lighter [floating] body.” In other words, floating is understood to be a property
that emerges out of an interaction necessitated by both properties of the lake
and properties of the candidate floating object.

Finally, in the fourth stage (starting at about age 9, but parts of which are
seen as early as ages 6–8), we start to see reasoning taking into account multiple
properties of an object simultaneously. By referring to the hollow-ness of the
boat, for example, children relate the boat’s volume to its weight. Furthermore,
whereas in stage 3 properties of the candidate floating object like light-ness or
heavy-ness are no longer regarded by the child to be absolute, internal properties.
Instead, they are seen as properties that only hold relative to something else (in
this case a corresponding volume of water).

2.2 Why Piaget?

Piaget’s work is extremely voluminous, spanning almost 60 years, and careful
scholars have noted evolutions in Piaget’s thought that at times puts the younger
Piaget against the older [3]. In part because Piaget’s writings are so spread out
over so many books, many of his concepts, which he refined in his later years,
are subject to misinterpretations of the highest order. For some corrections of
misunderstandings of Piagetian concepts, see [4, 15, 12].

For example, the description of stages that we reiterated in Section 2.1 is
exemplary of the type of stage-based development that critics are quick to claim
is virtually useless, since the scientific consensus is that “cognitive changes are
gradual and cumulative” [1]. Contrary to such claims, however, Piaget was very
aware of the limitations of using stages in describing children’s behavior:

“[S]tages must of course be taken only for what they are worth. It is
convenient for the purposes of exposition to divide the children up in age-
classes or stages, but the facts present themselves as a continuum which
cannot be cut up into sections. This continuum, moreover, is not linear in
character, and its general direction can only be observed by schematizing
the material and ignoring the minor oscillations which render it infinitely
complicated in detail” [18, p.17].

That being said, it is not the goal of this paper to mount a full-scale defense
of the Piagetian body of literature. Although it cannot be denied that some of
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Piaget’s theories are incompatible with, and need to be refined by, more recent
work in developmental psychology, let it suffice to point out that the critics of
Piaget are overzealous in indiscriminately discarding the entirety of his work,
especially the almost 60 years of qualitative observations of children’s behavior.
Even if one were to ignore all of Piaget’s proposed explanations for developmental
mechanisms, his observations remain a fertile ground for cognitive modelers, as
they provide at the very least a set of expected behaviors of children of different
ages when faced with very specific tasks. We described some of these behaviors
in Section 2.1, and the current paper intends to model them.

3 Modeling the Development of Cause-Effect
Representation in CLARION

The CLARION cognitive architecture [19] is divided into four subsystems: the
action-centered, non-action-centered, meta-cognitive, and motivational subystems.
Each of these is split into explicit and implicit components, thus enabling the
deliberative processes associated with localist representations to work in par-
allel with the automatic processes associated with distributed representations.
This dual-process approach to modeling cognition has been shown to be capa-
ble of modeling a variety of behavioral phenomena in psychologically plausible
ways. For example, [22] implemented similarity-based and rule-based reasoning
in the non-action-centered subsystem (NACS for short). Building on these pro-
cesses, [13] showed that structured knowledge, and thus primitive deductive and
analogical reasoning, can also be modeled in the NACS. And building on the
structures of [13], the authors demonstrated a high-level approach to generating
explanations of varying quality in [14].

The present paper can be considered another in that sequence. As men-
tioned earlier, the previous model of explanation [14] used cause-effect pairs,
implemented as template structures (a particular type of organization of localist
chunks in the explicit level of the NACS). But where do these cause-effect pairs
come from? One way, suggested by the performance of the younger children in
Piaget’s floating task, is known as feature selection. Given a set of features of the
object under consideration, the child will somehow select some subset of these
features (in the case of stage-1 children, a subset consisting of a single feature)
and hypothesize that the presence of this particular feature is the cause of the
phenomena under observation (floating or sinking). In CLARION, feature selec-
tion comes naturally out of the operations of a backpropagation network built
into CLARION [21].

In CLARION’s NACS, localist chunks corresponding to outputs can be placed
on the top level, and microfeatures corresponding to inputs and hidden nodes
can be placed on the bottom level. In Section 3.2, we set up the NACS in this
way, and apply a feature selection algorithm to the floating task. First, we turn
to a description of our computational simulation of the floating task.
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Fig. 1. The Floating Task

3.1 A Task in PAGI World

PAGI World [2, 16, 12] is a simulation environment for the evaluation and devel-
opment of AGI and cognitive systems. PAGI World is built in Unity, allowing
for execution on all major operating systems. It is built on Unity’s 2D physics
engine, so that mass, volume, velocity, texture, temperature, etc., can be expe-
rienced by the AI actor in a realistic way. The AI actor (a ball-shaped creature
with two hands, who we sometimes refer to as ‘PAGI guy’) is controlled by a
script that can be written by researchers in any programming language that
supports TCP/IP. The information sent between the controller script and PAGI
World is mostly low-level: PAGI World sends information from its visual, tac-
tile, and other sensors (including some medium-level data such as object names),
while the controller script can send commands to apply a force vector to PAGI
guy’s body and hands to control it.

PAGI World is easy to learn and use, thanks to design choices that we hope
will encourage researchers to make use of PAGI World. Because it can be run on
almost any operating system and controlled using almost any programming lan-
guage, PAGI World provides a platform for cognitive architectures of all types
(particularly those which claim to be general-purpose) to compare their perfor-
mance on the exact same tasks.
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Piagetian experiments are somewhat difficult to model computationally for
two important reasons: First, they often rely on objects that need to move in a
physically realistic way, and it is nontrivial for researchers to program sufficiently
realistic simulations for every model they create; second, assessing agents in
Piagetian experiments makes heavy use of explanatory dialogue, that is, the
experimenter must be able to ask questions about the task and the subject must
be able to answer them. Although this second difficulty is one that is still beyond
the reach of AI researchers, the first difficulty is handled quite nicely by PAGI
World, since PAGI World has the ability to simulate water and create objects
that float or do not float in it.

Thus, for all of the reasons discussed above, PAGI World is an ideal choice
for hosting the Piagetian floating task. In our implementation, PAGI guy is
positioned below a tank of water. An object with a randomly generated volume
and weight is created, and appears in the middle of the tank, where it then either
floats to the top, sinks to the bottom, or stays relatively motionless (Figure 1).
After a few seconds, this object disappears and the process repeats. This allows
PAGI guy to collect data about what it observes, so that we can later ask
questions.

Algorithm 1 The Feature Selection Algorithm Used in Each Experiment of
Section 3.2
Require: Set of features F = {fi}
Require: Set of training examples EX = {ex1, ..., exn}
Require: Number of epochs e
Require: Number of iterations it

for i iterations do
for all fi ∈ F do

Build neural network ni, using only fi as sole input
for doe epochs

for doexi ∈ EX
Execute network ni with exi

Update weights of ni w/backpropagation
end for

end for
for doexi ∈ EX

Execute ni with exi; compare prediction to actual result
end for
Determine final error rate by averaging over all exi ∈ EX

end for
Select the feature that had the highest accuracy rate

end for
Return the number of times each feature was selected as having the highest accuracy
rate

J.Licato et al. Modeling the Creation and Development of Cause-Effect Pairs for Explanation
Generation in a Cognitive Architecture

34



Fig. 2. A plot of the number of training examples n (x-axis) vs. the amount of times
each feature was chosen for having the lowest error rate (y-axis). Note that only mass
and area are shown here, since the other color-related features showed less than once
per thousand iterations.

3.2 Bottom-Up Feature Selection in CLARION

In this section we demonstrate that a simple feature selection algorithm can be
implemented in CLARION, by using a network that takes in low-level micro-
features and outputs a prediction as to whether an object will float, sink, or
remain stationary. Feature selection is an inherent property of backpropagation,
in the sense that as backpropagation updates weights, certain nodes (which can
correspond to features) will have higher weights connected to them than others.

CLARION is designed to work with low-level distributed networks that can
be trained with backpropagation. We started by creating a network consisting
of five inputs, all microfeatures in the bottom level of CLARION’s NACS: mass,
volume, and three microfeatures for color (red, green, blue). Each input can
be activated by a value between 1 and 255. Three outputs are created, each of
them implemented as a chunk in the top level of the NACS: float, sink, and
stationary. We also create five additional microfeatures h1, ..., h5, to serve as the
hidden layer of the network.

Feature selection proceeds as follows. We collected sensory data from in-
stances of the floating task in PAGI World, where an object of randomized color,
mass, and weight appears in the middle of the tank and floats, sinks, or remains
stationary. Each instance of an object appearing in the floating task is recorded
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and called an example. The input features are then individually isolated; that
is, we only activate one feature at a time, allow the activation to propagate up
to the hidden microfeatures (h1, ..., h5), and further up to the output chunks,
and the output chunk with the highest activation is taken to be the ‘prediction’
of this particular instance. We repeat this for n examples; weights are updated
using backpropagation after every example. One successful run-through of all n
examples is called an epoch. We then execute another epoch, runing through the
same n examples again.

After e epochs, we evaluate the average error on the same n examples that the
network was trained on. Note that this differs greatly from standard machine-
learning practice: generally a test data set is used that is non-overlapping with
the training data set. However, we are not necessarily interested in getting the
correct prediction; we are interested in modeling the reasoning of the child in a
way that is psychologically plausible. It is psychologically plausible that a child
would use a limited set of examples from his memory to validate hypotheses or
features, and it is less plausible that a child would run through a set of thousands
of training examples first.

In any case, the evaluation of error on the n examples gives us an error rate
for the feature that was isolated. We can then repeat this entire process with
the other features, obtaining an error rate for each feature. The feature that
had the lowest error rate is taken to be the winner of this iteration. (Originally,
we also recorded the feature that had the second-lowest error rate, but because
the results were so overwhelmingly in favor of mass and volume (a color-related
feature was selected less than once per 1000 iterations), we only present the data
here for the lowest error rate.) The feature-selection algorithm is laid out in a
more convenient form in Algorithm 1.

The iterations were repeated 1000 times per experiment. We carried out this
experiment six times, for three different values of n (n ∈ {5, 10, 20}) and two
different values of e (e ∈ {2, 20}). Figure 2 shows the value of n on the x-axis,
and the number of times (out of 1000 iterations) some particular feature was
chosen as having the lowest error rate on the y-axis.

The values of n we chose for each experiment were intentionally very small.
It seems implausible that children carrying out the floating experiment would
actually be trained using hundreds of instances before they output their predic-
tions. Therefore, we kept n very low in order to see what results emerged. As it
turns out, the results match our intuitions: using our feature-selection algorithm
settles extremely quickly on either the mass or volume features, and the only
growth we see as n and e are increased is a slowly growing gap between the
amount of times mass is chosen and the amount of times volume is chosen (a
gap which was larger for 20 epochs than it was for 2 epochs).

The fact that even tiny values of n and e identify mass and volume as the most
relevant features is consistent with the idea that, in line with Piaget’s suspicions,
the growth allowing the more complex explanations of stage-2 and later reasoning
is a growth in the complexity of the representations themselves—that is, new
nodes (corresponding to new concepts) might be created to represent abstract
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ideas such as density, water-current, and higher-level features constructed out of
the lower-level ones used in our experiments.

4 Future Work and Conclusion

This paper presents a task designed to closely model the Piagetian floating task,
and then shows how the behaviors of stage-1 children can be explained as feature
selection over simple representations in the CLARION cognitive architecture.
Future work will attempt to explain the sequence of behaviors shown by Piaget
in the floating task. For example, the ability to consider multiple properties at
once (which appears in stage-3 children) may be explained using a template
structure designed to group properties together. Likewise, the shift from single-
place predicates to relations seen in stage 4 might be explained by a stabilization
of the property groupings and the emergence of two-place predicates (a similar
strategy is used in the DORA model [5]).

Another series of tasks, highly relevant to the study of the development of
causality in children, may be interesting to examine using the model developed in
this paper. These are the series of “collision” tasks [10, 11], in which infants can
identify when some basic notions of physical causality are violated. When shown
two objects that are about to collide, but one of them unexpectedly changes
direction or stops before the collision is supposed to have taken place, infants
will stare at the anomalously behaving object longer than they would at objects
colliding normally. We have already started creating this task in PAGI World
and hope to show that the present model can match the performance of human
children closely.

The backpropagation used in this paper for feature selection is one of many
ways CLARION can select features. In the future, as we tackle more complex
tasks, we can make use of, e.g., principal component analysis (PCA) or sparse
autoencoders [7].

Causality, of course, is an immensely complex and well-studied topic, and
early steps such as those taken in this paper can only hope to scratch the sur-
face. Future work will expand the philosophical, psychological, and historical
perspectives on the notion of causality and how it relates to explanation gener-
ation.2
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2 The floating task presented in this paper is available for download, along with PAGI
World, at the website:
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A Cognitive View of Relevant Implication

Claudio Masolo and Daniele Porello
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Abstract. Relevant logics provide an alternative to classical implication
that is capable of accounting for the relationship between the antecedent
and the consequence of a valid implication. Relevant implication is usu-
ally explained in terms of information required to assess a proposition.
By doing so, relevant implication introduces a number of cognitively rel-
evant aspects in the definition of logical operators. In this paper, we
aim to take a closer look at the cognitive feature of relevant implication.
For this purpose, we develop a cognitively-oriented interpretation of the
semantics of relevant logics. In particular, we provide an interpretation
of Routley-Meyer semantics in terms of conceptual spaces and we show
that it meets the constraints of the algebraic semantics of relevant logic.

1 Introduction

Paradoxes of classical material implication often show a mismatch between our
intuitions concerning valid patterns of reasoning and the formalization of impli-
cation provided by classical logic. Debates on the nature of implication can be
traced back to the very origin of modern logic, involving for instance Brentano,
Husserl, and Frege. Turning to contemporary developments of mathematical
logic, the problem of the logical properties of implication has been approached
by providing systems that aims to mend classical logic from inference patterns
that are not motivated on the basis of a specific view of reasoning.

Since in any logical system, the implication has the important role of encoding
the properties of logical inference, by rejecting the properties of classical implica-
tion, one is often lead to rejecting classical logic. For instance, intuitionistic logic
criticizes the non-constructive nature of classical implication. For that reason,
intuitionists designed an alternative logic that rejects inference by contradiction
and the law of the excluded middle. Moreover, relevant logic criticizes the lack of
connection between the premises and the conclusion of a logical inference made
explicit by some valid formula of classical logic, e.g., A → (B → A)—once A
holds, one can infer that any B entails A—or (A→ B)∨(B → A)—every pair of
propositions can be connected by means of an implication. By keeping track of
the antecedent-consequent connection, relevant logic prevents these paradoxes.

Furthermore, classical implication does not model any sort of relationship
between the knowing subject and the matter of the proposition. The truth-
conditional definition of the classical implication A→ B is given in terms of those
states of affairs such that either the state of affairs corresponding to A does not
hold or the state of affairs corresponding to B holds. Prosaically, A→ B is true
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whenever A is false or B is true. The relationship between the antecedent and the
consequent of a classical implication can be understood only in terms of mere
co-occurrence between the states of affairs of the corresponding propositions.
The knowing subject is construed as a spectator of an independent reality that
displays itself. A number of approaches to non-classical logics can be categorized
as proposals to make logical implication sensitive to cognitively relevant aspects.
For instance, intuitionistic logic models the abstract concept of a knowing subject
and intuitionistic semantics is better understood in terms of proof-conditions
instead of truth-conditions, where a proof is intended to model the activity of a
knowing subject [20] with respect to propositions. A significant number of non-
classical logics are motivated by the idea of taking into account the activity of
the knowing subject, e.g., just to mention a few, justification logics [8], proof-
theoretical semantics [21], and number of relevant and substructural logics [13,
5]. Each of this approaches stresses that the information required to asses the
status of a proposition is an essential part of the meaning of the proposition.

We place our analysis within the tradition of relevant logics [13, 2], a family of
logics that have been traditionally interpreted as logics of information [12, 1, 13].
In particular, the analysis of relevant implication aims to investigate the connec-
tion between the information contained in the antecedent and the information
contained in the consequence. Although relevant logics are effective in preventing
paradoxes of material implication, a drawback is that their algebraic semantics
has been criticized on the ground that it lacks any strong intuitive motivation
[5]. To cope with that, a number of approaches to relevant logics provided an
intuitive reading of the semantics. From the point of view of cognition, the most
interesting approach is due to Mares [13] who interprets deduction in relevant
logics in terms of situated inference. Intuitively, a situation contains information
that is relevant to make a proposition hold, thus situations are truth-makers of
propositions. In this paper, we provide a version of the semantics of relevant
logic based on a notion of situation defined in terms of the theory of conceptual
spaces [9], a theory on how we conceptualize the reality and how we reason on
this conceptualization. Our aim is to motivate the idea of situated inference pro-
vided by Mares by means of the rich theory of cognition formalized by means
of conceptual spaces. The exhibition of a concrete instance of the semantics of
relevant logics based on a well developed model of cognition has a double im-
pact: (i) it provides a clean cognitive interpretation of relevant logics; and (ii)
it shows that relevant logics capture cognitively important aspects of inferences.

The paper is organized as follows. Sections 2 and 3 introduce the background
on relevant logic and conceptual spaces. Section 4 informally describes the inter-
pretation of the semantics of relevant logic in terms of conceptual spaces, while
Section 5 provides the formal construction. Section 6 concludes the paper.

2 Relevant logic

We introduce a minimal background on the relevant logic R [2, 13, 7]. We confine
ourself to the implicative fragment of R that, by slightly abusing the notation,

C. Masolo et al. A Cognitive View of Relevant Implication

41



1. A→ A
2. (A→ B)→ ((B → C)→ (A→ C))
3. A→ ((A→ B)→ B)
4. (A→ (A→ B))→ (A→ B)

Table 1. Axioms for R

we still label by R. Let Atom be a set of propositional atoms and p ∈ Atom, the
language of R is inductively defined by:

LR := p | A→ A

The axioms for R are presented in Table 1 while its Hilbert system is introduced
as usual through the notion of derivation `R. The base case states that `Rφ,
where φ is an axiom in Table 1. The rule of modus ponens is then added: if
`RA, `RA→ B, then `RB. By reasoning in R, a number of paradoxes of clas-
sical implication are blocked. For instance, the monotonicity of the entailment
A→ (B → A), which is an axiom in classical logic. Its meaning is: if A holds,
then every B entails A, regardless the relevance of B for assessing A. Accord-
ingly, in relevant logics that axiom is not valid. Moreover, in case we also assume
a disjunction in our language, (A→ B) ∨ (B → A) is not a theorem of R.

2.1 Routley-Meyer Semantics

We present the model of substructural logic in terms of ternary relations, that is
due to Routley and Meyer [15, 18]. Ternary relations can be viewed as a gener-
alization of (relational) Kripke semantics for intuitionistic and modal logics. Let
S be a set of points and R ⊆ S3. Moreover, let 1 ∈ S be a designated element.
We define the following notations:

– R2(xy)zw iff there is an u ∈ S such that Rxyu and Ruzw;
– x ≤ y iff R1xy.

Definition 1 (Substructural frame)). A substructural frame S = (S, 1, R)
is a set S, with 1 ∈ S, equipped with a ternary relation R such that:

A1. x ≤ x (R1xx)
A2. Rxxx
A3. if R2(xy)zw, then R2(xz)yw

(if there is u s.t. Rxyu and Ruzw, then there is v s.t. Rxzv and Rvzw)
A4. if Rxyz, then Ryxz
A5. if Rxyz and x ≤ w, then Rwyz

A valuation in a substructural frame is defined by v : Atom→ P(S). The val-
uation is required to satisfy the following heredity condition: for every p ∈ Atom,
if x ∈ v(p) and x ≤ y, then y ∈ v(p). The valuation extends to any formula of
R, by the semantics of implication:
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– s |= A→ B iff for all r,t such that Rsrt, if r |= A, then t |= B.

Heredity has to extend to complex formulas, and it is easy to check that it is
the case. The concept of truth in a model is defined by evaluating propositions
at the particular designed state 1.

Definition 2 (Substructural model). A substructural model (S, v) is a sub-
structural frame S equipped with a valuation v that satisfies heredity on atoms.
A formula A is true in a substructural model (S, v) iff 1 |= A. Moreover, A is
valid iff it is true in every substructural model (S, v).

This semantics is sufficient to show that the logic R is sound and complete
with respect to substructural models. The motivation for introducing a ternary
relation R is that it is needed for the semantics of implication: R relates the
states that are making A→ B, A, and B hold. Although the semantics based on
ternary relations has been criticized for its abstract nature, there is a number of
possible intuitive reading of R, cf. [5]. One of the reading of R groups the first
two components of the relation, R[xy]z, and can be read as “the combination
of information in x and y is in z”. This interpretation has been analyzed in
more details by Mares [13] in terms of situated inference. In very abstract terms,
the valuation associates situations to formulas and s |= A holds whenever the
information contained in situation s is relevant for A. The clause for implication
states that A → B holds at s if the information contained in s combined with
the information contained in r produces information t that is relevant for B. We
shall focus on this reading in order to provide a concrete cognitively-oriented
interpretation of ternary relations semantics.

3 Conceptual spaces

Gärdenfors [9] proposes a cognitive model of representations based on the notion
of conceptual space. The theory of conceptual spaces is grounded on the notion
of similarity: “[j]udgments of similarity (...) are central for a large number of
cognitive processes (...) such judgments reveal the dimensions of our perceptions
and their structures” ([9], p.5). Quality dimensions—e.g., temperature, weight,
pitch, brightness—correspond to “the different ways stimuli are judged to be
similar or different” ([9], p.6). They are modeled as (possibly discrete) sets of
points that represent exact similarities between individuals. Those points repre-
sent the qualities of individuals: two individuals are located in the same point
when they are (cognitively or empirically) indistinguishable with respect to the
considered dimension, e.g., they have the same temperature, the same quality.
Furthermore, dimensions have a geometrical structure that organizes their points
according to the level of similarity between stimuli.

A set S of dimensions is integral if an individual located in one dimension
is necessarily located also in all the other dimensions in S. For example, {hue,
brightness} is integral because if an individual has a hue it necessarily has a
brightness (and viceversa). A set of dimensions is separable if it is not integral,
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e.g., {hue, pitch}. In Gärdenfors’s terminology, domains are maximal sets of
integral dimensions. For example, the hue, chromaticness, and brightness dimen-
sions that form the color domain {hue, chromaticness, brightness} are integral
and separable from any other dimension. Domains are central in the work of
Gärdenfors because, by means of the separability condition, they can be used to
assign properties to individuals independently of other properties. For instance,
in empirical terms, the weight and the color of an individual can be measured
independently. The classificatory nature of the sensory systems is defended also
by Matthen [14]. In these views, properties do not have a strong ontological con-
notation, they do not capture how the world is but how it appears to us through
our sensory systems (or artificial sensors).1 The properties and the conceptual
spaces are understood relativistically: their structure depends on the underlying
culture, on measurement methods and sensors (in science), or on interpreta-
tion of the behavior of subjects (in the case of phenomenology). However the
determinate-determinable relation, see [19], makes sense also in this case. Fully
determinate properties, i.e., maximally resolving properties according to the sen-
sors one dispose of, are represented by points in the domain. Vice versa, deter-
minable properties, properties that abstract from the resolution of the sensor,
are represented by regions, i.e., sets of points in the domain. For instance, ‘being
scarlet’ and ‘being crimson’ can be seen as points, while ‘being red’ as a region
containing the previous two points. Natural properties are convex regions.

Conceptual spaces are defined as collections of one or more domains and con-
cepts are represented as regions in conceptual spaces. They are static theoretical
entities “in the sense that they only describe the structure of representations”
([9], p.31). Natural concepts are sets of regions in different domains “together
with an assignment of salience weights to the domains and information about
how the regions in different domains are correlated” ([9], p.105).

Finally, an individual is represented as a point in a conceptual space, a vector
of coordinates in the dimensions of the space. The points of the space can then
be seen as the representations of possibilia, the set of all the possible individuals.

4 From conceptual spaces to substructural models

Our goal is to provide a cognitive interpretation of the relevant logic R. More
specifically, following the idea of Mares, we provide an interpretation of the
substructural models of R (cf. Definition 2) in terms of the theory of conceptual
spaces properly modified and simplified for our goal. In this section we informally
present our idea while Section 5 contains the technical details.

We assume a finite and fixed number N of (disjoint) domains. The ith do-
main is noted Di. The dimensions of the domains are not relevant for our task,
then, to simplify our framework, we do not consider them. Consequently, we lose
the original distinction between qualities and properties and all our domains are
assumed as separable from the others. In addition, (fully) determinates, origi-
nally represented by points of a domain, are here singletons. In this way, both

1 Causation links between how the world is and how it appears to us can be considered.

C. Masolo et al. A Cognitive View of Relevant Implication

44



the determinates and the determinables (the regions) are elements of a domain
Di. This move simplifies the formalization and is consistent with a mereological
view of domains where determinates correspond to atomic regions (see [6]). Fur-
thermore, ⊆ is the only relation between regions we consider, no topological or
geometrical relations are introduced.2 Finally, we represent the classification of
objects3 under the properties in the domains but not their categorization under
the concepts. Actually, concepts are not needed for our goal. This may appear
as an oversimplification of the original theory of conceptual spaces. However,
note that (i) our notion of domain is perfectly aligned with the original that can
be seen as a limit case of the one of concept, i.e., regions in the domains are
simple concepts; (ii) links between domains useful to define natural concepts are
modeled via correlations (see below); (iii) the basic framework introduced here
can be easily modified to take into account dimensions while categorization is
an extension that could underline a new kind of implication (in addition to the
ones we discuss in Section 6) to be addressed in future work.

The original idea of representing individuals as vectors of points (singletons
in our case) each one belonging to a different domain is too strong for our
aims. This view assumes a complete knowledge about the individuals, while
we are interested in the acquisition of knowledge, information, or data, about
individuals. We then weaken the original theory by allowing two kinds of partial
knowledge about individuals: (i) the exact location into a domain is not known,
i.e., one can only assign a determinable property to the individual, e.g., one
knows it is red, but not the exact shade of red; (ii) one does not have any
information about a given property, one does not even know if an individual is
located in a given domain, e.g., if it has a color or not. Firstly, note that in (i) one
may consider the maximal region of a domain. That means, for instance, that
one only knows that the individual is colored. Secondly, (ii) contemplates the
case of individuals that lack some properties, i.e., individuals are not necessarily
located in all the domains. For instance, abstract individuals are not in space,
while holes do not weight. However, we do not represent the impossibility to be
located in a domain4 but only the lack of information (see below).

The assumption that the conditions of individuation of objects are purely
conceptual has been criticized by Pylyshyn. In [16] he explores the idea that
“[p]art of what it means to individuate something is to be able to keep track
of its identity despite changes in its properties and location” ([16], p.33). The
initial individuation and tracking of objects is not conceptual, i.e., it is not based
on the classification under concepts, it is based on a lower level mechanism built
into the visual system called FINST. We cannot enter here into the details of the
approach. What is interesting for us is the link, provided by Pylyshyn, with the
theory of object files [11]. One “can think of an object file as a way for informa-

2 Consequently, the structural relations of spaces, e.g., distances or orders, are here
only used to build the taxonomy of properties. As discussed in Section 6, this struc-
tural information could be also used to represent relations among objects.

3 From here we use ‘object’ and ‘individual’ as synonymous.
4 That could be useful for approaching the semantics of negation.
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tion to be associated with objects that are selected and indexed by the FINST
mechanism. When an object first appears in view (...) a file is established for
that object. Each object file has a FINST reference to the particular individ-
ual to which the information refers.” ([16], p.38) The file allows us to group and
maintain all the informations associated to the same individual (maybe acquired
or updated through time), in particular “the one-place predicates that pertain to
that object” ([16], p.39). An object file may be seen as an updatable frame-based
description of an individual.5

Following this idea, we assume a fixed set OB of objects that are described by
objects files defined as tuples 〈a,R1, . . . , Rn〉 where a∈OB and Ri⊆Di is a set
of regions of Di. Firstly, object files are contextual, they depend on the chosen
sets of domains and objects. Secondly, they collect all the known properties of
a given object, i.e., all their known locations inside the domains. Intuitively, an
object file represents the whole information about an object one has at a given
stage, i.e., in an ontological perspective, the collection of states of affairs [3] rel-
ative to the same object. Thirdly, the Ri are sets of regions rather than simply
regions. This extension of the original notion of location into domains is required
to represent the process of making the acquired knowledge about an object ex-
plicit. As an illustrative example, assume that the color domain contains three
subregions such that: scarlet⊂ red⊂ colored. In f=〈a, {scarlet}〉 the only
explicit knowledge is the scarletness of a, whereas f ′ =〈a, {scarlet, red}〉 adds
the redness of a. By looking at the structure of the color domain, the knowledge
in f ′ was already present in f , but only in an implicit form, i.e., f ′ is the result
of an inference process, a cognitive abstraction activity. In mathematics, one can
see this situation as the introduction of a new theorem. The theorem was implicit
in the theory but, by making it explicit, we add, in some sense, information.6

Fouthly, we need to guarantee that object files contain consistent information,
e.g., it is possible to have 〈a, {scarlet, red}〉 but not 〈a, {red, blue}〉 (if ‘being
red’ and ‘being blue’ are disjoint). Finally, Ri =∅ represents the total lack of in-
formation, discussed above, about the ith domain. In particular, f=〈a, ∅, . . . , ∅〉
represents just the existence of a∈OB .

A situation can be seen as a set of object files for the objects OB with respect
to the domains D1, . . . ,DN, i.e., as a the collection of states of affairs relative to
the objects OB expressible with the same set of properties. Because the Ri in
the object files may be the empty set or may represent determinable properties,
in general the situations capture partial information about the objects. In par-
ticular, the situation 1 is the situation where all the object files have the form
〈a, ∅, . . . , ∅〉, i.e., the situation 1 represents only the terminological knowledge.

5 Note that we do not consider time, updating must be intended in terms of knowledge
or information acquisition steps.

6 In an empirical scenario where one disposes of instruments with different resolutions,
the previous situation could be seen as the acquisition of a new measure with a
coarser resolution. We do not consider this interesting observational perspective
where one could also acquire new measures with identical resolution, e.g., one would
be able to distinguish 〈a, {scarlet, scarlet}〉 from 〈a, {scarlet}〉.
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Then, we model the reachability relation between situations in terms of up-
dates of the information contained in a situation. Intuitively, given the situation
s, t, and u, Rstu holds when the object files in u can be obtained by means
of the ones in s and t through two possible types of updating: abstraction and
correlation. Abstraction generalizes conceptualization within the same domain
(e.g. from scarlet to red), i.e., it relies on the ⊆-structure of domains. Vice versa
correlation individuates dependencies between distinct domains, for instance, it
may relate colors and shapes. Induction, as understood by Gärdenfors, is an ex-
ample of correlation: “[t]he essential role of induction is to establish connections
among concepts or properties from different domains” ([9], p.211). More specif-
ically, the “inductive process corresponds to determining mappings between the
different domains of a space. Using such a mapping, one can then determine cor-
relations between the regions of different domains. The correlation between two
properties F and G, expressed on the symbolic level by a universal statement
of the form “all F s are Gs,” would then just be a special case” ([9], p.228). We
represent only the simple correlation between two properties by a pair of regions,
the regions that represent these properties.

Finally, following the Routley-Meyer Semantics, the function of valuation v
assigns to any atomic proposition a set of situations.

5 Conceptual spaces and relevant logic

We formally define the notions introduced in the previous section. A domain D is
given by the set of all regions over a set of values D={p1, . . . , pl}: D=P?(D)=
P(D)\∅, where we exclude ∅ to avoid counterintuitive “null properties”. In what
follows, we fix a set of N domains D1, . . . ,DN, denoted by D̄. We denote by r1

i ,

..., rni the elements of a domain Di. Elements rji are called regions of the domain.
We sometimes use names for labeling regions. For instance, let D = {p1, p2, p3},
then D has as elements regions such as {p1}, {p2}, and {p1, p2}. We may then
label scarlet={p1}, crimson={p2} and red={p1, p2}.

Given a domain Di, we denote by Ri ⊆ Di a set of regions in Di.

Definition 3 (Consistency). We say that Ri is consistent iff if Ri 6= ∅, then
(
⋂

r∈Ri
r) 6= ∅.

Intuitively, as we will see, consistent sets of regions can be intended as non-
exclusive properties that can in principle be ascribed to an object. In case the
set of regions is empty, it represents the absence of information of type Di

concerning that object. For instance, Ri = {scarlet = {p1}, red = {p1, p2}}
is consistent, since the intersection of the regions in Ri is not empty, whereas
R′

i ={scarlet={p1}, crimson={p2}} is not. That is, we can say that an object
is both scarlet and red, as for instance scarlet⊆ red, but we cannot say that
it is both scarlet and crimson.

Moreover, we fix a set OB ={a1, . . . , al} of objects.

Definition 4 (Object files). An object file fa is a vector 〈a,R1, . . . , Rn〉, where
a∈OB, Ri⊆Di, such that each Ri is consistent.
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The set of all object files depends on the choice of D̄ and OB , so we denoted
by OBFOB

D̄ .We can now introduce the definition of situation.

Definition 5 (Situation). A situation s is a set of object files s ⊆ OBFOB
D̄

such that, for every object a∈OB, there exist a unique object file fa∈s.

Then, we assume a number of correlations relating regions in different domains.

Definition 6 (Correlations). A set of correlations COR is a set of pairs of
regions (rli, r

m
j ), where rli∈Di and rmj ∈Dj, i, j∈{1, . . . ,N} and i 6=j. Moreover

correlations satisfy the following conditions:

Restricted transitivity if (rli, r
m
j ) ∈ COR, (rmj , r

n
h) ∈ COR, and h 6= j, then

(rli, r
n
h)∈COR.

Correlation composition if (rli, r
m
j )∈COR and rhi ⊆rli, then (rhi , r

m
j )∈COR;

if (rli, r
m
j )∈COR and rmj ⊆rhj , then (rli, r

h
j )∈COR.

Restricted transitivity states that if we can connect two regions in a number
of steps, we can also connect them by composing the correlations in one single
step. The condition h 6= j in the restricted transitivity excludes that we end
up relating regions of the same domain. For instance, it prevents passing from
(scarlet, round) and (round, crimson) to (scarlet, crimson). The rules for
correlation composition state that if we correlate a concept with another, the
correlation applies also to the subconcept of the first one and to super-concept
of the second one. For instance, if we say that red things are round, we also say
that scarlet things are round. We do not put any further consistency constraint
on correlations. The reason is that correlations are intended to represent factual,
but not necessarily correct, mappings between concepts. For instance, we do not
exclude from COR correlations that can end up in inconsistent outcomes, e.g.
(round, scarlet) and (round, crimson). The point is that correlations express
matters of fact, thus they are falsifiable and in principle revisable. By contrast,
conceptual information is fixed and non-revisable.

We turn now to the interpretation of the ternary relation R in our setting.
Intuitively, situations are related if they are reachable by means of an abstraction
move or by means of a correlation link. Denote by fsa the (unique) object file fa
in situation s. Moreover, denote by Rs

a,i the set of regions of Di that in situation
s are associated to object a. We are ready now to present our interpretation of
the ternary relation in terms of reachability of situations.

Definition 7 (Reachability of situations). Let u, t and s situations in OBFOB
D̄ .

The situation u is reachable from t given s, i.e., Rstu, iff:

R1. for all a∈OB, for all Ru
a,i then Ru

a,i ⊇ (Rs
a,i ∪Rt

a,i);
i.e., all the data in s and t are imported in u;

R2. for all a∈OB, for all r∈Ru
a,i\(Rs

a,i ∪Rt
a,i), r is obtained in one of the two

following ways:

Abstraction there exists r′∈Rs
a,i ∪Rt

a,i such that r′⊆r;
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Correlation there exists r′∈Rs
a,j ∪Rt

a,h such that (r′, r)∈COR.

Rstu imposes that the whole information in u is derived (by using conceptual
knowledge or correlations) from the one in s and the one in t. R1 entails that
the regions in s and t are preserved in u. R2 shows that all the new regions in
u are derived from the ones in s and t by abstraction or by correlation. Note
that, in principle, a situation could be updated through abstraction and correla-
tion into something that is not a situation, i.e., into a set of inconsistent object
files. For instance, suppose that (round, crimson) ∈ COR and that scarlet

and crimson are disjoint. Suppose D̄ contains just two domains, e.g. colors and
shapes. Thus, a situation s that contains 〈a, {scarlet, red}, {round}〉 can be
updated, by means of the correlation (round, crimson), to a set of object files
that contains 〈a, {scarlet, red, crimson}, {round}〉, which violates consistency
of the sets of regions that is required for object files. Since we are assuming that
R is defined on situations, i.e. sets of object files with consistent Ri-sets, the case
above is excluded. This point shows a significant difference between abstraction
and correlation: abstraction guarantees consistency of the update, whereas cor-
relation does not. This reflects the distinction between conceptual and factual
knowledge. Once the conceptual relations are set and we have assumed that they
are consistent, by abstraction we can only generalize on given data. By contrast,
correlations introduce new data that may be inconsistent with previous ones.

We define the following relation of consistency between situations (Cst)

Definition 8 (Consistent situations Cst). The two situations s and t are
consistent, noted by Cst, iff:

C1. for i∈{1, . . . ,N}, Rs
a,i ∪Rt

a,i is consistent (cf. Definition 3)

By means of Definition 7, we can infer that, if a situation u is reachable from
t given s, then u is consistent both with s and with t and s is consistent with t.

Proposition 1. If Rstu, then Csu, Ctu, and Cst.

Proof. Assume Rstu, that entails by R1 that for every i and every object a,
Rs

a,i ∪ Rt
a,i ⊆Ru

a,i. Thus, since Ru
a,i is consistent by definition, then Rs

a,i ∪ Rt
a,i

is consistent, so Cst. The other cases follows by noticing that Rs
a,i ⊆ Ru

a,i and
Rt

a,i⊆Ru
a,i. �

We conclude this paragraph by providing an interpretation of the element
1 of the substructural model. We define 1 as the situation in which we have
no information about any object, i.e., 1 := {〈a, ∅, . . . , ∅〉 | a ∈ OB}. Every
〈a, ∅, . . . , ∅〉 is an object file, that is, it satisfies consistency. Moreover 1 is a
situation, since for every object, there exist a unique object file in 1.

5.1 Conceptual spaces as models of R

We can now show that our view of situations provides a model of relevant logic.
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Definition 9 (Conceptual substructural model). A conceptual substruc-
tural model is given by (〈S,COR, R, 1〉, v), where 〈S,COR, R, 1〉 is a conceptual
substructural frame: S is a set of situations defined wrt. a domain D̄ and a set
of objects OB, COR is a set of correlation between regions of D̄, R ⊆ S3 is a
reachability relation, and 1 := {〈a, ∅, . . . , ∅〉 | a ∈ OB}. Moreover, v is a valua-
tion that associates to atoms sets of situations, i.e., v : Atom→ P(S) such that
heredity holds.

We only need to show that R and 1 satisfy the axioms of Definition 1.

Proposition 2. The reachability of situations R satisfies axioms A1, A2, A3,
A4, and A5 of Definition 1.

Proof. We only show the details of the representative cases.
A1: R1ss. R1 trivially holds. R2 holds because Rs

a,i\(R1
a,i ∪Rs

a,i)=∅.
A2: If Rstu, then Rtsu. It is sufficient to notice that the definition of R is sym-
metric wrt. Rs

a,i and Rt
a,i.

A3: If R2(st)uw, then R2(su)tw. We need to show that if there exists an x such
that Rstx and Rxuw, then there exists a y such that Rsuy and Rytw. Assume
that there exists an x such that Rstx and Rxuw.
We show that there is a y such that Rsuy and Rytw. We set for every a and i,
Ry

a,i = Rs
a,i ∪Ru

a,i.
Firstly, we show that Rsuy. We have that Rs

a,i ∪ Ru
a,i⊆Ry

a,i =Rs
a,i ∪ Ru

a,i, thus
R1 is fine. Since there is no other regions in Ry

a,i, we can conclude that R2 is
also satisfied. Hence, Rsuy.
Then, we have to show Rytw. By assumption, Rx

a,i ∪ Ru
a,i ⊆ Rw

a,i , thus we can
deduce Ry

a,i ∪Rt
a,i ⊆ Rw

a,i. So R1 is satisfied.

Suppose now that there is an r∈Rw
a,i\Ry

a,i∪Rt
a,i, that is r∈Rw

a,i\Rs
a,i∪Ru

a.i∪Rt
a,i.

Since by assumption Rxuw, every region r in w is obtained by abstraction or
correlation from regions in x or u. If r is obtained by abstraction or correlation
from a region in Ru

a,i, then we are done, since Ru
a,i ⊆ Ry

a,i. If r is obtained from
regions in x, then, by assumption Rstx, so r is obtained from regions that are
either in s or t. We approach the following cases:
(i) r is obtained by correlation from an r′∈Rx

a,i and r′ is obtained from correla-
tion from an r′′∈Rs

a,i. This means that (r′, r), (r′′, r′)∈COR, thus, by restricted
transitivity, (r′′, r)∈COR. Therefore, if r ∈ Rw

a,i \Rs
a,i ∪Ru

a.i ∪Rt
a,i, then there

is an r′′∈Rs
a,i such that (r′′, r)∈COR, thus we conclude;

(ii) r is obtained by correlation from an r′ ∈ Rx
a,i and r′ is obtained by ab-

straction from an r′′ ∈ Rs
a,i. This means that r′′ ⊆ r′ and (r′, r) ∈ COR, thus,

by the first rule of correlation compoistion, (r′′, r) ∈ COR. Therefore, for r ∈
Rw

a,i \ Rs
a,i ∪ Ru

a.i ∪ Rt
a,i, there is an r′′ ∈ Rs

a,i such that (r′′, r) ∈ COR and we
conclude again;
(iii) r is obtained by abstraction from r′ in x and r′ is obtained by abstraction
from r′′ in s. Then r can be obtained by abstraction from r′′ and we are done;
(iv) r is obtained by abstraction from r′ in x and r′ is obtained by correlation
(r′′, r′) ∈ COR from r′′ in s. In this case, r′ ⊂ r and (r′′, r′) ∈ COR, thus by the
second rule of correlation composition we infer (r′′, r) ∈ COR and we conclude.
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Therefore, also R2 is satisfied, therefore Rytw.
A4: Rsss holds, since R1 trivially holds and Rs

a,i\(Rs
a,i ∪Rs

a,i)=∅.
A5: If Rstu and w ≤ s, then Rwtu. Recall that w ≤ s is defined by R1ws.
We show only the following case. Suppose r ∈ Ru

a,i \Rw
a,i ∪ Rt

a,i and that r is
obtained by means of correlation from r′. In case r′ ∈ Rw

a,i ∪ Rt
a,i, we are done.

Otherwise, by assumption r′ ∈ Rs
a,i and (r, r′)∈COR. Since R1ws, there are two

cases. Firstly, there exists r′′ such that (r′′, r′)∈COR. By restricted transitivity,
we conclude that for r ∈Ru

a,i\Rw
a,i ∪ Rt

a,i, there exists an r′′ in Rw
a,i such that

(r′′, r) ∈ COR. Secondly, r′ is obtained by abstraction from r′′ in Rw
a,i, in this

case by correlation composition, we conclude. �

It is important to notice that the provided interpretation in terms of situa-
tions does not trivialize the substructural model, namely R does not provide a
model of intuitionistic or classical implication. To see that, we show that mono-
tonicity does not hold in conceptual substructural models. In axiomatic terms,
monotonicity corresponds to the validity of A→ (B → A). In semantic terms,
it corresponds to the following constraint on the ternary relation [7]:

f1 Rstu⇒ R1su

Consider a simple example where s={〈a, ∅〉, 〈b, {scarlet}〉}, t={〈a, {scarlet}〉,
〈b, ∅〉}, and u={〈a, {scarlet, red}〉, 〈b, {scarlet}〉}. In this case, althoughRstu,
neither R1su nor R1tu hold, i.e., both the information in s and t is needed for
u. Therefore, (f1) does not hold in every conceptual substrctural model, thus
A→ (B → A) is not valid.

6 Conclusions and future work

We presented a concrete instantiation of the ternary relation model of the rele-
vant logic R that is grounded on the framework of conceptual spaces.Our instan-
tiation of the Routley-Meyer semantics provides a number of reasons to interpret
relevant implication in terms of cognitively aware updates of knowledge. Besides
the logical contribution, we believe that both the notion of situation and the
one of reachability between situations provide a useful framework for separating
conceptual and factual knowledge and for modeling knowledge acquisition. How-
ever, the cognitive plausibility of the interpretation of the inferential mechanism
we proposed still lacks an empirical assessment.

Future work concerns two directions. Firstly, notice that the proposed frame-
work provides an interpretation only to atomic propositions that reduce to the
assignment of a (unary) property to an object, it does not consider relations
among objects. The extension to relations definable in terms of relations among
intrinsic properties of the relata is quite trivial.7 Using conceptual spaces, this
kind of relations can be represented by means of higher level properties (see [9,

7 Even though one has to decide whether relational information is encoded in the
objects files—e.g., if REL(a, b) holds then one needs to add this information in both
the object-file relative to a and b—or outside them.
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sect.3.10.1]). For instance, suppose to have the dimension length structured by
the order relation ≤. The relation shorter than can be represented by a region
in the space of the pairs of length-values, i.e. the region of all pairs (l1, l2) such
that l1 ≤ l2. Thus, an object x is shorter than an object y if the pair (length
of x, length of y) belongs to this region. Gärdenfors seems to suggest that this
approach is general enough to represent all the (binary) relations: “[a] relation
between two objects can be seen as a simple case of a pattern of the location
of the objects along a particular quality dimension” [9, p.93]. However, some
structural relations, e.g., part-whole relations, seem to require really complex
spaces founded on several quality dimensions (see [17]). More importantly, it is
not clear to us how some relations like eat or married to can be reduced to in-
trinsic properties of relata. Similarly for relational categories [10], i.e., properties
that are defined in relational terms, e.g., a carnivore is an animal that eats meat.

Secondly, in Definition 7, we have distinguished two possible ways of updating
the information contained in a situation: abstraction and correlation. We have
suggested that, intuitively, they correspond to two distinct types of processes: the
first abstracts from already given data, the second allows to indirectly discover
new data, a sort of indirect measurements. Contrast the following sentences:

i. “If a is scarlet, then a is red” and

ii. “If a is scarlet, then a is round.”

In our model, (i) updates a situation s that contains, let say, 〈a, {scarlet}, ∅〉
into a situation t that contains 〈a, {scarlet, red}, ∅〉 whereas (ii) is an update
from s to a situation t′ that contains 〈a, {scarlet}, {round}〉. Both these up-
dates add information that was implicit, but they qualitatively differ because
the update in (i) impacts the same domain while the one in (ii) impacts a dif-
ferent domain. Furthermore, our intuition is that (i) holds just in virtue of ‘the
scarletness of a’, while (ii) holds in virtue of both ‘the scarletness of a’ and
‘the roundness of a’ (assuming that ‘being scarlet’ and ‘being round’ are both
fully determinate properties). In terms of truth-makers (see [4]) this means that
the two propositions ‘a is scarlet’ and ‘a is red’ share the same truth-maker
(‘the scarletness of a’). By contrast, the two propositions ‘a is scarlet’ and ‘a is
round’ need two different truth-makers, i.e., only the second inference reveals the
existence of an implicit truth-maker. This would suggest that the first kind of
reasoning, the abstraction, is a purely mental process that does not need verifica-
tion. By contrast, the second kind of reasoning, the correlation, needs additional
validation in terms of truth-makers. Actually this provides a partial justification
of the asymmetry between the required consistency of the conceptual knowledge
vs. the possibility to have inconsistent correlations. An interesting question is
whether it is possible to distinguish the two process in terms of inferential pat-
terns, that is, we ask whether it is meaningful to define two kinds of implications,
one corresponding to the sole updating by abstraction, and one corresponding
to updating by correlation. We leave for future work the axiomatization of these
two types of implications that, in our framework, can be characterized by two
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distinct reachability relations: one that only permits updates by abstraction, the
other that only permits updates by correlations.
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Abstract. We present computational experiments on language segmen-
tation using a general information-theoretic cognitive model. We present
a method which uses the statistical regularities of language to segment
a continuous stream of symbols into “meaningful units” at a range of
levels. Given a string of symbols—in the present approach, textual rep-
resentations of phonemes—we attempt to find the syllables such as grea
and sy (in the word greasy); words such as in, greasy, wash, and wa-
ter ; and phrases such as in greasy wash water. The approach is entirely
information-theoretic, and requires no knowledge of the units themselves;
it is thus assumed to require only general cognitive abilities, and has pre-
viously been applied to music. We tested our approach on two spoken
language corpora, and we discuss our results in the context of learning
as a statistical processes.

Keywords: Artificial Intelligence; Language Acquisition; Learning; Lan-
guage Segmentation; Information Content

1 Introduction

The question which we address in this paper is whether language learning can
be considered to be a statistical process. This has been an ongoing and funda-
mentally dividing issue in fields which consider language learning their subject
matter.

We assume that language has several layers of structure. At the bottom
we find the smallest units; in this paper, we start with phonemes, though our
method is not restricted to this level of granularity. These smallest units build
larger items of language structure:

– Phonemes build larger units such as syllables and morphemes.
– Morphemes and syllables build words. Words build phrases and phrases are

the building blocks of sentences (or spoken utterances).
– These sentences or utterances go in turn to make up larger units such as

paragraphs in text or speaker turns in speech.
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We must assume some smallest unit such as phonemes in speech or graphemes
in text as an entry point into the language system. The question which arises is
how one can tell where one such unit above the phoneme or grapheme ends and
another one begins. In natural language processing this task is generally called
text segmentation for written language and speech segmentation for spoken lan-
guage.

In the current paper, we assume that the phonemes are presented as one
continuous stream - roughly equivalent to removing the white space from sen-
tences in written text - and define our task as determining where a word or
other linguistic unit begins or ends. This is similar to the task infants face when
learning their first language, itself an open research question. Taking the title
as an example, we need to identify that the word segmentation is composed of
syllables, which are seg, men, ta, and tion, and morphemes, which are segment
and ation. From there larger units need to be distinguished such as the words
segmentation, of and natural. Longer utterances need to be split up into phrases,
perhaps at various levels of granularity e.g. natural language and segmentation
of natural language.

We present a computational approach to the segmentation problem [1] in
which we rely entirely on the information content of a symbol within a language
dataset. Our prediction is that information content will rise at the beginning of
a segment and fall at the end of a segment. A similar assumption was used by
Harris [2] for finding morpheme boundaries. We assume that this assumption
should hold for segments at all levels of the linguistic hierarchy. However, for
each level the nature and extent of this fall and rise will vary; but parameters
of the model will vary predictably with levels of segmentation. In the following,
we will present computational experiments which test this prediction on two
datasets of natural language.

Our approach to the cognitive task of language processing therefore places
emphasis on domain-independent principles, rather than taking a domain-specific
approach as has been argued as appropriate for the case of language.

We outline our information-theoretic approach in the next section; we then
present the methods used in this paper in detail. Our results and the discussion
of these for computational experiments on language segmentation are presented
in the following sections. In our conclusion we return to the question outlined
above.

2 Information-Theoretic Speech Segmentation

Applying machine learning and pattern recognition methods to natural language
has become a rich source of insights into language structure and theoretical issues
of linguistics [3] and the learning of language [4]. While many linguists take
the view that natural language requires domain-specific, innate structures (see
e.g.[5]), this is debated; one of the tenets of cognitive linguistics is that language
processing by humans is domain general and not domain specific. As Geoffrey
Sampson puts it, language learning depends on ‘general human intelligence and
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abilities’ [6, p. IX]. Using information theory as a framework for such an approach
has been argued to be both cognitively and biologically plausible [7, 8].

It has often been proposed that language and music share certain proper-
ties. One can ask the same questions regarding the structure and processing of
language as one can ask about music [9]. Indeed, there a number of objective
similarities and differences between these two domains [10]. There seem to be
shared resources in structural processing of language and music [10], in addition
to the conceptual similarity which is that the building blocks of the structures
are “cognitive objects” – i.e. percepts . In this paper, we assume that percepts in
general can be processed via their statistical regularities in a given corpus. The
computational model used here was created for purposes of melodic grouping
[11].

The current research is situated within the wider context of the IDyOM and
IDyOT frameworks. IDyOM [12] stands for Information Dynamics Of Music. It
was developed on the basis of natural language processing methods and can di-
vide melodies into perceptually correct segments using the statistical regularities
in a corpus. Generally, however, we argue here that the framework can also still
be used to segment a corpus of natural language data into syllables, words and
phrases.

In previous work [13, 14] a cognitive architecture called IDyOT is outlined
which builds on the principles of IDyOM. IDyOT [14] stands for Information
Dynamics Of Thinking. The premise of both of these different incarnations of
the underlying research framework is that grouping and boundary perception
are central to cognitive science [15] and that the most cognitively plausible way
of approaching this task is using Shannon’s [16] information theory. Especially,
we employ information content as introduced by MacKay [17].

IDyOT is based on the Global Workspace Theory [18]. In the long term it is
predicted that IDyOT provides the basis for modelling creativity and eventually
aspects of consciousness [14, 19]. In order of testing certain claims about the
domain generality of the information dynamics approach embodied by IDyOM
and IDyOT, we look at language segmentation to see whether the approach
shown to be useful in music segmentation can be transferred back to language.

The IDyOM model [20] and corresponding software1 were developed for the
statistical modelling of music in the context of music perception and cognition
research. However, one of the central features of the model is that it can also
be used for other types of sequential data, as the principles on which it is based
are cognitively inspired and meant to be general rather than domain specific
[13]. The model presented in IDyOM relies on a pattern recognition theory of
mind [21] which suggests that languages are learned by processing the underlying
statistics of the positive data contained in stimuli. Although, at the present mo-
ment only representations of auditory stimuli have been studied, our conjecture
is that any kind of perceptual data can be processed in this way. Wiggins [22]

1 The software can be found at https://code.soundsoftware.ac.uk/projects/idyom-
project/files.
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gives initial indications that the model can extend to language segmentation,
and we pursue that idea in more depth here.

As aforementioned, we take an information-theoretic approach here [16]. Pre-
dicting the next element in a sequence given the previous element is often called
a Shannon Game [23, p. 191]. Here, we assume that both music and language can
be modelled as a sequence of elements e from an alphabet E . For each element
ei in e one can calculate its probability given the context – more specifically the
preceding context ei−11 :

p(ei|ei−11 ) (1)

There is good evidence that children use transition probabilities during language
acquisition [24, p. 33], and this probability can be calculated by approximating
on the basis of a context subsequence of finite length n, i.e. by using an n-gram
model [25, pp. 845–847].

2.1 The IDyOM Model

IDyOM is a multidimensional variable-order Markov model. The multidimen-
sionality within IDyOM is formalised as a multiple viewpoints system [26], where
viewpoints can be either given basic types, or derived and combined from existing
viewpoints to form new viewpoints revealing more abstract levels of structure.
Predictions from individual variable-order viewpoint models are combined using
an entropy-weighting strategy [20].

Two basic information-theoretic measures are central to IDyOM. Information
content is the measure of unexpectedness—or surprisal to use the terminology
of [27]—and entropy a measure of uncertainty.

1. information content (h) is a measure of how unpredictable a [given unit] is
given its context [27];

2. entropy (H) is the expected information content of an unseen event in a
given context.

More formally, in IDyOM these concepts are modelled as (1) and (2) below:

h(ei|ei−11 ) = log2
1

p(ei|ei−11 )
(2)

H(ei−11 ) =
∑

e∈E
p(ei|ei−11 )h(ei|ei−11 ) (3)

Entropy-based models such as these have been used in natural language learn-
ing in the past [28, pp. 21–37]. Given an n-gram model of p(ei|ei−11 ) which char-
acterises the dataset in question, we can calculate h and H at all points in a
sequence, and thereby find local falls and rises. Such falls and rises have pre-
viously been shown to correlate with the ending and beginning of structural
units in music [11, 12] and language [22]. For the case of music it has also been
demonstrated that this model outperforms rule-based approaches [29].
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2.2 Segmentation of Natural Language

Segmentation of natural language has been a topic for computational psycholin-
guistics at least since 1990 [30]. However, it can still be regarded as a current
problem in computational approaches to language learning (see for example [31–
34]). Brent [35] classifies a number of approaches to natural language segmen-
tation into three types of strategies. These are the utterance-boundary strategy,
the predictability strategy and the recognition strategy. Our approach employs
elements of the predictability strategy: we attempt to detect boundaries based
on changes in the information-theoretic properties of the symbol sequences in
question. In this way it is similar to, but simpler and more general than, methods
such as that of Cohen and Adams [36], who use boundary entropy but combine it
with other frequency measures via voting experts to segment words in a range of
languages, or Sun, Shen and Tsou [37], who use mutual information but combine
it with other statistical measures to segment Chinese characters into words.

This contrasts with approaches in which one tries to build grammars (or prob-
abilistic models) of likely segment sequences (the predictability strategy), (e.g.
for Finnish morphemes [38]), and with those in which one matches patterns of
known words against the stream (the recognition strategy); in those approaches
one needs to build up a lexicon first, either from external knowledge (e.g. [39]) or
from incremental clustering (e.g. [40]). Our boundary detection strategy needs
no knowledge of the lexicon or even of the fact that there are such concepts as
syllables, words or phrases.

3 Methodology

Our experimental method requires two steps: firstly, building a statistical n-gram
(IDyOM) model on the basis of which to calculate information content (entropy
is left for future work); secondly, hypothesising boundaries based on local drops
and rises in information content.

3.1 Calculating the Information Content

IDyOM has a range of model configurations intended to simulate different as-
pects of musical listening behaviour. The basic distinction concerns the data
used to train an n-gram model: a model can be trained from a large dataset,
modelling the learned experience of a listener and termed the Long Term model
(LTM) in IDyOM’s terminology; or from only the current sequence under con-
sideration, trained incrementally for each utterance being predicted [26, 20, 41],
modelling a listening experience in a specific context, and termed the Short Term
model (STM). However, variations are possible: the LTM approach can be made
dynamic by adjusting its probabilities based on the current sequence as it is ob-
served (termed LTM+); and the STM and LTM models can be combined. This
results in a total of five models:

STM model trained on stimuli only in a local context (i.e. notes of the melody
or phonemes in the utterance currently being predicted);
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LTM model trained on a large training corpus;
LTM+ as LTM, but model also learns from the current example;
Both combination of STM and LTM;
Both+ combination of STM and LTM+.

3.2 Segmentation

Our overall approach is to look for characteristic local contours in information
content [22]—what Pearce et al. [15] call ‘peak picking’. Rises in information
content are signals of unexpectedness, and Wiggins [14] hypothesises that these
should correlate with the beginnings of new segments; conversely, falls in infor-
mation content are signals of predictability, which we expect to correlate with
the endings of segments.

Our current method is extremely simple, checking only for a simple rise
between successive data-points: the value at the current symbol ei must exceed
that at its immediate predecessor ei−1 by some specified amount. This amount
is our only parameter, d; thus, a new segment begins if h(ei)− h(ei−1) > d. We
evaluate performance using the κ statistic [42, 43], and set d to give the maximal
value for κ (for a specific segment type) by testing all d over the interval [0, 10].

3.3 Data

We test this method on two language corpora. The first dataset is a derived cor-
pus2 of the CHILDES corpus of child-directed adult English speech [44], collated
and transcribed at the phoneme level for word segmentation experiments [45]. It
contains 93,555 phoneme tokens which make up 33,377 words and 9,790 utter-
ances; average utterance length is 3.4 words. A single viewpoint with phonemes
as observed variables, denoted {phonemes}, is used as the basic IDyOM repre-
sentation.

The second corpus is the TIMIT transcriptions [46], a dataset of spoken En-
glish sentences obtained for the purpose of automatic speech recognition model
training, and transcribed at the level of sentences, words and phonemes. It con-
tains 81,533 phoneme tokens which make up 20,756 words and 2,342 utterances;
average utterance length is therefore 8.9 words. Again we use a simple phoneme
viewpoint; as TIMIT also contains stress annotations (represented as primary,
secondary, and no stress), this also allows us to construct a linked viewpoint
formed of the cross-product of phonemes and stress {phonemes ⊗ stress}, and
a two-viewpoint system combining both viewpoints {phonemes, phonemes ⊗
stress}.

To evaluate phrase-level segmentation, we used the Pattern parser [47] – nei-
ther TIMIT nor CHILDES contains phrase structure information. Automatic
parses are noisy: we excluded cases where Pattern produced a parse which could
not be mapped back onto the phonetic form of the utterance. Thus, our anal-
ysis on the phrase level only considers approximately half of the data for both
corpora.

2 http://www.ling.ohio-state.edu/~melsner/resources/acl12data.tgz
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4 Results

We evaluate our segmentation model in terms of accuracy of boundary place-
ment against the ground truth for each level—syllables, words and phrases—with
accuracy assessed via both Kappa values (κ) and the F1-score (harmonic mean
of precision and recall). Both κ and F1 are calculated on the basis of individ-
ual phoneme tokens, with the gold-standard annotation classifying only the first
token in each segment as a boundary. We also examine the mean information
content (h̄), and optimum value of our segmentation parameter (d). h̄ is the
same in across all, as it is a property of the (phoneme-based) corpus and model
and not of the evaluation.

4.1 CHILDES

The results for the CHILDES corpus segmentation into words and phrases is
summarised in Table 1. Lower h̄ values mean better predictability, as high h̄
signifies more “surprisal” by a new element.

Table 1. Results for the CHILDES corpus for words (left) and phrases (right) using
all five IDyOM configurations.

CHILDES

WORDS PHRASES

Model
{phonemes} {phonemes}

h̄ d κ F1 d κ F1

STM 5.74 5.39 0.39 0.46 6.06 0.52 0.57
LTM 3.42 1.59 0.58 0.71 2.87 0.54 0.63
LTM+ 3.42 1.57 0.58 0.71 2.87 0.54 0.63
Both 3.67 1.21 0.54 0.7 3.02 0.55 0.65
Both+ 3.66 1.8 0.54 0.7 3.05 0.56 0.65

Performance is reasonable at word level, with F1 around 0.7 and κ approach-
ing 0.6. The performance of the STM is considerably lower than other models, as
might be expected; we note that h̄ is considerably higher for the STM, indicating
worse fit. The d parameter is therefore also correspondingly higher – and takes
longer to find – for the STM. The lowest d for words is found in the Both model
and LTM and LTM+ for the phrase segmentation.

In terms of both F1 and κ, the LTM and LTM+ are the best models for
the word discovery task. In the phrase segmentation task, we find that the Both
and Both+ models do marginally better than in the word segmentation task
with respect to κ, but with worse performance with respect to F1. The apparent
improvement of results for the STM may be due to the lower number of segments
which need to be predicted. The improvement in performance by the short term
model also leads to improvements in the Both and Both+ configuration as these
are combinations of STM and LTM.
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In comparison to previous work on the same dataset, our best configuration
(LTM) still performs slightly worse with respect to F1-scores in the word seg-
mentation task. While Elsner et al. [45] obtained an F1-score of 0.8, our best
F1 score was 0.71. We also checked the baselines with respect to a random seg-
mentation, a segmentation which assumes every symbol is a boundary and a
segmentation which assumes no boundaries. In each case, the κ will be 0 as
expected with low F1-scores.

4.2 TIMIT

Table 2 shows the results for the TIMIT corpus. The results for the syllable
segmentation task are very comparable for all measures with those reported by
Wiggins [22]. As with the CHILDES dataset, the STM shows higher values for
h̄, with the LTM and Both models showing better performance. κ and F1 are
almost the same for the STM for all configurations. Therefore, the STM, for
which the h̄ is determined based on isolated utterances, seems not to be a good
model for this task.

Table 2. Summary of results for the TIMIT corpus for words (left) and phrases (right)
using all five configurations of IDyOM.

TIMIT

SYLLABLES WORDS Phrases

Model
{phonemes} {phonemes} {phonemes}

h̄ d κ F1 d κ F1 d κ F1

STM 5.46 2.43 0.11 0.26 3.95 0.17 0.24 6.96 0.39 0.42
LTM 3.55 1.29 0.47 0.65 1.96 0.58 0.69 4.50 0.41 0.47
LTM+ 3.54 1.15 0.47 0.66 1.95 0.56 0.69 4.40 0.41 0.47
Both 3.68 1.26 0.45 0.64 1.65 0.55 0.67 4.44 0.42 0.48
Both+ 3.67 1.05 0.45 0.65 1.94 0.56 0.69 4.52 0.42 0.48

Model
{phonemes ⊗ stress} {phonemes ⊗ stress} {phonemes ⊗ stress}

h̄ d κ F1 d κ F1 d κ F1

STM 6.04 3.09 0.11 0.22 3.72 0.18 0.26 7.36 0.39 0.42
LTM 3.73 1.08 0.48 0.67 2.17 0.60 0.70 4.48 0.42 0.48
LTM+ 3.72 1.10 0.48 0.67 2.05 0.60 0.71 4.84 0.42 0.48
Both 3.85 1.2 0.46 0.66 2.16 0.58 0.68 4.11 0.42 0.49
Both+ 3.84 1.27 0.47 0.65 2.15 0.58 0.69 4.09 0.42 0.49

Model
{phonemes,
phonemes ⊗ stress}

{phonemes,
phonemes ⊗ stress}

{phonemes,
phonemes ⊗ stress}

h̄ d κ F1 d κ F1 d κ F1

STM 6.01 2.96 0.11 0.23 3.64 0.18 0.26 7.03 0.39 0.42
LTM 3.72 1.10 0.49 0.67 2.12 0.61 0.71 3.93 0.42 0.49
LTM+ 3.71 1.14 0.49 0.67 2.13 0.61 0.71 4.49 0.42 0.48
Both 3.85 1.07 0.47 0.66 2.01 0.58 0.69 4.12 0.43 0.49
Both+ 3.84 1.10 0.47 0.65 1.92 0.58 0.69 4.02 0.42 0.49
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Generally, one can see a trend that the LTM, LTM+, Both and Both+ models
perform better if they receive more information, i.e. in the {phonemes ⊗ stress}
and {phonemes, phonemes ⊗ stress} show marginally better performance. The
smallest values for d are found in the viewpoints {phonemes⊗ stress}.

There seems no improvement in performance when moving from the LTM to
LTM+ or the Both model variants (in all configurations except the {phonemes}
condition, where the LTM+ shows slightly higher F1-score). Overall, the best
configuration for the word segmentation task is the LTM in the {phonemes,
phonemes ⊗ stress} condition.

Segmentation at Different Levels For the word segmentation task, the optimal
setting of d is higher than that for the syllable segmentation task, for all con-
figurations. This corresponds with intuitive expectation, as one needs to predict
fewer segments. In all configurations, the LTM and LTM+ still show better
performance than the STM, Both and Both+; overall accuracy is slightly im-
proved over the syllable segmentation task, with F1 scores over 0.7. The LTM+
is the best configuration overall in the {phonemes, phonemes⊗ stress} condition.
The STM perhaps also shows some improvement here, with κ values marginally
higher.

In the phrase segmentation task, again, the optimum d increases relative to
word and syllable tasks, as even fewer segments need to be predicted. Perfor-
mance in terms of κ and F1-scores is, however, much lower for phrase discovery
than for syllables and words. Thus, with regard to this measure the performance
on the TIMIT data is less effective.

The κ values and F1 scores for the STM, however, are considerably higher for
this task. The STM does, however, not benefit from the additional information
which it gets in the {phonemes ⊗ stress} and {phonemes, phonemes ⊗ stress}
conditions.

In all configurations, the LTM, LTM+, Both and Both+ models show worse
performance in the phrase segmentation task with respect to κ and F1. Also,
there is little difference in the performance of these four models. The Both is the
best configuration overall in the {phonemes, phonemes ⊗ stress} condition with
respect to the κ value.

As expected our results are very similar to those reported in Wiggins [22] for
syllable segmentation. We also checked the baselines with respect to a random
segmentation, a segmentation which assumes every symbol is a boundary and
a segmentation which assumes no boundaries. In each case, the κ will be 0 as
expected with low F1-scores.

4.3 Overall Segmentation Performance

Figures 1 and 2 show the variation of κ with the information content threshold
parameter d for each corpus, illustrating the process of determining optimum d
values.

The LTM and Both model variants show a general pattern for syllables and
words: a gradual improvement leading up to a peak in performance (defining
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Fig. 1. CHILDES corpus κ vs parameter d for words and phrases.

optimum d), after which performance drops off again. This optimum value of d
is higher as we move to longer, higher-level segments (from syllables to words,
and from words to phrases): larger changes in information content correspond to
segment boundaries at different levels. However, the phrase segmentation curve
shows less of a peak: performance reaches a level at which it stays. This suggests
that as long as d is large enough one finds segments which have a high probability
of coinciding with phrase boundaries. The plateau in the curve after the peak
can be explained as an effect of our segmentation method coding the beginning
of an utterance as a given start symbol. This is similar to the approach of Elsner
et al [45]. Thus, once the method stops oversegmenting at low d it finds the
optimum d and afterwards continues to agree on those given symbols at higher
d values.
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Fig. 2. TIMIT corpus κ vs parameter d for syllables, words and phrases.

The STM shows particularly bad performance initially but then the plots
show a sudden leap in performance. This is true for all configurations on both
corpora. Thus, short term segmentation seems to require a certain threshold to
show any noticeable segmentation performance. Exposure to isolated utterances
is insufficient to learn the distributional regularities of language.

5 Discussion & Conclusion

Landis and Koch [48] characterise a κ ∈ [0.4, 0.6] as “moderate”. Thus, most of
the results reported here show a moderate success. The results reported for the
CHILDES corpus with respect to phrases is slightly higher and thus falls into the
“substantial” category. However, one has to again note, that results regarding the
syntactic units are to be taken with caution. There is less to predict and less to
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agree on. Therefore, one would expect a higher agreement between ground-truth
and segmentation.

The long term model shows better performance than the short term model.
In effect, these two model a listeners knowledge of language (LTM) and a current
listening experience (STM). It is to be expected that there is little result to be
expected from learning from a single listening experience. Thus, the results with
respect to the differences in LTM and STM show that a long term learning from
raw stimulus is possible.

The TIMIT data also indicates that learning is improved if stress information
can be included. Though, the differences are small, the inclusion of stress in the
viewpoints selected for predicting the next phoneme do improve the results. The
differences reported here are minor, though.

The present contribution took a strong view of statistical language learning.
We claimed that it would be possible to predict syllable, word and phrase bound-
aries from a raw stimulus without having explicit information about these units
encoded in the method. We succeeded in the sense that our results indicate that
this is indeed possible. In future work, we plan to explore further in what way
the inclusion of different viewpoints improves the results.
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Abstract. This paper aims at giving a contribution to the ongoing at-
tempt to turn the theory of pattern-recognition into a rigorous science.
In this article we address two problems which lie at the foundations of
pattern-recognition theory: (i) What is a pattern? and (ii) How do we
come to know patterns? In so doing much attention will be paid to trac-
ing a non-arbitrary connection between (i) and (ii), a connection which
will be ultimately based on considerations relating to Darwin’s theory of
evolution.

1 Introduction

As is well known, the main aim of pattern-recognition theory is to determine
whether, and to what extent, what we call ‘pattern-recognition’ can be accounted
for in terms of automatic processes. From this it follows that two of its central
problems are how to: (i) describe and explain the way humans, and other biologi-
cal systems, produce/discover and characterize patterns; and how to (ii) develop
automatic systems capable of performing pattern recognition behaviour.

Having stated these important facts, we need to point out that at the foun-
dations of pattern-recognition theory there are two more basic questions which
we can formulate in the following way: (a) what is a pattern? (b) how do we
come to know patterns? And it is clear that, if we intend to develop a science of
pattern recognition able to provide a rigorous way of achieving its main aim, and
of pursuing its central objects of study, it is very important to answer questions
(a) and (b).

After having addressed the problem of providing a definition of the concept
of pattern in §2, a case-study of a particular type of finite geometry is discussed
in §3 in the hope that by so doing we might obtain a rigorous characterization
of the concept of mathematical pattern.

Section 4 is then dedicated to the examination of some of the interesting
lessons that can be learned from the case-study in §3. In particular, one of these
has to do with the characterization of the concept of mathematical pattern in
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terms of mathematical structure; and another concerns the possibility of gener-
alizing the view of mathematical patterns as structures to patterns belonging to
fields different from mathematics.

Finally, sections 5 and 6, armed with the notion of pattern developed so far,
bring the paper to a close by addressing question (b) above: how do we come to
know patterns?

2 Searching for a definition

A potentially fruitful approach to the problem ‘What is a pattern?’ is that of
Daniel Dennett. For Dennett, who in his discussion of the concept of pattern is
concerned with issues belonging to the philosophy of mind and action,

[W]e are to understand the pattern to be what Anscombe called the
“order which is there” in the rational coherence of a person’s set of
beliefs, desires, and intentions. [[6], §IV, p. 47.]

However, although taking into account final causes, beliefs and intentions
often can both reveal an order existing among a certain individual’s actions
and explain his behaviour in terms of giving an account not only of how, but
also of why he did what he did, it must be admitted that talking about ‘the
order which is there in the rational coherence of a person’s set of beliefs, desires,
and intentions’ is too vague to shed light on the notion of pattern. This is, in
particular, the case when the accounts of the order which is there . . . etc. are
several, radically differ from one another, and all seem to agree with the facts.

Moreover, since patterns do not occur only within the context of human
actions and beliefs, what happens when we are dealing with patterns displayed
by crystals of snowflakes? Of course, also in the case of crystals of snowflakes
(see Fig. 1)

Fig. 1. A crystal of a snowflake

the patterns they display are related to the order in which the components of the
crystals of snowflakes are to one another. But, whereas in the case of the crystals
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of snowflakes, if we use a microscope, we can actually see them, when we turn to
actions the verb ‘seeing’ appears to let us down. For an action, in contrast to the
crystal of a snowflake, is not just a brute physical fact and, therefore, the order
manifested by a sequence of actions ‘which is there in the rational coherence of a
person’s set of beliefs, desires, and intentions’ is not something we can perceive
by simply keeping our eyes wide open, and using instruments of observation.

This is an important point, because, if there is some truth in Dennett’s
definition of pattern, it means that what we might call ‘brute seeing’, that is,
the mere act of representing within visual perceptual space a given input — like
what happens with a photo-camera when we take a picture — cannot provide a
satisfactory account of what happens when we perceive a pattern.

Therefore, if we intend to give an account of perceiving a pattern which is in
accord with Dennett’s definition, we should appeal to a concept of seeing which
is much richer than brute seeing. A good candidate for such a concept of seeing
is the concept that in the Philosophical Investigations Wittgenstein famously
called ‘seeing something as’ or ‘aspect seeing’.4

Notice, for example, that in seeing something as a square the perception of
the square-pattern is not brute, because it presupposes, among other things,
that the observer has a grasp of the concept of square.

However, independently of questions relating to the nature of the ‘order which
is there . . . ’ in different contexts, and any consideration concerning what we must
mean by ‘seeing an aspect’ or ‘perceiving a pattern’, Dennett proposes a very
interesting general test for the existence of patterns. Basing himself on Chaitin’s
definition of randomness:

A series of numbers is random if the smallest algorithm capable of
specifying it to a computer has about the same number of bits of infor-
mation as the series itself. [[2], p. 48.]

Dennett asserts that:

A pattern exists in some data — is real — if there is a description of
the data that is more efficient than the bit map, whether or not anyone
can concoct it. [[6], §II, p. 34.]

Although that offered by Dennett is a very plausible criterion which, in some
cases, reveals the presence of patterns in a data-set, it is not specific to them.
To see this consider the definite description ‘The satellite of the Earth’. Such
a definite description certainly provides an enormous compression of data with
respect to the bit map of a computer visual representation of the Moon. But, it
is a description which uniquely identifies an object not a pattern/structure.

Lastly, the phenomenon of seeing something as a square appears to hint at a
structural feature of perception, where the pattern perceived is that of a square.
In fact if, by zooming in or out on the object we perceive as a square, we change

4 See on this [17], Part II, §XI, pp. 213e–214e.

A. Augello et al. Pattern-Recognition: a Foundational Approach

70



(within a certain range) the magnitude of the picture of the object, we would
still see the object as a square.

The structural character of the pattern perceived is particularly evident in
the case of the crystal of a snowflake. Indeed, when we observe a crystal of
a snowflake through a microscope or when we look at a photograph or at an
artist’s accurate impression of that very crystal of a snowflake, etc. in spite of
being presented in each single case with a different object — the actual crystal,
the photograph of the crystal, and the artist’s accurate impression of the crystal
— we recognize the presence of the same pattern in all these objects. Of course,
the next question is ‘What is a structural feature of an object?’ or, in more
general terms, ‘What is a structure?’ The latter is, indeed, the problem which is
going to be at the heart of the next section.

3 Mathematical Patterns. A case study

If we are presented with objects a and b (see Figures 2 and 3), it is very difficult
to see what interesting mathematical feature they might have in common, if any,
let alone that they exemplify the same mathematical pattern.

A B C D E F G
B C D E F G A
D E F G A B C

Fig. 2. Object a
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Fig. 3. Object b

Indeed, whereas object a is a 3× 7 matrix whose elements are the first seven
letters of the Italian alphabet, object b is a geometrical entity consisting of 7
lines and 7 points. The lines of object b are: the sides of the triangle drawn in
Figure 3, the bisecting segments, and the inscribed circle. On the other hand,
the 7 points are the points of intersection of three lines.
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However, the situation radically changes if we introduce the following formal
system T with the appropriate interpretations.

Let a formal system T be given such that the language of T contains a
primitive binary relation ‘x belongs to a set X’ (x ∈ X), and its inverse ‘X
contains an element x’ (X 3 x).

Furthermore, let us assume that D is a set of countably many undefined
elements a1, a2, . . .; call ‘m-set’ a subset X of D; and consider the following as
the axioms of T:

Axiom 1 If x and y are distinct elements of D there is at least one m-set
containing x and y;

Axiom 2 If x and y are distinct elements of D there is not more than one m-set
containing x and y;

Axiom 3 Any two m-sets have at least one element of D in common;
Axiom 4 There exists at least one m-set.
Axiom 5 Every m-set contains at least three elements of D;
Axiom 6 All the elements of D do not belong to the same m-set;
Axiom 7 No m-set contains more than three elements of D.5

Now, the language of T contains two different sorts of variables: x, y, . . . and
X,Y, . . . Let us assume that the variables x, y, . . . range over D1 = {A, . . . , G};
and that the variables X,Y, . . . range over D∗

1, where D∗
1 is a set whose elements

are the subsets of D1 the elements of which appear in the columns of the matrix
in Figure 1, that is:

D∗
1 = {{A,B,D}, {B,C,E}, {C,D,F}, {D,E,G}, {E,F,A}, {F,G,B}, {G,A,C}}.

(The elements of D∗
1 are the m1-sets.)

It turns out that D1 ∪ D∗
1 is the domain of the model of T represented in

Figure 2. To see this, using the interpretation suggested above, it is sufficient
to verify that Axioms 1− 7 are true of the matrix in Figure 2. We call such a
model ‘M1(T).’

On the other hand, if we change interpretation making: (a) the variables
x, y, . . . range over D2 = {P1, . . . ,P7}, where P1, . . . , P7 are the 7 distinct points
indicated in Figure 3; and (b) the variables X,Y, . . . range over D∗

2 whose ele-
ments are the m2-sets, that is, the sets of three Pi points, for 1 6 i 6 7, lying
on the sides, the bisectrices, and the circle inscribed in the triangle represented
in Figure 3: D∗

2 = {{P6, P2, P4}, {P2, P7, P5}, {P5, P4, P3},
{P4, P7, P1}, {P3, P7, P6}, {P3, P2, P1}, {P1, P6, P5}}; we have that D2∪D∗

2 is also
the domain of a model of T, a model represented in Figure 3. We call such a
model ‘M2(T).’

To show thatM2(T) is a model of T, it is sufficient, using the interpretation
just provided, to check that Axioms 1− 7 are true of the object represented in
Figure 3.

If we, now, compareM1(T) withM2(T), we realize that, among other things:
(1) (D1 ∪D∗

1)∩ (D2 ∪D∗
2) = ∅; (2) the elements of D1 ∪D∗

1 are not homogeneous

5 These axioms have been taken, with some minor alterations, from [16], §2.10, p. 30.
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with the elements of D2 ∪D∗
2; and that (3) M1(T) and M2(T), are isomorphic

to each other.

With regard to point (3) above, we notice that if f is the function f : D1 →
D2 such that:

f(A) = P6,
f(B) = P2,
f(C) = P5,
f(D) = P4,
f(E) = P7,
f(F ) = P3,
f(G) = P1;

and g is the function g : D∗
1 → D∗

2 such that:

g(X) = g({xi, xj , xk})
= {f(xi), f(xj), f(xk)}

for 1 6 i 6 j 6 k 6 7, then f induces a bi-univocal correspondence between D1

and D2, whereas g induces a bi-univocal correspondence between the set D∗
1 (of

m1-sets) and the set D∗
2 (of m2-sets).

Now, it is clear that the function ψ, where ψ : D1

⋃
D∗

1 → D2

⋃
D∗

2 such
that:

ψ(λ) =

{
f(x) if λ = x
g(X) if λ = X

shows thatM1(T) andM2(T) are isomorphic to one another. In fact, ψ induces
a bi-univocal correspondence between D1

⋃
D∗

1 and D2

⋃
D∗

2 preserving the two
(primitive) relations ∈ and 3, that is:

x ∈ X iff ψ(x) ∈ ψ(X)
X 3 x iff ψ(X) 3 ψ(x).

The case relative to the existence of two isomorphic models M1(T) and
M2(T) of T brings out very clearly that the pattern described by the axioms
and theorems of T is independent of the nature of the objects present in D1∪D∗

1

(the first seven letters of the alphabet plus . . . ), and in D2∪D∗
2 (the seven distinct

points highlighted in Figure 3 plus . . . ). The pattern described by the axioms
and theorems of T is an abstract mathematical structure realized by/present in
both M1(T) and M2(T).

At this point a legitimate problem that might arise is ‘How is the structure
common toM1(T) andM2(T) given to us?’ and another is ‘What sort of thing
is this structure?’ Let us address the second question first.

A structure/pattern is an ordered pair the first element of which is the domain
of the structure — in our case D1 ∪D∗

1 or D2 ∪D∗
2 — and whose second element

is a set of relations defined on this domain — in our case the relations are ∈ and
3— relations the basic properties of which are implicitly defined by the axioms.
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With regard to the question concerning the reality of the structure instanti-
ated byM1(T) andM2(T), consider that if objects a and b exist and, therefore,
are real then also the structure they realize exists and, therefore, is real.

The answer to the first question is more complicated, because there is no
unique way in which a pattern, even a mathematical one, becomes salient to an
observer. However, it is certainly the case that necessary conditions for seeing a
certain object as the realization of the pattern/mathematical structure we have
been talking about in this paper are: (1) the observer’s acquaintance with object
a or with object b, (2) the observer’s knowledge of T, and (3) the observer’s
knowledge of the appropriate interpretation of T.

Another non-psychological way of addressing the question ‘How is the struc-
ture common toM1(T) andM2(T) given to us?’ consists in transforming object
b into an object c isomorphic to object b such that object c is clearly isomor-
phic to object a (see on this Figures 4-6). For, since isomorphism is a transitive
relation this would show that object b is isomorphic to object a.
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Fig. 4. Object b

P6 P2 P5 P4 P3 P3 P1

P2 P7 P4 P7 P7 P2 P6

P4 P5 P3 P1 P6 P1 P5

Fig. 5. Object c

A B C D E F G
B C D E F G A
D E F G A B C

Fig. 6. Object a

Notice that the procedure illustrated above is non-psychological, because,
although we always assume that the observer finds himself in ‘normal conditions’,
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the procedure acts on the objects observed and not on the observer. Indeed, in
constructing object c, we have simply ‘opened’ b in such a way as to obtain a
3×7 matrix which has as columns the sets of points contained in each line. (The
order in which the points actually occur in the respective lines is not relevant
for our purposes.)

Several are the things that interest us in this example. We shall briefly com-
ment on some of them in the next section.6

4 Some comments on the case study

Among the necessary conditions for ‘seeing a certain object as . . . ’ that we have
mentioned in the previous section the first is the observer’s acquaintance with
object a and/or with object b. Now, the possibility for an observer of being
acquainted with a and/or b depends, among other things, on:

[T]he particular pattern-recognition machinery hard-wired in our vi-
sual systems — edge detectors, luminance detectors, and the like . . . [T]he
very same data (the very same streams of bits) presented in some other
format might well yield no hint of pattern to us ([6], p. 33).

Other important conditions upon which the possibility of an observer being
acquainted with a and b depends are the size and position of objects a and b
relative to the observer. To see this, immagine that objects a and b are micro-
scopic and the observer is an average human being without any support provided
by technology; or that a and b are too far from the observer to be surveyable
by him, etc.

Secondly, in the absence of the formal system T and of the relevant inter-
pretations of T, the observer cannot see the pattern/structure instantiated by a
and b. This is because, in the absence of the formal system T and of the relevant
interpretations of T, he is in no position for making the observations concerning
the salient features of the pattern/structure in question, observations such as
those which have to do with the part/whole distinction, etc. This shows that T,
together with the relevant interpretations, does not simply power a deductive
engine, but is also a system of representation.

From the considerations above, we can conclude that necessary conditions for
pattern recognition in mathematics are the existence of: (1) an observer O; (2)
a domain of objects D; and of (3) a system of representation Σ, i.e. (O,D, Σ).7

Thirdly, the mathematical structure which becomes salient when we observe
objects a and b through T depends not only on T, but also on a and b —
this is where the realism concerning mathematical structures comes in. In fact,

6 A discussion of whether mathematics as a whole is conceivable as a science of pat-
terns/structures can be found in: [14], [10], [11], [15], [Resnik, 2001], [12], [13], [1]

7 Actually, the system of representation Σ is an ordered pair Σ = (T, I), where T
is a set containing (as a subset) a recursive set of axioms A and all the logical
consequences of A, and I is an interpretation of T on to D.
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given that we can prove in T that there exist exactly seven elements in D and
seven m-sets, if, for instance, the number of letters of the Italian alphabet we
considered as elements of our matrix were different from seven, the matrix could
not be a model of T (the same applies mutatis mutandis to the number of points
of intersection of three lines in b).

Fourthly, we have a criterion of identity for the structure/pattern described
by T, criterion of identity represented by model isomorphism, i.e., a and b
instantiate the same structure, because they are isomorphic models of T. This is
a very important condition, because it guarantees that the concept of structure
is well defined.

Fifthly, we should notice that the definition of structure we offered in §4
— a structure S is an ordered pair whose first element is a domain of objects
D, and second element is a set < of relations defined on D — together with
the criterion of identity for structures (isomorphism) provide both a rigorous
characterization of what falls under the concept of pattern in mathematics, and
the possibility of operating a natural generalization of this concept to fields
different from mathematics.

With regard to the second point above, notice that both the examples of
patterns examined in §3 can be accounted for in terms of structures. In the
philosophy of mind and action case, the structure S1 = (D1,<1) is such that
D1 contains beliefs, whereas <1 contains relations defined on D1 such as |=pd

— the plausible deontic consequence relation, where B1, . . . , Bn |=pd B means:
someone who believes B1, . . . , Bn plausibly ought to believe B. (The turnstile
|=pd is typical of a non-monotonic logic.)

The case of a structuralist account of patterns displayed by crystals of snowfl-
akes (see Fig. 1) is even simpler than that discussed above. The pattern/structure
S2 = (D2,<2) of a crystal of a snowflake consists of a domain D2, the elements
of which are the molecules of water contained in the snowflake, and of a set <2

whose elements are the physical laws determining how the molecules of water in
D2 are related to one another in the crystal.

But, of course, if the definition of structure we offered in §4 is applicable to
both the examples of patterns examined in §3, so does also the identity condition
for structure: structure isomorphism.

From here on, as a consequence of what we have been arguing so far, we are
going to consider the two words ‘pattern’ and ‘structure’ as synonyms.

5 Patterns’ morphogenesis and cognitive architectures

If we consider the pattern/structure instantiated in object a (Fig. 2), we realize
that this is a complex entity composed out of simpler entities. The simplest, or
atomic entities, are the first 7 letters of the Italian alphabet A,B, . . . ,G, and
then we have the molecular entities represented by the subsets of three elements
of the set {A,B, . . . ,G} which appear as the columns of the 3× 7 matrix in Fig.
2.
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Notice that the atomic entities mentioned above can be thought as pat-
terns/structures of points, as is shown by observing the obvious isomorphism
existing among any two of the following different objects:

A, A, A, A,A.

Moreover, molecular expressions such as {A,B,D}, {B,C,E}, . . . , {G,A,C}
(the columns of the matrix) can also be seen as patterns of patterns. Indeed,
the structural rôle of these three-element sets (of patterns) is revealed by the
fact that they are obviously isomorphic to the following three-element sets of
patterns: {a, b, d}, {b, c, e}, . . . , {g, a, c}.

All these considerations lead us, in a very natural way, to speak of a mor-
phogenetic process which, starting from atomic patterns A,B, . . . ,G (patterns of
type 0), produces molecular patterns {A,B,D}, {B,C,E}, . . . , {G,A,C} (these
are patterns of type 1, because their elements are patterns of type 0), molecular
patterns which then give origin to the pattern realized in object a (Fig. 2). (The
latter is a pattern of type 2, because its elements are patterns of type 1).

Now, from the brief account of the patterns’ morphogenetic process described
above, it should be clear that such a process is capable of generating patterns of
arbitrarily large complexity. Therefore, to answer the problem ‘How do we come
to know patterns?’ on the part of a finite cognitive system which is dependent
on a limited amount of resources, resources for which he is in competition with
other finite cognitive agents, we are going to suggest that such an agent must
be endowed with a biologically inspired cognitive architecture (described in §6)
which consists of different systems for the representation and the manipulation
of information.

To see this, let A,B, . . . ,G be the shortest neural network algorithms for the
recognition of A,B, . . . ,G, within the set of the alphabet letters {A,B, . . . ,Z}.8
The shortest neural network algorithm for the recognition of {A,B,D} will have
a length much longer than the sum of the lengths of A,B and D, because,
among other things, lacking a concept of set, our neural network will have to
treat {A,B,D} as a plurality of individual patterns and, if we exclude pluralities
containing repetitions of letters such as {A,A,B}, etc., our algorithm will have
to deal with a domain D represented by the power set of {A,B, . . . ,G} which
contains 27 elements.

Furthermore, the next step, that is, the recognition of a, becomes already
computationally onerous. For, if ABD,BCE , . . . ,GAC are the shortest neural
network algorithms for the recognition of, respectively, the following patterns:
{A,B,D}, {B,C,E}, . . . , {G,A,C}, the length k of the shortest neural network
algorithm for the recognition of a will be quite formidable, because, having to
recognize a out of 7! possible 3×7 matrices the columns of which are the possible
permutations of {A,B,D}, {B,C,E}, . . . , {G,A,C}, k will be much greater than
the sum of the lengths of ABD,BCE , . . . ,GAC.
8 We mention here neural network algorithms, because such algorithms are so far the

most basic biologically inspired general procedures for pattern-recognition.
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But, of course, in order to individuate the relevant structure realized in a,
we should now concatenate to our neural network algorithm for the recognition
of a another neural network algorithm of length k∗ for the individuation of the
isomorphism inducing function ψ : D1

⋃
D∗

1 → D2

⋃
D∗

2 (see §3). And, since
both D1

⋃
D∗

1 and D2

⋃
D∗

2 contain 14 elements each, our algorithm will have
to recognize ψ out of a set of 1414 functions. A tall order indeed!

All these considerations make us suspect that if a finite cognitive agent depen-
dent on a limited amount of resources, resources for which he is in competition
with other finite cognitive agents, has in its cognitive architecture systems for
the representation of information which use only neural networks, it could not go
very far in its pattern recognition activity. And this would not be a consequence
of the fact that there are certain patterns for which in principle there is no neural
network based algorithm capable of recognizing them, but of the consideration
that these algorithms, if they exist, would have to be unfeasibly long, given the
computational limitations of our agent.

6 The cognitive architecture. An evolutionary account.

Given what we said in the previous section about the connection existing be-
tween patterns’ morphogenesis and the cognitive architecture of a finite cognitive
agent who is dependent on a limited amount of resources, resources for which
he is in competition with other finite cognitive agents, in what follows in this
section we are going to illustrate a cognitive architecture (see figure 7) consisting
of three levels of information-representation: a subconceptual level, in which data
coming from the environment (sensory input) are processed by means of a neural
network based system; a conceptual level, where data are represented and concep-
tualized independently of language; and, finally, a symbolic level which makes it
possible to manage the information through symbolic/linguistic representations
and computations.

Notice that all three levels for the representation and processing of information
mentioned above are present in humans, and that the first two levels may be
found in most higher animals, etc.

We have already come across the sub-conceptual level of representation (the
Sub-conceptual Tier) in §5 when we discussed the possibility of recognizing type
0 patterns (atomic patterns) by means of algorithms based on neural networks.
What we need to do now is providing a brief description of the conceptual and
symbolic levels of representation of the cognitive architecture sketched in Figure
7.

The conceptual level of the cognitive architecture of our agent consists of
the so-called ‘Gärdenfors conceptual spaces’. According to Gärdenfors, concep-
tual spaces are metric spaces which represent information exploiting geometrical
structures rather than symbols or connections between neurons. This geomet-
rical representation is based on the existence/construction of a space endowed
with a number of what Gärdenfors calls ‘quality dimensions’ whose main func-
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Fig. 7. A sketch of the cognitive architecture

tion is to represent different qualities of objects such as brightness, temperature,
height, width, depth.

Moreover, for Gärdenfors, judgments of similarity play a crucial role in cog-
nitive processes and, according to him, the smaller is the distance between the
representations of two given objects (in a conceptual space) the more similar to
each other the objects represented are.

For Gärdenfors, objects can be represented as points in a conceptual space,
points which we are going to call ‘knoxels’,9 and concepts as regions (in a concep-
tual space). These regions may have various shapes, although to some concepts
— those which refer to natural kinds or natural properties — correspond regions
which are characterized by convexity.10 According to Gärdenfors, this latter type
of region is strictly related to the notion of prototype, i.e., to those entities that
may be regarded as the archetypal representatives of a given category of objects
(the centroids of the convex regions).

Finally, the symbolic level (the Symbolic Tier) of the cognitive architecture
consists, instead, of language-based systems of information representation and
computation.

9 The term ‘knoxel’ originates from [7] by the analogy with “pixel”. A knoxel k is a
point in Conceptual Space and it represents the epistemologically primitive element
at the considered level of analysis.

10 A set S is convex if and only if whenever a, b ∈ S and c is between a and b then
c ∈ S.
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To see the three levels of the cognitive architecture at work, and assess their
relative merits, consider the following problem: to recognize the pattern exem-
plified by object A.

If we assume that the algorithms that follow can all be expressed in a given
language L, then the advantage of using algorithms based on tools character-
istic of the sub-conceptual level (neural networks) to solve the problem above
is that . . . an algorithm is better than nothing! On the other hand, the obvious
disadvantage is that neural network based algorithms can be relatively long.

Imagine now a 2-d Gärdenfors conceptual space, CSA, related to the letters
of the alphabet. This is a CSA tessellated by means of prototypes of such letters
using the well-known Voronoi’s procedure. The pattern-recognition algorithm
relating to A is quite simple: determine to which of the finitely many points
belonging to CSA which represent the prototypes of the letters of the alphabet
the point representing A in CSA is nearest.

Although the use of conceptual spaces is able to produce pattern recognition
algorithms much more compressed than neural network based algorithms for
the recognition of the same patterns, it has a serious defect: conceptual spaces
are ‘in the head’ in the sense that they ultimately have perceptual space as a
‘vehicle’. And, therefore, a finite cognitive agent dependent on a limited amount
of resources, resources for which he is in competition with other finite cognitive
agents, will have difficulties in exploiting the full potential of conceptual spaces.

However, the following ‘symbolic algorithm’: (1) list the letters of the alpha-
bet; (2) check whether A is an instance of the first letter; if yes (3) stop; if no
(4) check whether A is an instance of the second letter; . . . (n) stop; is certainly
shorter (and safer) than the CSA-algorithm mentioned above.

Other advantages of stepping up to the symbolic level are that:

1. language enables many minds to be connected in what we might call a ‘world
wide web’ overcoming in this way the computational limitations of every
single mind;

2. language is not ‘in the head’, in the sense that language allows:

2.1 the storing of portable information in the form of articles, books, in-
scriptions, etc. information which, among other things, no longer needs
to occupy storing space in individuals’ minds;

2.2 objectivity in the treatment of information, because in language infor-
mation is conveyed by assertions for which there exist public criteria of
correctness which we all learn when we learn the language;

3. language extends our representational and computational capabilities. To
see this consider the natural number 1010

10

. There is no chance that we are
able to represent within our visual perceptual space such a multiplicity and
distinguish it, for example, from a multiplicity of 1010

10 ± 7 elements. And
yet, within number theory, not only there are many things we can prove
about such multiplicities, but we can also use their cardinal numbers in our
ordinary arithmetical computations. These considerations apply even more
so to transfinite cardinal numbers such as ℵ0,ℵ1, . . . and their arithmetic.
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Many more are the things that could be said in favour of the great importance
of language for pattern-recognition. However, those which have already been
mentioned in this section are sufficient to show the crucial rôle that the symbolic
level has in the cognitive architecture of a finite cognitive agent who is dependent
on a limited amount of resources, resources for which he is in competition with
other cognitive agents.

But, before ending this section and the paper, we need to spend a few words
to justify the cognitive architecture here presented. To this end, let us consider,
as we have repeatedly said, that our cognitive agent is finite, dependent on a
limited amount of resources, and engaged in a constant struggle for life with
nature and other cognitive agents, and that:

Owing to this struggle for life, any variation, however slight and from
whatever cause proceeding, if it be in any degree profitable to an indi-
vidual of any species, in its infinitely complex relations to other organic
beings and to external nature, will tend to the preservation of that indi-
vidual, and will generally be inherited by its offspring. ([5], Chapter III,
p. 40.)

From this we have that, as a consequence of natural selection,11 our cognitive
agent not only develops a hard-wired pattern-recognition machinery in his visual
system — edge detectors, luminance detectors, and the like (see on this the
quotation from [6] on p. 7 of this article) — but also a multi-level cognitive
architecture for the representation and manipulation of information.

At this point it is clear that questions like ‘Why does the cognitive architec-
ture have three different levels?’, ‘How do conceptual spaces come about in the
cognitive architecture?’, etc. can only be give an ‘evolutionary answer’, that is,
the cognitve architecture we have illustrated above is the consequence of vari-
ations which come about in the system of representation and manipulation of
information of human beings. These are variations which have been preserved
as a consequence of their being greatly profitable for the crucially important
pattern-recognition activity of humans.

7 Conclusions

In this paper we intended to give a contribution to the foundations of pattern-
recognition theory; and, to do so, we decided to address two central questions:
(a) ‘What is a pattern?’ and (b) ‘How do we come to know patterns?’

Dealing with question (a), we produced a definition of mathematical pattern
which we then generalized to fields different from mathematics (philosophy of
mind and action, physics). But, when it came to answering question (b), we
thought of presenting a cognitive architecture for a finite cognitive agent who
is dependent on a limited amount of resources. This is a cognitive architecture

11 ‘This preservation of favourable variations and the rejection of injurious variations,
I call Natural Selection.’ ([5], Chapter IV, p. 51).
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which is, in principle, able to cope with some of the basic demands posed by the
process of pattern-recognition; and has developed as a consequence of Darwinian
natural selection.
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Abstract. In tabletop construction scenarios, robots work with vertically or hor-
izontally stacked object structures. In order to form such structures, they need
to recognize and correctly model closely placed objects in such structures. De-
pending on the robot’s point of view and the objects’ positions, it is likely that
objects closely located or in contact partially occlude each other, and as a result
it is not always possible to model object stacks by relying only on object recog-
nition. However, if the objects are added to the construction consecutively, it be-
comes possible to sequentially build the model of object stacks. In this work, we
propose a scene interpretation system to build and maintain a consistent world
model for tabletop construction scenarios. To overcome the challenge of mod-
eling object stacks, we extend our previous scene interpretation system with a
semi-closed world assumption and by preserving the models of objects in the
formed structures even when they are out of sight. Our extension includes the use
of spatial object relations, as well as depth-based segmentation results to model
not only single objects, but object combinations. In our system, the LINE-MOD
algorithm and an enhanced version with HS histograms are used for recognizing
objects along with depth-based segmentation for detecting novel objects. We run
numerous construction scenarios using building blocks and show that our system
can be successfully used for modeling constructed objects.

Keywords. Scene interpretation, Tabletop object construction, Object manipulation,
World modeling for tabletop manipulation

Introduction

In order to achieve given goals, robots often need to interact with various objects. For
successful interaction, before anything else, they need to collect correct information
about the objects in their environment. The required data includes the accurate proper-
ties of objects, such as their size, shape and color, their locations in the world and neces-
sary inter-object relations. For this purpose, robots use their sensors to gather observa-
tions from the world, which sometimes do not overlap, are not complete, and sometimes
even contradict with each other. Our previous work presents a scene interpretation sys-
tem to cope with these challenges for a ground robot [1], [2]. In this work, we focus
on tabletop object construction scenarios and extend our previous work for modeling
stacked objects during task execution. This is mainly important for continually monitor-
ing execution against anomalies (e.g., effects of external interventions) or unexpected
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Fig. 1. A rectangular structure is to be built from six cubical blocks by a robot arm. The blocks
are from different colors and sizes. When all these blocks are attached to each other, it may not
be possible to recognize all of them at once.

outcomes (e.g., inherent failures). New objects should be correctly localized with their
properties interpreted and information on these objects should be maintained against
any changes (e.g., after disappearing from the scene or displacement in any way). Be-
sides, when symbol grounding is needed for further cognitive skills such as reasoning
and learning, correct identification of objects is a prerequisite.

World modeling is especially challenging when objects are in direct contact with
each other either horizontally or vertically (i.e., when they are on top of each other).
In these scenarios, it is likely that they partially occlude one another from the robot’s
point of view or the vision algorithms may fail in recognizing all objects. For example,
consider the scenario where the robot is tasked to build a rectangular prism structure
from a set of cubical blocks in different colors and sizes as in Figure 1. In this figure,
the LINE-MOD algorithm [3] is used to recognize textureless objects in 3D by consid-
ering their surface normals and matching existing measurements with their previously
registered templates. However, since the objects are attached to each other, their bound-
aries and some of their surfaces can not be distinguished well which results in errors
in recognition of some of the blocks (e.g., only two blocks on the leftmost column, in-
dicated with the corresponding markers in the figure, are recognized for this scenario).
This problem can be alleviated by reducing the similarity threshold used for matching
templates in the algorithm. However, this may result in false positives. Humans, on the
other hand, intrinsically use their background and default knowledge when faced with
similar problems, incorparating the recent history of events that have led to the current
situation. In this study, we are inspired by this cognitive skill and propose a system to
reach logical conclusions, similarly to humans, about the robots environment.

Given the requirements in modeling objects in construction scenarios, we propose
new advancements over our previous scene interpretation system. The contributions of
this work are three fold. First, the scene interpretation system is made capable of using
observations taken during execution and building the model of a structure incrementally
using both temporal and spatial relations extracted during runtime and prior semantic
rules for handling occlusions. Second, a truth maintenance mechanism is applied to
store the models of occluded objects even if they can not be recognized but to remove
their models when they are believed to disappear from the scene. Third, for the identi-
fication of objects a semi closed-world assumption is applied for symbol grounding.
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The rest of the paper is organized as follows. First, we mention studies related to
world modeling. Then, we describe our scene interpretation system for consistent world
modeling in tabletop block construction scenarios. We then give empirical results of our
system followed by the conclusions.

Related Work

Several recent studies address the issue of maintaining a world model from the robot’s
visual observations. Nyga, Balint-Benczedi and Beetz (2014) proposed an ensembles of
experts approach based on Markov Logic Networks [4] for fusing different aspects of
information coming from different object recognition methods (e.g., LINE-MOD [3],
Google Goggles etc.) enabling robots to answer logical queries about different aspects
of recognized objects [5]. WIRE [6] is a system based on multiple hypothesis anchoring
for robots to maintain semantically rich world models in unstructured and dynamically
changing environments. It relies on multiple model tracking for incorporating prior
knowledge and multiple hypothesis tracking-based data association for consistently up-
dating the world model using new observations. Another similar study addresses the
data association problem from a different perspective by using clustering-based ap-
proaches instead of multiple hypothesis tracking [7]. In our previous work, we pre-
sented a temporal scene interpretation system for maintaining a consistent world model
relying on noisy perception outcomes [1]. Our system uses segmentation outcomes as
well as object recognition outcomes to be able to detect objects without previously gen-
erated recognition models as unknown object candidates, updates the world model by
evaluating these perceptual outcomes temporally, and takes the robot’s field of view
into account during these updates. In this paper, we enhance our scene interpretation
system in the following directions. First, we replace the 2D model of the robot’s field
of view we used for our ground robot with a 3D model which is necessary for tabletop
object manipulation scenarios. Second, we incorporate a semi-closed world assumption
for keeping track of previously encountered objects. Finally, we present enhancements
for the block construction domain.

Perception Sources

The first step in object manipulation by autonomous robots is maintaining a consistent
and up-to-date world model about their environment. For this task, the robot has to
collect visual recognition and detection data to filter out and to reach conclusions. Our
perception system uses LINE-MOD [3], LINE-MOD&HS [8] and 3D segmentation [9]
algorithms as means for processing 3D sensory data obtained from an on-board ASUS
Xtion Pro RGB-D camera. LINE-MOD is an object recognition algorithm that uses
surface normals of the objects, calculated from the Point Cloud [10] data regarding the
object, to extract object templates. The algorithm then uses these templates with the
sliding windows approach to detect the modelled objects in new scenes. The LINE-
MOD&HS algorithm, in turn, augments LINE-MOD to use the HSV histograms of the
objects in order to integrate the use of color information of the objects in recognition.
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Additionally, 3D segmentation is used for detecting objects that are either not previously
modelled, or otherwise cannot be recognized in the current scene.

The perception sources are implemented as separate processes, where their recog-
nition/detection results are asynchronous. The Scene Interpreter system combines these
results to create an accurate representation of the world [1].

Scene Interpretation for Tabletop Manipulation

Object recognition is not reliable alone for robotic manipulation tasks, since failures in
recognition or detection occur due to noisy sensor measurements, illumination changes,
dynamic environments or other agents and sensors. In order to automatically build
a consistent and up-to-date model about the environment, visual recognition and de-
tection outcomes should be filtered out and logical conclusions should be reached in
the face of contradictory outputs. Previous work by the same research team includes a
Scene Interpretation system for ground robots working with objects clearly separated in
the horizontal plane [1], which forms the foundation of the proposed system. Necessary
deductions about a robot’s environment include a unique id for each object in the envi-
ronment, their type, color, size, shape and location properties, as well as the confidence
of the system about these object’s existence in the environment.

The confidence is represented with a value varying between 0 and 100, proportional
to the degree of belief on the corresponding object’s existence. Confidence values are
updated with every new perception outcome. An object’s confidence value increases as
more consistent recognition or detection results arrive regarding the object.

The observed facts are kept in the Knowledge base (KB) of the robot, which can be
defined as a collection of reached conclusions about objects, their properties, and inter-
object relations. The robot’s KB is initialized as empty. During run time, recognized
objects are inserted into the KB and their corresponding confidence values, as well as
properties, are updated with each newly received recognition message. If an object in
the KB does not receive any corresponding recognition message for a period of time,
even though this object is in the robot’s field of view and should be recognized, the
confidence value regarding the object is gradually decreased. If this value reaches zero,
it is believed that the object is no longer in the robot’s environment, and thus it is
removed from the KB.

Most humanoid robots have the capability of moving their heads around, making
it possible for them to observe more about their environment. As a result, their visual
field of view (FOV) is bounded by the limitations of their cameras. A robot can receive
reliable information about objects only within its FOV and the field of view constraints
should be taken into account when updating object properties. Extending the 2D def-
inition in the base system, 3D boundaries are empirically determined for an RGB-D
camera where the objects within are expected to be recognized reliably. An example
scenario regarding FOV calculations can be seen in Figure 2.

Objects in the environment are considered depending on whether they are inside the
camera’s FOV or not. Objects outside the FOV are not expected to be recognized, and
any data regarding them in the KB are kept static until they re-enter the FOV of the
robot, and new perception data are available.
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(a) (b)

Fig. 2. A scenario demonstrating FOV calculations. In (a) all objects are in FOV. In (b) the robot’s
head is slightly rotated to right. This time the green block becomes out of FOV, yet it is kept in
the KB. (Note that FOV area is determined tighter than the actual physical limits of the camera
for more reliable object recognition, and it can be adjusted easily.)

Spatial Relations

After recognition and localization of the objects in the scene, their spatial relations are
determined as in [1]. These relations are represented as unary or binary predicates such
as onTable(obj1), near(obj1, obj2) and on(obj2, obj1). Consider a scenario where
three blocks are stacked on top each other, assigned ids 1 to 3 from bottom to top. There
are two on relations expected such that on(3, 2) and on(2, 1). Objects in the bottom are
considered as out of field of view and thus they are not expected to be detected. We
make use of this for modeling objects in block construction as visualized in Figure 3.

Fig. 3. The phases of a block stacking scenario in the real world (from left to right). The
recognized objects along with their ids and confidence values, and the relations among them
(e.g.,on(obj2, obj1)) are marked on the original RGB image in Rviz.

Symbolic Models of Tabletop Objects

The first part of the study focuses on symbol grounding problem for objects ids. Ambi-
guities in determination of ids can arise in dynamic scenes. Objects may be displaced,
removed from and put back into the scene, or the robot could be mobile and have lo-
calization problems. As a result, an object might be registered with different ids over
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time, which prevents creating and executing plans including object manipulation suc-
cessfully.

After successfully detecting objects, the world is assumed to be closed (closed world
assumption) for identity resolution tasks. Closed world assumption [11] can be defined
as having complete knowledge about the world, that is, the numbers and the attributes
of all objects are known apriori. However, robots often have partial information about
the world. Even though object attributes are known, objects’ locations may be dynamic
or unknown which requires obtaining extra information from the environment [12].
Whereas, in an open world assumption, no prior knowledge about the world is given,
and every object entering to the scene is assumed to be encountered for the first time.
In contrast, we define a semi-closed world assumption in which the robot builds its KB
itself at runtime and does not use any prior knowledge about the scene contents. At
each object detection, the attributes of the object are compared with that of previously
registered objects in the KB. If an object is believed to have been encountered before,
its previous id is used, otherwise a new id is generated. The corresponding algorithm is
given in Algorithm 1.

Data: Detected object attributes
Result: Object Id
foreach object in KB do

if attributes match and object is not in the scene then
return object.id;

else
newId←− generate new id ;
return newId

end
end

Algorithm 1: Algorithm for Semi-Closed World Assumption

Symbolic Relations among Tabletop Objects

The second focus of the study is to correctly model closely located objects. Object
recognition in cluttered scenes is still a challenging problem. Object detection success
is low in such scenes due to their placements. An example scenario with six cubical
blocks is given in Figure 4. The system can not distinguish between objects and only
some of the objects can be added to KB. This is the natural result of assumptions of
vision algorithms. LINE-MOD extracts surface normals on visible surfaces and color
gradients around borders. Furthermore, the 3D segmentation algorithm assumes objects
are clearly separable on a supporting plane.

The first solution attempt to this problem was decreasing the similarity threshold
of the LINE-MOD algorithm between the object templates and real time detections
(See Figure 5). The threshold is set to 95% by default, and it is decreased gradually.
As a result, the system was able to detect the objects and register them into the KB.
The main drawback of the approach is, as the threshold is lowered, the number of false
positives, i.e. the number of misdetections increase. As the threshold reaches 80% and
below it becomes harder to maintain the number of objects in the KB.
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Fig. 4. The first three frames represent the outputs of algorithms LINEMOD, LINEMOD&HS and
Segmentation, respectively. Rightmost frame represents the state of the KB, where recognized
objects are marked with their ids and a confidence values. The six cubes are placed into the scene
initially, only 3 of them are recognized and added to KB.

(a) (b)

Fig. 5. Scenarios with different similarity thresholds for the object recognition algorithm. Thresh-
olds are set to 90% in (a) and 85% in (b). Comparing with Figure 1, in (a) objects are recognized
and added to the KB. For the case of (b) false positives are introduced by decreasing the threshold.

For a similar scenario where the threshold is set to 95%, even though objects are
placed into the scene one by one but very closely, some of the previously recognized
objects are removed from the KB due to lack of recognition messages after some point.
The second proposed approach utilizes the 3D segmentation algorithm. We can rely
on detections of the 3D segmentation algorithm in terms of the existence of an object
in the scene. If the objects are placed into the scene one by one and clear enough to
be recognized, after successfully being added to the KB, the objects can be marked as
detected, if their centroid lies in one of the last segmented point clouds produced by the
3D segmentation algorithm. Thus, the objects are exempted from being removed from
the KB. The proposed algorithm is given in Algorithm 2.

The segmentation algorithm is used to maintain object stacks of the same level. In
order to increase the level -the height- of the structure, spatial relations among objects,
namely on relations, are employed. When objects are stacked on top of each other,
corresponding on relations are detected between object pairs. In a pair, the bottommost
object is partially occluded, so it is not expected to be detected, which avoids the update
operation on the object and thus the deletion from the KB. In addition, if the topmost
object of a pair is removed from the scene, the corresponding object model and the on
relation are also removed from the KB, and the bottommost object is expected to be
detected again.
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KB←− initialize empty knowledge base;
upon receive Objects:;
/* Objects : Recognized objects via LINEMOD and LINEMOD&HS */
foreach object in Objects do

if object in KB then
update object;

else
KB←− add object ;

end
end
upon receive Segments:;
/* Segments : Segmented point cloud clusters */
foreach object in Objects do

if objectcentroid in Segments then
object←− mark object as detected

end
end

Algorithm 2: Maintaining Closely Located Objects

Experiments

This section describes the experimental setup and presents the obtained results. First,
we present object recognition and registration to KB during run time. Then, id tracking
capabilities of our system under semi-closed world assumption is demonstrated.

Object Registration to the Knowledge Base

For the first part, block construction scenario is considered. Red, green and blue colored
blocks are placed into the scene sequentially to form horizontal, vertical and diagonal
structures on the same plane. For comparison purposes, experiments are repeated with
and without employing the proposed segmentation based approach. Each time, after
a block is placed, the number of objects registered to the KB is recorded. Each case
is repeated 10 times, and the mean is calculated. Figure 6 shows the comparison for
horizontal, vertical and diagonal structures. Note that, since the results are recorded in
a sequential manner, errors in the previous steps accumulated to oncoming steps.

The following conclusions can be drawn from the analysis given in Figure 6. Em-
ploying segmentation based approach fairly increases the number of objects registered
to the KB. The best performance is obtained from vertical placement scenario due to the
fact that the last placed object can be correctly isolated from its surroundings and thus,
it is easier for the vision algorithm to recognize. However, in the diagonal placement
scenario using segmentation does not provide much improvement since objects are in
less contact with each other. Horizontal scenario is the most complicated one in terms
of distinguishing between objects, since objects have more contact with each other.
Improvements become clear when the number of objects in the structure is increased.

In another experiment, blocks are stacked on top of each other one by one to mea-
sure on relation detection success when new layers are introduced. This time, after each
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Fig. 6. Comparison of the number of registered objects into the KB.

stacking operation, the number of on relations is recorded. It is expected to detect one
on relation with a stack of two objects, two on relations with a stack of 3 objects and
so on. Success rates of detecting on relations are 100%, 100% and 93.3% for the num-
ber of layers 2,3 and 4 respectively. Due to object recognition failures, success rate is
decreased in the 4th layer and above.

Semi-Closed World Assumption

The goal of this experiment is to illustrate id tracking capabilities of the system. The
object set contains red, green and blue colored, medium sized cylinders, and small and
large sized blocks. In the model; type, size and color attributes are taken into account.
An example scenario is visualized in Figure 7.

The KB is initialized by putting all target objects into the scene, and each object
is assigned a unique id. Then, the objects are removed from the scene. Each object is
put back and id assignments are observed. A confusion matrix based on id assignments
is given in Figure 8. Whenever an object could not be matched with the previously
encountered objects registered to KB, a new id is generated for the object. The reason
of mismatches are originated from errors in recognizing objects due to illumination
conditions. It is observed that if an object is failed to match with an object in the initial
object set, and thus attached a new id, the consecutive recognitions are also matched to
this id. Whereas, some objects could not be recognized at all, which are denoted as not
detected in Figure 8.

Conclusion

We have presented enhancements for our scene interpretation system in order for it to
be used in tabletop manipulation and construction scenarios for cognitive robots. First,
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(a) (b) (c) (d)

Fig. 7. A scenario demonstrating the id tracking performance of the system.(a) contains small and
large sized blue and green cubes. Object are added to the KB and each is attached a unique id.
In (b) the small green cube and the large blue cube are removed. In (c) the large green cube is
removed and then the large blue cube is placed again. In (d) all objects are put back into the scene.
By using the size and color attributes, the system is able to remember the objects and attach their
previous ids.
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Fig. 8. Confusion matrix for semi-closed world assumption. After each object is assigned a unique
id, objects are removed and put back. Matrix shows original versus newly assigned ids. A new id
is assigned if object is recognized yet could not be matched with previous objects. Not detected
denotes, object could not be recognized at all.

the 2D model of a ground robot’s field of view was extended to 3D for a humanoid robot
with a moveable head. Then, we introduced a hybrid model of open and closed world
assumptions for keeping track of object ids in case of dislocations and disappearances
& reappearances. This hybrid model is able to keep track of lost objects, while still
allowing new objects to enter the scene. Deductions about object ids are made based
on physical attributes of the objects and without using any kind of prior knowledge. Fi-
nally, for block construction scenarios, we proposed utilizing 3D segmentation on top
of object recognition to maintain objects in the KB when they are in direct contact with

A.Inceoglu et al. World Modeling for Tabletop Object Construction

92



each other and cannot be recognized. Furthermore, we employed spatial relations to
maintain objects that have other objects on top of them and thus to model higher level
structures. Future work includes improving the system to keep track of more compli-
cated scenarios that include unknown objects, and modifying the system to operate on
a probabilistic framework.
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Abstract. Street is a reconfigurable parallel computer architecture. It
executes a production language directly in hardware with the aim of re-
alising advanced cognitive agents in a more energy efficient manner than
conventional computers. Street requires frequent communication between
many processing elements and to make this communication more energy
efficient, a network-based communication platform, StreetNet, is pro-
posed in this paper. It maps the processing elements onto a 2D mesh ar-
chitecture optimized according to the data dependencies between them.
A deadlock-free deterministic routing function is considered for this plat-
form along with the concept of sleep period, analogous to human sleeping,
to reorganize the placements of processing elements based on runtime
traffic statistics. These mechanisms serve to reduce total network traffic
and hence minimise energy consumption.

Keywords: Cognitive computer, computer architecture, networks-on-
chip, mapping

1 Introduction

Street is a reconfigurable, flat, parallel architecture designed for symbolic cog-
nitive workloads [6]. The goal of Street is to find a new computer architecture
that can take advantage of the huge number of transistors in modern integrated
circuits to achieve advanced cognitive computation in real time, but with much
lower power consumption than current computers. It is designed to use in real
time embedded implementations of artificial general intelligence, exemplified by
the plethora of potential autonomous robotics applications. The new machine is
very different from conventional computers, consisting of many simple process-
ing elements executing and communicating in parallel. A bus-based interconnect
performs well in production systems with a small number of processing elements,
or when groups of dependent productions are mapped to the same processor [1],
however it does not scale well for more frequently interacting processing ele-
ments. For chips with a large number of processing elements, network based
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communication provides better scalability, and is seen as the most efficient solu-
tion [13]. In this paper, a network-based communication platform, StreetNet, is
proposed for efficient communication among the processing elements of Street.

2 Street

Street executes a parallel production language directly in hardware. This lan-
guage, which we call Street Language, is inspired by Forgy’s OPS5 [5] and the
languages used in the Soar [10] and ACT-R [3] cognitive architectures. However
Street Language is different from all of these. Street is asynchronous, with no
global match-select-act cycle as found in traditional production systems. This
asynchronous model provides the best opportunity to parallelise traditional pro-
duction systems in application level [2].

2.1 Street Language

An intelligent system is implemented using a set of production rules written in
Street Language [6]. Each production rule is an if-then statement: if a specified
pattern exists in working memory, then the rule makes some changes to working
memory. Working memory is a set of tuples called working memory elements
(WMEs). Each WME has one or more elements called attributes. For instance,
the WME (ID17 source ID2) has 3 attributes: ID17, source, and ID2. Here is
a simple example of working memory of just 3 WMEs:

{(ID17 name Torrens), (ID17 source ID2), (isCounted ID5)}

Each production rule consists of a left hand side (LHS) of one or more con-
dition elements (CEs), and a right hand side (RHS) of one or more actions.
In the example in Fig. 1, (<p> type dog) is a CE and (<p> isOld) is an ac-
tion. A complex cognitive agent would consist of thousands of production rules
operating on symbolic and numeric data in working memory.

st {oldDogs

(<p> type dog) // condition elements

(<p> age (<a> > 7))

-->

(<p> isOld) // actions

}

Fig. 1. A Street Language production rule

A subset of working memory that satisfies all of the CEs in a production rule
with consistent variable assignments is called an instantiation of the rule. So
instantiations of the rule above will be pairs of WMEs in working memory such
as: {(pet1 type dog), (pet1 age 8)}. Note that the first attributes must be
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Fig. 2. Hardware/software stack on Street (adopted from [6])

the same as they were specified by the same variable <p>. The WMEs must join
on any shared variables. The actions of a production rule are performed for each
new instantiation of the rule. An action such as (<p> isOld) adds a WME to
working memory. Actions can also remove WMEs from working memory. This
change in working memory may cause other production rules to instantiate, and
all new instantiations are executed.

2.2 Street Architecture

The Street architecture consists of a large number of identical and simple mi-
crocoded processing elements (PEs) with a single production rule assigned to
each. A PE contains a controller, a block of content-addressable memories (CAMs)
and an Arithmetic Logic Unit (ALU). The PEs communicate using tokens to no-
tify each other of changes to working memory. The local memory of a PE stores
just the subset of working memory that may lead to instantiations of its rule.
Each PE matches the associated production rule against its own local memory
with an algorithm similar to TREAT [12]. For each incoming token, a PE up-
dates the contents of its local memory, finds new instantiations (match), and
outputs tokens corresponding to the rule’s actions (act). The controller coordi-
nates the PE’s match-act cycle. Fig. 2 shows Street architecture executing an
agent using a symbolic cognitive architecture.

3 StreetNet: The Communication Platform

When a PE produces tokens these are transmitted to other PEs and may cause
new rule instantiations and yet more tokens. There may be a large amount of
token traffic between PEs or small clusters of PEs so efficient data interconnect is
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required. For a device with a large number of PEs a network based interconnect,
named the StreetNet, is proposed in this paper.

3.1 Network Architecture

A regular tile-based 2D network architecture is considered for StreetNet. Each
tile contains a single PE and router, however adjacent tiles may be linked to
share memory resources (discussed below in 3.6). Every PE has a destination
table generated from the dependency graph. It lists the desired destinations and
corresponding tokens to those destinations. Each router is connected to its local
PE and four neighbouring tiles. Each router also has a routing table that is
checked for destination. The tokens are broken into packets and forwarded to
the neighboring tile towards the destination. A crossbar switch is used as the
switching fabric in the router. Fig. 3 shows the structure of a StreetNet.

3.2 Dependency Graph

The mapping of PEs onto network architecture is based on a dependency graph.
A dependency graph is a directed graph, where each vertex pi represents a PE.
Directed arcs represent non-zero communication paths between two PEs and
are assigned a weight characterising the communication rate between the PEs.
Fig. 4 shows an example of a dependency graph of nine PEs. This graph is used
to map the PEs onto the network so that the most dependent PEs are placed
close together in the expectation this will reduce communication latency and
power consumption. The PEs are sorted by total incoming and outgoing traffic
that was recorded during runtime, and mapped in this order. This is useful since
the positions of the PEs with high traffic requirement have higher impact on the
overall energy consumption. This dependency graph is updated during a sleep
period (described in subsection 3.5) depending on runtime traffic statistics.
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Fig. 4. An example of dependency graph with nine PEs

3.3 Mapping Techniques

In [8], an energy aware mapping technique is proposed for networks-on-chip
(NoC) with a regular architecture. This technique is adopted in the StreetNet.
The average energy consumed in sending one bit of data from a tile to a neigh-
boring tile is calculated as

E = ES + EB + EL (1)

where ES , EB and EL are the energy consumed at the switch, buffer and link.
Since the energy consumed for buffering is negligible compared to EL [8], (1)
becomes

E = ES + EL (2)

Now, if the bit traverses n hops to reach tile tj from tile ti, the average energy
consumption is

Eti,tj = n× ES + (n− 1)× EL (3)

For a system that involves a large number of processing elements, it is impor-
tant to adopt efficient mapping and routing techniques so that total energy
consumption is minimized and communication traffic does not exceed available
bandwidth. Two different mapping techniques have been considered in this work:
one is based on Simulated Annealing (SA) and the second is based on Branch-
and-bound (BB) technique.

Simulated Annealing based Mapping Simulated Annealing (SA) [9] is a
well known technique for solving optimization problems. It effectively optimizes
solutions over large state spaces by making iterative improvement. It has a con-
cept of temperature which is initially very high and keeps reducing in every step
until it reaches the minimum temperature. For each temperature, it starts with
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current_temp=MAX_TEMPERATURE;

previous_cost=INITIAL_COST;

current_mapping=randomMapping();

current_cost=cost(current_mapping);

do{
while(attempts<MAX_ATTEMPTS){

current_mapping=makeRandomTileSwap(current_mapping);

new_cost=cost(current_mapping);

∆C=new_cost - current_cost;

if (random(0,1)≤exp(-∆C/current_cost×current_temp))
current_cost=new_cost;

else

current_mapping=rollbackTileSwap(current_mapping);

}
if(toleranceTest(previous_cost,current_cost)‖current_temp≤MIN_TEMPERATURE)

done=1;

else{
previous_cost=current_cost;

current_temp=getNextTemperature(current_temp);

}
}while(!done);

Fig. 5. Simulated annealing algorithm for PE mapping

a random feasible solution and searches for better solutions with lower cost. This
is a greedy algorithm. A tolerance test is done in every iteration to check if the
cost is changing insignificantly over the last few temperatures or the tempera-
ture reaches a certain limit. Eventually, when the temperature goes below the
minimum limit, it defaults to the greedy algorithm only. Fig. 5 illustrates the
SA algorithm for PE mapping.

Branch-and-bound based Mapping In this mapping technique, a search tree
is generated that represents the solution space. The root node corresponds to the
state where no PEs are mapped. Each internal node represents a partial mapping
and each leaf node is a complete mapping of PEs onto tiles. Fig. 6 shows the
search tree of the solution space. For example, the node labelled t0tn−1t1...tn−2

represents the placement in which PEs P0, P1, P2, ... Pn−1 are mapped to tiles
t0, tn−1, t1, ... tn−2 respectively.

The branch-and-bound (BB) mapping finds the solution node which has
the minimum cost. The cost of mapping is calculated by the total energy con-
sumed by all the PEs that are already mapped. The PEs are initially sorted
based on their traffic demand obtained from the dependency graph. As the PEs
with higher traffic demands dominate the overall energy consumption, they are
mapped first to the unoccupied tiles to generate new child nodes. Each node has
a table that stores the routing paths between its occupied tiles. When a child
node is generated, the table from its parent node is inherited, and the routing
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path to the new tile is added to the table. Then, each of the newly generated
child nodes are examined to see if it is possible to generate the best leaf node
later. The upper and lower bounds of the nodes are calculated to detect candi-
date optimal nodes. The upper bound of a node is the value that is no less than
the minimum cost of its leaf nodes; the lower bound is defined as the lowest cost
that its descendant leaf nodes can possibly achieve. If the cost or lower bound
of a node is higher than the lowest upper bound that is already found so far, it
is deleted without any expansion, because it is guranteed that the node cannot
lead to the best mapping solution. The lower and upper bounds are updated
after every step. All the nodes are traversed this way, and finally the node with
minimum cost is accepted as the best mapping.

3.4 Routing

Wormhole routing is considered in this work because of limited buffering re-
sources. In wormhole routing, packets are broken down into flow control digits
(flits) and the flits are routed over the network in a pipelined fashion. The
header flit contains routing information and leads the packet to the destination.
Deterministic dimension-ordered routing is chosen in this work. In comparison
to adaptive routing, deterministic routing requires less buffering space since no
ordering is required for received packets [4]. Moreover, deterministic routing al-
gorithms are livelock free. We use the west-first turn model [7] that prohibits
north-to-west and south-to-west turns to make it deadlock-free.

3.5 Sleep Period

Street stores traffic statistics during runtime which are used periodically to up-
date the dependency graph. The assignments of rules to PEs and their location
within the network are refined based on this so that total traffic energy con-
sumption is minimized. During this period, the execution is paused, analogously
to human sleeping [11], and the memory contents as well as destination tables
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are re-arranged between PEs. However, the network structure and routing table
remain unchanged as they are the fixed components of StreetNet. After the sleep-
ing period, it continues to operate as before, but with improved performance.

3.6 Clustered PEs

If memory content exceeds the capacity of a PE, the flat architecture of Street’s
tiles allows the PE to use the memory resources of adjacent unused tiles. One
of the PEs in the group of tiles acts as a master PE, and the destination table
attached to it remains active. This master PE acts as source or destination of
packets, the other routers of the cluster are used to forward the packets only.
The PEs inside the cluster communicate through a local bus. If there are no
unused adjacent tiles, the rule is moved to a new PE with free adjacent tiles and
the contents are transferred during a sleep period.

4 Experiments

StreetNet was tested over network architectures ranging from 4 to 196 pro-
cessing elements. As we have not yet developed any large-scale agents, depen-
dencies were artificially created. For every architecture, 10 random dependency
sets were generated. Each dependency set was used for mapping using both
simulated annealing and branch-and-bound techniques. Fig. 7 shows the total
energy consumption comparison between the mapping techniques. This shows
that SA based mapping performs slightly better than BB based mapping, but
when compared in terms of computation time, the latter significantly outper-
forms the former, as seen in Fig. 8. This indicates that BB mapping works much
faster than SA mapping but the energy savings at execution time from the SA
mapped solution may warrant the extra mapping time. StreetNet creates rout-
ing tables for all the routers as well. Since deterministic dimension-order routing
has been considered in this work, routing tables do not change over time. As a
result, ordered packet delivery and simplicity are ensured.

5 Conclusion

In this paper, a network-based communication platform, StreetNet, is proposed
for the Street cognitive computer in which the PEs are mapped onto a 2D
mesh architecture. The mapping is derived from a dependency graph that is
obtained from runtime traffic statistics. This work introduces the concept of a
periodic sleep period, during which the placement of the PEs is updated to im-
prove overall energy efficiency. Branch-and-bound and simulated annealing based
mapping techniques are discussed here. Experiments indicate that branch-and-
bound mapping significantly outperforms simulated annealing based mapping
when compared in terms of computation time. Clustered PEs are implemented
in this work to accommodate large memories. The number and orientation of
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the tiles of a clustered PE will affect the overall energy consumption of the sys-
tem to an extent that is yet to be investigated. Moreover, we plan to implement
the mapping algorithm using Street Language so that Street can update PE
mapping using its own resources.
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Abstract. Using soft computing methods, the authors collect and pro-
cess relevant user-generated information from the web. Through the use
of self-organizing maps, fuzzy cognitive maps are constructed. The fuzzy
cognitive map is a generated representation of the emergent web seman-
tics of the dataset. In the next step, the fuzzy cognitive maps are enriched
with related lexical content and stored in a graph database. This makes it
possible for a human user to explore the maps in a visual way. Following
a design science research approach, a prototype has been implemented
as a proof of concept.

Keywords: Emergent web semantics, Fuzzy cognitive maps, Self-organizing
maps

1 Introduction

Todays existing social web contains a set of relations that connect users through
the Internet [1]. It primarily consists of human-understandable information (i.e.,
semantics); however, this information most often comes in unstructured form
and is thus not straightforward to interpret by computers. However, the semantic
web should enable computers to understand and respond to complex user queries
based on their meaning [2]. Such an understanding, however, requires relevant
information (i.e., data that have been given formal meaning by way of relational
connection through some meaning negotiation process [3]) to be semantically
structured. To this end, emergent web semantics is a possible answer to enhance
the interaction between humans and machines.

This field consists of a set of methods and techniques for analysing the evo-
lution of decentralized semantic structures in large-scale distributed informa-
tion systems [4]. As inevitably required in the semantic web (i.e., to adaptively
and dynamically address todays information explosion as naturally as possible),
emergent semantics adopts a complex systems approach of addressing meaning
by automatically creating semantics in a distributed system as an ensemble of
relationships between syntactic structures [5]. Both the discovery of the proper
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interpretation of symbols (e.g., as a result of a self-organizing process performed
by distributed agents) and the representation of the thus created semantics are
taken into account.

To team up humans and computers, both need the ability to learn from each
other. This may progress quite naturally because over time, our ability to process
information and communicate it to others improves [6]. For example, through dy-
namic query interfaces [7], humans are able to adapt to computers, and through
machine learning, computers can (better) adapt to humans. This computational
intelligence consists of a toolbox of nature-inspired methods of computation to
address the real worlds complexity to which conventional approaches (i.e., first
principles modelling or statistical modelling) are ineffectual or impracticable [8].
It also embraces biologically-inspired algorithms (i.e., swarm intelligence and ar-
tificial immune systems), which can be seen as part of evolutionary computation,
and includes broader fields such as natural language processing and data mining.

To support people in their searches, dynamic query interfaces should fit into a
single users knowledge. For this purpose, the computer should rely on learning to
defer to the average user, who uses language in a natural way. Through dynamic
interfaces that integrate digital content into a humans life in seamless ways, a
computer should even become adaptable to each individual user. With an auto-
matically built-in knowledge graph (a fuzzy cognitive map (FCM)), computers
may become (more) responsive to humans. These FCMs may be created auto-
matically on the basis of self-organizing data mining algorithms (i.e., agents that
crawl and aggregate social web data). A similar approach was already introduced
by Jazzar & Jatan [9] by using FCMs in SOM-based intrusion systems. Normally,
FCMs are constructed out of human knowledge [10]; consequently, they strongly
depend on the subjective beliefs of the expert(s). Furthermore, the map itself is
limited to be relatively simple and small and domain specific [11]. To overcome
this, several efforts have been conducted by introducing algorithms to learn the
FCM model structure. In general, there are two main proposed paradigms: Heb-
bian and genetic algorithms [12–16]. However, with the help of SOM, the aim of
this framework is to find an initial state vector, which is constructed out of the
collected data, that leads to a predefined FCM, similar to Kahn & Chong [17].

Section 2 introduces fuzzy logic, cognitive maps and FCMs. Section 3 de-
scribes self-organizing maps (SOMs), their functionality and how they can be
used to construct initial FCMs. Based on SOMs, Section 4 presents graph databases
as possible stores and query engines for emergent semantics [4]. In Section 5, the
authors’ framework is presented, and its architecture and single components are
illustrated. Section 6 presents the prototype with all components. Finally, in
Section 7, we draw conclusions and indicate possibilities for future research.

2 Fuzzy Cognitive Maps

The problem with today’s semantic web is that the more complex it becomes,
the less precise the statements (i.e., exact statements formulated in two-valued
predicate logic) that can be made about it become. This is the message of the
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principle of incompatibility, which roughly states that high complexity is in-
compatible with high precision [18]. Therefore, anticipating an enhancement to
two-valued logic, Zadeh introduced fuzzy logic as a tool for formalizing and
representing the reasoning process and fuzzy logic systems, which are based on
fuzzy logic and possess many characteristics attributed to intelligence [19]. Fuzzy
logic effectively handles uncertainty, which is common in human reasoning, per-
ception and inference and, contrary to some misconceptions, has a very formal
and strict mathematical backbone (i.e., it is deterministic in itself, yet it allows
uncertainties to be effectively represented and manipulated).

In more detail, fuzzy sets are graduated in the sense that membership in a
fuzzy set is a matter of degree. A fuzzy set A, in a universe of discourse U , is
defined by a membership function uA that associates with each object u in U ,
the degree to which u is a member of A. A fuzzy set is basic if its membership
function takes values in the unit interval [0, 1]. More generally, the membership
function may take values in a partially ordered set.

FCMs are fuzzy structures that strongly resemble neural networks, and they
have powerful and far-reaching consequences as a mathematical tool for mod-
elling complex systems. Kosko [20] introduced FCMs as a fuzzy extension of
the cognitive map pioneered by Axelrod [21], who used the map to represent
knowledge as an interconnected, directed, bi-level logic graph. The underlying
model behind FCMs is simple and effective because it can analyse the data using
directed graphs and connection matrices [11].

FCMs are fuzzy signed directed graphs with feedback. The directed edge eij
from causal concept Ci to concept Cj measures how much Ci causes Cj . The
time-varying concept function Ci(t) measures the non-negative occurrence of
some fuzzy event (e.g., the strength of a sentiment, strategy or historical trend).
The edges eij take values in the fuzzy causal interval [1,1]; eij = 0 indicates no
causality, eij > 0 indicates a causal increase, and Cj increases as Ci increases
(or Cj decreases as Ci decreases).

Finally, eij < 0 indicates a causal decrease or negative causality, and Cj

decreases as Ci increases (and/or Cj increases as Ci decreases). Simple FCMs
have edge values of 1, 0, 1. Thus, if causality occurs, it occurs to a maximal
positive or negative degree. As a direct consequence, the values provide a quick
first approximation to an expert’s causal knowledge.

A solution for integrating computer-understandable meaning in todays se-
mantic web is often programmed from above, such as a creator of an ontology
makes something and imparts it with his or her intelligence. Another approach
uses a more bottom-up, decentralized method; bio-inspired techniques often in-
volve the method of specifying a set of simple rules, a set of simple organisms
that adhere to those rules and a method of iteratively applying those rules [1].
Because the FCMs are generated from social web information, only allowing
FCM patterns that are stabilized over time, it involves continuous optimization,
and its algorithms can be considered global optimization methods.

After several generations of rule application, it is usually the case that some
forms of complex behaviour arise. Complexity gets built upon complexity un-
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til the end result is something markedly complex and, quite often, completely
counterintuitive to what the original rules would be expected to produce. Evolu-
tionary computation uses iterative progress, just like the permanent aggregating
of information by web agents yields emergent semantics [4]. This emergent se-
mantics may be managed with FCMs.

A FCM can model the relationships of various factors, depending on what
logic the word vectors are constructing (e.g., similarity or semantics). They can
have three different characteristics: (1) indicating a positive or negative causality
of a relationship, (2) showing the strength of causal relationships with fuzzy
values, and (3) dynamic causal links where changes affect concepts [16].

In the following section, we introduce SOMs that help create the emergent
semantics underlying FCMs.

3 Generating Fuzzy Cognitive Maps with Self-Organizing
Maps

Since the introduction of SOMs by Kohonen in 1982 [22], more than 7700 SOM-
related research papers have been published, primarily in the fields of image
analysis, speech recognition, signal processing and robotics [23]. A SOM is a
type of artificial neural network that is trained using unsupervised learning
to produce a low-dimensional (typically two-dimensional), discretized represen-
tation of the input space of the training samples, called a map. SOMs use a
neighbourhood function to preserve the topological properties of the input space
(abstraction). This makes SOMs useful for visualizing low-dimensional views of
high-dimensional data, akin to multidimensional scaling [22]. Like most artificial
neural networks, SOMs operate in two modes: training and mapping. Training
constructs the map using input examples (a competitive process, also called vec-
tor quantization), whereas mapping automatically classifies a new input vector.

A SOM consists of components called nodes or neurons i. Associated with
each node i is a weight vector wi of the same dimension as the input data vec-
tors and a position in the map space. The usual arrangement of nodes is a two-
dimensional regular spacing in a hexagonal or rectangular grid. To overcome the
border effect, spherical grids have been introduced [24, 25]. The SOM describes
a mapping from a higher-dimensional input space to a lower-dimensional map
space (visualization). The procedure for placing a vector from data space onto
the map is to find the node with the closest (i.e., smallest distance metric, such
as Euclidean distance) weight vector to the data space vector. In general, in the
initialization phase, the number of input units and the topology of the output
layer are first determined. However, this is difficult because of the increasing
amount of available information. To overcome this limitation, several improve-
ments to SOMs have been introduced, mainly by adaption such as growing grid
models [26], hierarchical feature maps [27], growing hierarchical maps [28] or
tree-structured maps [29].

Large SOMs exhibit emergent properties. In maps consisting of thousands of
nodes, it is possible to perform cluster operations on the map itself [30].
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4 Storing Web Semantics in Graph Databases

Graph databases serve as a digital storage medium for graphs. At the same
time, they provide users with features and functionalities commonly used in the
domain of graph theory. Within the database landscape, they are classified as be-
longing to the group of non-relational data models [31]. This group of databases
is viewed as an extension to traditional relational databases. Four different types
of databases are prominent representatives in this group, with key-value stores
and big table clones focusing on handling big data sizes and documents and
graph databases specializing in complex data [32]. Considering that structured
knowledge is viewed as highly interconnected and thus as complex data, this
backs the proposal for choosing a graph database for storing from a technical
perspective.

Not all graph databases are the same, however. Some are constructed on top
of other data models, while others are standalone solutions. Other differences
exist based on the purpose and environment that they have been developed for.
While web-based solutions focus on maintaining low latency times for queries,
others aim at handling large graphs by scaling horizontally, whereas others are
specifically designed for processing algorithms as fast as possible by storing the
entire graph in memory [33].

Because FCMs are highly interconnected directed graphs, it appears rea-
sonable to represent them in graph databases. This allows optimized queries
to the database [31]. Furthermore, most graph databases allow visual exploring
of the underlying FCMs through a web interface. This facilitates the interac-
tion between humans and the FCMs. Graph databases are a valuable tool for
representing the web semantics of a given dataset. Another advantage lies in
the computational possibilities offered by graph algorithms. Computing short-
est paths, clusters and recommendations are tasks that graph algorithms are
particularly suited [31]. This may allow deeper insights into the FCMs.

5 Architecture

The framework is built upon a 3-layer software architecture. Figure 1 shows the
underlying design. As an external data source, semistructured content from the
web is accessed through a web crawler, an API or a data dump. The first layer
consists of all data processing steps, beginning with the manipulation of the
data. Here, various options are possible. The content can be normalized through
tokenization, stemming or lemmatizing. If the amount of data should be reduced,
stopwords or particular parts of speech (through part-of-speech tagging) can be
eliminated. For further manipulation of the data, the concepts (i.e., words or
phrases) need to be represented as word vectors (e.g., Mikolov et al. [34] or Maas
et al. [35] provide unsupervised vector-based approaches). These word vectors
form the input vectors to create the SOM. The topology, which results as an
output from the SOM, can already provide an adequate overview of the data. It
shows clusters of similar concepts and where the main topics of data are located.
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The output of the SOM can be used as an input matrix to generate the FCMs.
The matrix already contains the information needed to draw the concepts with
the causal relationship among these concepts. For the estimation of the causal
relationship strength, depending on the use case, one of the proposed learning
algorithms (see section 2) can be used.

The application layer includes a web framework to provide accessibility over
a web browser. This facilitates the application being used by a broader audience.
Because the framework is built upon a graph database, the only restriction is
an available interface to the database. Finally, the user interface is an important
component to complete the user experience. This interface should allow querying
and exploring the underlying datasets such that the user can enlarge his personal
knowledge.

Fig. 1. Framework Architecture

6 Prototype

As a data source, the authors used the dump of a stack exchange on the topic
computer science. A primary function of a stack exchange is to share knowledge
from user to user. The exchange is performed through questions and answers.
Overall, 13492 positively rated posts were considered for the evaluation. Users of
the stack had used 463 tags to mark their questions, mostly algorithms (2267),
complexity theory (1143) and formal languages (767). Various recent studies
have already used the stack dataset [36–38] as a data source, but none considered
FCMs.

A framework was established to analyse the data. Followed by the processing
steps shown in Figure 2, the data were transformed into FCMs. As soon as the
data are normalized and tokenized (1), bigrams are identified and a word vector
wi is constructed as a representation of these bigrams (2). In the prototype,
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Fig. 2. Processing steps

the authors used a context-prediction vector, CBOW a computationally efficient
model by Mikolov [34]. CBOW learns to predict words in the middle of a sym-
metric window. The window is based on the sum of w of words in the window.
However there are various other possibilities to build semantic word vectors [39].
The word vectors wi are generated for each concept in the vocabulary with a
dimensionality of 450.

These vector representations w = w1,w2, . . . ,wn are the input source for
the SOMs to reduce their dimensionality (3). During the evaluation process, a
total of 150 training epochs with a learning rate decreasing from 0.6 to 0.02
have been seen as promising. The size of the map is 225x225 which leads to an
output layer of 50625. Figure 3 shows the topology of the explored dataset. The
produced distance matrix is the input source for the FCM.

Fig. 3. 2D - Visualization of the SOM of the principal concepts.
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The visualization of SOMs also has the advantage of showing centres of con-
cepts where the data are spread. As is often the case in FCMs, weights are
determined by human interaction, and learning algorithms are used to eliminate
the subjectiveness of weights. In this framework, the weights wij are adjusted
through the closeness of concepts Cj and Ci, i = 1, 2, ..., N, j = 1, 2, ..., N , in
the produced distance matrix of the SOM until a stop criterion is reached. This
leads to an initial state vector of the FCM. The setup for the value of this weight
is between [0, 1] (4). The related pseudocode is shown in Algorithm 1. Then, the
fuzzy expressions medium, strong and very strong are mapped to the numerical
values of the relationships (Table 1).

Algorithm 1 FCM algorithm

1: procedure Construction FCM
2: weight← inputDistanceSOM
3: nodes← concepts
4: minDistanceValue
5: loop:
6: for i, j in nodes do
7: if weight(nodes(i, j)) > minDistanceV alue then
8: Construct E{i, j}
9: Label E{i, j}

10: close;

Algorithm 1 allows the connectivity of the graph to be adjusted by varying the
minimal distance value. After the FCM of the dataset is constructed, it is post-
processed (5) by adding metadata to each node. These metadata are delivered
through an interface to wikidata. All the values, included in the metadata as
properties, are stored through a database layer in a graph database. The authors
selected OrientDB as a database. OrientDB is a hybrid system that offers a graph
database and a document database. It has all the functionality required for this
experiment, especially because it possesses a good query system (i.e., it can
calculate shortest path operations).

Fuzzy membership functions Fuzzy regions Deffuzzified value (weight)
medium (0.6, 0.8) 0.7
strong (0.7, 0.9) 0.8
very strong (0.9, 1) 1

Table 1. Fuzzy expression mapping

The final component of the framework is the user interface. OrientDB already
provides a complete interface for querying and analysing graph-related data [40].
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It also allows direct interactions, so users can explore and manipulate data. In
this way, the data can be visualized in a graph-based environment (6). Currently,
the produced output of the processed data can be accessed in [41]

7 Conclusion

The authors propose a framework for analysing data from web sources that de-
velop web semantics represented through fuzzy cognitive maps. The framework
includes a mixture of different algorithms and technologies. The FCM allows
users to explore underlying web sources enriched with metadata. (Hidden) re-
lationships between concepts can be uncovered. The underlying framework also
allows direct user interaction to adjust causal relationships in the graph. In this
way, a machine-human interaction is established, where both can learn from
each other [5]. Note that the prototype only produces the initial state FCM on
a limited dataset.

An advantage of this approach is certainly it simplicity. It can be applied
on nearly all user-produced content to generate the related FCMs. This already
provides a proper overview on which concepts are important and how they are
interconnected. FCMs allow the inclusion of uncertainty and vagueness, both in-
herent in the human language. Thus, a better interpretation of human-produced
content may be possible. They also allow a certain flexibility in the setup of
the framework. Through the enrichment with metadata, it may also be used to
discover knowledge. Limitations are given by the used technologies and inputs.
User-generated input is never perfect and often includes spelling or grammatical
mistakes. These mistakes could not always be removed. Reducing the dimen-
sionality through SOM simplifies the data, but at the same time, information
is lost. Finally, FCMs with many concepts rapidly become unclear and the user
may lose focus.

A related framework was already used for a trend discovery project of the
Swiss Commission for Technology and Innovation (CTI). In this project, trends,
relevant for the tourism industry, have been identified from social media as an
input for performance management. The main difference was the temporal com-
ponent of the framework to view the transformations over time, which allows
the change of concepts relating to their relevance and their relationships to be
observed. Furthermore, the dataset grows through continuous crawling, and the
weights are adjusted through a learning algorithm.

The basic concept forms the basis for the construction of a granular knowl-
edge cube [42]. This concept combines an amplified multi-source knowledge base
together with a knowledge carrier finder system. This approach has the goal of
connecting a knowledge seeker and a knowledge carrier in logical and simplified
way.
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Abstract. Similarity, one of six Gestalt principles, is one of the most intuitive
ways to perceive the world and categorise the objects surrounding us. The notion
of similarity plays an important role in many areas, and it is important to simu-
late human perception of similarity in order to obtain satisfying results in various
applications. We draw our inspiration from Tversky’s work on similarity and de-
fine property-based similarity for ontological concepts taking into account their
common and distinctive features and their values. We also discuss some possible
ways to improve the property-based similarity.

Keywords: Similarity, properties, ontology

1 Introduction

It is inherent to human nature to try to categorize objects surrounding us, finding pat-
terns and forms they have in common. One of the most intuitive ways to relate two
objects is through their similarity. Similarity is one of the six Gestalt principles which
guide the human perception of the world, the remaining ones being: Proximity, Closure,
Good Continuation, Common Fate, and Good Form.

According to Merriam Webster “similarity” is a quality that makes one person or
thing like another and “similar” means having characteristics in common. There are
many ways in which objects can be perceived as similar, such as having similar color,
shape, size, texture etc. But if we move away from just visual stimuli, we can apply
the same principles to define the semantic similarity of two objects. This leads to a
similarity based on features these two objects have in common, and consequently, the
lack of distinctive features characterising each object.

The concept of semantic similarity can be encountered in various fields, from Nat-
ural Language Processing (NLP) and Information Retrieval to Semantic Web. In this
work we deal with the semantic similarity of concepts in domain ontologies (Gruber,
1993, Guarino and Poli, 1995), where concepts are distinguished by the properties as-
sociated to them. The usage of ontologies to represent various domains accounts for
both similarities and differences among domain objects as well as generic objects and
very specific ones.

Our inspiration comes from Tversky’s work on Features of Similarity (Tversky,
1977) and we try to apply his ideas to similarity among ontological objects. More pre-
cisely, two objects are similar if they both are defined having the same properties with
the same values. In addition to this simple notion of similarity, we explore how this
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similarity can be improved by considering relevance for properties or relevance for val-
ues or hierarchical relationships among values, Throughout this work we use domain
of recipes to provide examples and explain our approach and reflections.

The rest of the paper is organised as follows. In Section 2, we provide a brief back-
ground on ontologies for knowledge representation and on the treatment of properties
in OWL. We give the details of how to calculate the property-based similarity for in-
stances in the domain ontology in Section 3 and then we look into some possible ways
to improve the property-based similarity in the ontology in Section 4. We summarise the
most relevant related work which regards the semantic similarity in Section 5. Finally,
we conclude in Section 6.

2 OWL ontologies and knowledge representation

In various fields, from e-commerce and e-learning to cultural heritage, medicine, digital
libraries etc., it is possible to describe the concepts of the domain by using the properties
of these concepts and their respective values. The ones that immediately come to mind
are ontologies (Antoniou and van Harmelen, 2008, Allemang and Hendler, 2008) and
linked open data (Bizer et al., 2009), where properties are prominent elements of the
domain and contribute to the description of domain concepts.

In this work we deal with ontologies, powerful and expressive formalisms which
make it possible to explicitly specify domain elements and their properties, as well as re-
lationships which exist among domain elements. Also, rigorous reasoning mechanisms
are associated with ontologies. One standard formalism for representing ontologies is
OWL.1

Throughout this work we would use domain of recipes to provide examples and
explain our approach and reflections.

2.1 Properties in OWL

In ontologies expressed in OWL properties are used to describe domain elements and
express their features. There are two kinds of properties in OWL:
(i) object properties describing relations among individuals and

(ii) data type properties providing relations among individuals and data type values.
Object properties and datatype properties are defined as instances of the built-in OWL
classes owl:ObjectProperty and owl:DatatypeProperty, respectively. Both are subclasses
of the RDF class rdf:Property. Here, we only consider object properties, and leave the
treatment of data type properties (such as literal values) for future analysis, since it is
more complex.

The property axiom is used to define the characteristics of a property. Usually, it de-
fines its domain and range. rdfs:domain links a property to a class description, whereas
rdfs:range links a property to either a class description or a data range. For example:

<owl:ObjectProperty rdf:ID="has_ingredient">

<rdfs:domain rdf:resource="#Recipet"/>

1 http://www.w3.org/TR/owl-ref
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<rdfs:range rdf:resource="#Food"/>

</owl:ObjectProperty>

defines a property has ingredient which connects the elements of Recipe class to
the elements of Food class.

Equivalent properties are defined with owl:equivalentProperty.
Properties can be explicitly defined for the classes and can be used to define classes

with property restrictions. Our approach to similarity is best illustrated when consider-
ing instances in the ontology, hence we will provide here a brief description of proper-
ties for instances.

2.2 Instances and their properties

An instance in the ontology are characterised by its class membership, individual iden-
tity and property values. An instance inherits its properties from the classes it is an
instance of and it has a specific value associated to each property. For example:

<Recipe rdf:ID="Herbed_Asparagus">

<has_ingredient rdf:resource="#Asparagus"/>

<has_ingredient rdf:resource="#Parmesan"/>

<has_ingredient rdf:resource="#Herbs"/>

<has_origin rdf:resource="#Italy"/>

<suitable_for_diet rdf:resource="#"Vegetarian"/>

</Recipe>

defines a recipe Herbed Asparagus which has ingredients: asparagus, parmesan and
herbs, originates from Italy and is suitable for vegetarians.

3 Property-based similarity

First of all, let us have a look at an example which should clarify the basics of our ap-
proach. We consider the domain of recipes where properties such as has ingredient,
has origin, suitable for diet are defined. These properties have one or more val-
ues assigned to them. Intuitively, the similarity among recipes depends on the property-
value pairs they have in common. Consider for example the following recipes: Asparagus
Parmigiana and Herbed Asparagus With Parmesan Cheese. They both have in-
gredients: Asparagus, Butter, Parmesan, Pepper among others and are both suit-
able for vegetarian diet. On the other hand, Indian Style Chicken has only Butter
in common with any of them and is not suitable for vegetarians. So the asparagus dishes
are definitely more similar among themselves than any of them with the chicken dish.

Hence, in order to determine similarity among two objects, we want to consider
both, their common features and distinctive features for each of them. To this aim we
use Tversky’s feature-based model of similarity (Tversky, 1977):

simT (O1,O2) =
α(ψ(O1) ∩ ψ(O2))

β(ψ(O1) \ ψ(O2)) + γ(ψ(O2) \ ψ(O1)) + α(ψ(O1) ∩ ψ(O2))
. (1)
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where ψ(O) is the function describing all the relevant features of the object O, and
α, β, γ ∈ R are constants which permit different treatment of the various components.
For α = 1 common features of the two objects have maximal importance and for β = γ
non-directional similarity measure is obtained. In our approach we have α = β = γ = 1.

We will be using the following notation:
– common features of O1 and O2: cf(O1,O2) = ψ(O1) ∩ ψ(O2),
– distinctive features of O1: df(O1) = ψ(O1) \ ψ(O2) and
– distinctive features of O2: df(O2) = ψ(O2) \ ψ(O1).

Using this notation and setting α = β = γ = 1 the formula (1) becomes:

simT (O1,O2) =
cf(O1,O2)

df(O1) + df(O2) + cf(O1,O2)
. (2)

Since each of the domain objects has a number of property-value pairs describing
it, for each property p we will have to calculate how much it is responsible for common
features among these objects, as well as for distinctive features of each of them. We
denote these values by cfp, df1p and df2p. We consider equal the properties defined with
owl:EquivalentProperty.

3.1 Similarity among instances

In this work we present our approach only for instances of classes, although it can be
extended to classes defined with their properties and to classes defined as property re-
strictions (see Cena et al. (2012)). The essence of property-based similarity calculation
lies in simple comparison of the property-value pairs for each instance. Let us assume
that the property p has h′ different values in O1 and h′′ different values in O2, and k is
the number of times O1 and O2 have the same value for p, then

cfp =
k2

h′h′′
, df1p =

h′ − k
h′

and df2p =
h′′ − k

h′′
.

Let us assume that the objects O1 and O2 have properties p1, . . . , pn in common. We
can repeat the above process for each property pi, i = 1, . . . , n.

Now, there are two possible ways to calculate similarity between O1 and O2.
First, we can obtain all common and distinctive features of O1 and O2:

cf(O1,O2) = Σn
i=1cfpi df(O1) = Σn

i=1df
1
pi

df(O2) = Σn
i=1df

2
pi

where n is the number of properties O1 and O2 have in common. The similarity between
two instances O1 and O2 is then calculated using the formula (2):

sim(O1,O2) =
cf(O1,O2)

df(O1) + df(O2) + cf(O1,O2)
.

This method for property-based similarity of objects in the ontology was first intro-
duced in (Cena et al., 2012) classes defined with property restrictions but only for value
restrictions. It was further developed to include cardinality restrictions and applied to
categorization of shapes in (Likavec, 2013).
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Second, we can calculate partial similarities w.r.t. each property pi, i = 1, . . . , n:

simpi =
cfpi

df1pi
+ df2pi

+ cfpi

and then use these similarities to calculate the total similarity between O1 and O2 as:

sim(O1,O2) = Σn
i=1simpi .

4 Improving property-based similarity

The above presented base case property-based similarity provides high rates of simi-
larity among objects which can be used in many applications. We still did not perform
the thorough evaluation but we evaluated it in the field of user interest propagation and
obtained very satisfying results (Cena et al., 2012). But, while performing the second
evaluation in this field, we became aware that in certain domains, this property-based
similarity of domain objects can be improved w.r.t. various aspects. We will discuss
here some of them.

4.1 Relevance of properties

When defining the concepts of a domain, not all the properties play an equal role.
Hence, it is possible to introduce the relevance of properties and assign different im-
portance to different properties in the domain. Actually, the relevance of a property can
be considered as the capacity of the property to determine the similarity between two
entities. For example, in the recipe domain, the property has ingredient is far more
important than has author and the two recipes with the same ingredients would be
considered more similar than the two recipes with the same author. So, the property
has ingredient would have a higher relevance factor than prophas author.

There are various approaches to calculation of property relevance in a domain. It
can be declared a priori and although effective, this solution may not be very feasible
for a huge domain. Also, it is possible to introduce an automatic method to determine
the relevance of properties. One possibility is to compute the similarity of concepts and
then to calculate the relevance factor for each property as the square of the average
similarity between concepts with the same value for that property.

4.2 Property or underlying hierarchy?

First of all, some aspects of the domain can be seen as properties, as well as underlying
hierarchy. So the question is, which way of modelling of the domain would provide bet-
ter similarity with human judgement. For example, in the recipes domain, the concepts
corresponding to dish type can be easily organised into a hierarchy and we can have
all the instances be instances of certain Dish Type classes. On the other hand, we can
simply have a property dish type and have all the recipes be instances of Recipe.
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4.3 Relevance of values

One of the problems with the approach in which all the values for properties are treated
equally is that they might not contribute to the overall similarity with the same degree,
since some values might be more important in a certain context than the other. For ex-
ample, if we consider recipes and the has ingredient the values beef or asparagus
would be more important than salt or pepper. Hence, we come to the point where we
might need to introduce relevance for values, along the lines for relevance for proper-
ties. These would have to be proposed by domain experts or calculated by an algorithm
designed for this purpose.

4.4 Hierarchy of values

Another possible improvement of property based similarity is to take into account the
underlying hierarchy which might exist among the concepts used as values for proper-
ties. For example, if we consider recipes and the property has ingredient, one recipe
can have ingredient Fusilli and the other one Spaghetti. Although these two con-
cepts are not equal, they could be considered equal or equal to a certain degree (e.g. 80%
equal), since they are both types of pasta, and are descendants of Pasta concept. So
it might be possible to consider “almost equal” direct descendants of a certain concept
and even less equal second degree descendants of a certain concept.

5 Related work

There are various approaches to calculating similarity among concepts, depending on
the data structure used to represent the domain and on the amount and type of data
available about the concepts of the domain. The principal approaches to similarity cal-
culation are the following: (i) information content-based methods, (ii) distance-based
methods and (iii) feature-based methods. Various hybrid methods combine some of the
above methods.

In his seminal paper, Resnik (1999) proposes to calculate the semantic similarity of
concepts by calculating the information content in an is-a taxonomy of the closest class
subsuming both compared concepts. This similarity measure is given by the negative
logarithm of the probability of occurrence of the class in a text corpus. Another impor-
tant information-theoretic definition of similarity is introduced by Lin (1998) where the
similarity among concepts is calculated taking into account the shared information for
the two concepts and the amount of information needed to fully describe them.

The origins of the distance-based approach go back to Rada et al. (1989) where the
ontology graph structure is used to calculate the distance between nodes (i.e., the num-
ber of edges or the number of nodes between the two nodes) as a measure of their simi-
larity. Leacock and Chodorow (1998) use the normalised path length in WordNet (Fell-
baum, 1998) between all the senses of the concepts being compared. The semantic
similarity is computed as a negative logarithm of the ratio between the number of nodes
in the path which connects the given concepts and the maximum depth of the taxonomy.
Wu and Palmer (1994) take into account the depths of the given words in the taxonomy
and the depth of their common subsumer in their similarity measure.
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Pirrò and Euzenat (2010) introduced a FaITH semantic similarity measure which
uses Tversky’s feature-based model and calculates the saliency of the features using a
new information content approach based on the ontology structure. This new framework
permits to calculate semantic similarity, as well as semantic relatedness and can be
used to rewrite the existing similarity measures so that they can also compute semantic
relatedness.

Smyth (2007) calculates the similarity by taking into account individual features of
concepts and by assigning to each feature its own similarity function and the weight
which helps distinguish the importance of individual features..

A semantic similarity measure for OWL objects introduced by Hau et al. (2005) is
defined as a ratio between the shared and total information content of the two objects.
The information content is calculated from the objects’ description sets containing all
the statements describing the given objects and is based on the number of new RDF
statements that can be generated by applying a certain set of inference rules to the
predicate.

The similarity measure introduced by Zadeh and Reformat (2013) is similar to ours
in the sense that it uses Tversky’s feature-based model for calculating similarity and
then calculates object’s common and distinctive features by observing all the relations
the objects have in the given ontology.

In the realm of “Conceptual Spaces” proposed by Gärdenfors (2004) the concepts
can be seen as convex regions in a conceptual space, whereas instances correspond
to points. The conceptual spaces are constructed using primitive quality dimensions
which represent various qualities of objects (e.g., color, shape, size). These dimensions
of conceptual spaces provide the means for determining similarity between concepts
and instances which can be defined as the inverse of their distance in the space.

Recently, Conceptual Spaces have been integrated with ontological formalisms to
form hybrid knowledge bases by Lieto et al. (2015). Since the points are represented as
vectors of the point coordinates (representing various object dimensions), their mutual
similarity is calculated as cosine similarity.

6 Conclusions and future work

In this work we present an approach to calculate similarity based on properties defined
in an ontology, as well as insights on which other factors can be included to improve
this similarity in different contexts. We limited ourselves to presenting the approach
only for the instances in the ontology, although the approach can be applied to classes
and classes defined as property restrictions as well. In addition, this approach can be
applied to linked open data Bizer et al. (2009) or any other structure where the objects
are described by means of their properties. For example, it would be interesting to apply
our measure of similarity to ConceptNet Speer and Havasi (2013), where an edge which
connects two nodes can be seen as a property and a target concept as its value.

In the case presented here, the prerequisite is the ontology with explicitly defined
properties for classes, rather than only a simple taxonomy of concepts. We only dealt
with object type properties in this work, since data type properties, such as literals,
require more complex analysis.
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One of the limitations of the present approach, known for Tversky’s notion of simi-
larity, is that in the case of concepts with few properties defined for them, is is possible
that some concepts would be equally similar to the concepts which in reality have dif-
ferent degrees of similarity with them. This problem can be overcome by enlarging the
knowledge base with as many properties as possible for each concept. Also, by assign-
ing relevance to certain properties, the more important features would be taken into
account.

The evaluation of the approach on different datasets is being carried out and would
be published elsewhere.
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Abstract. The Gödelian Arguments represent the effort done to inter-
pret Gödel’s Incompleteness Theorems in order to show that minds can-
not be explained in purely mechanist terms. With the purpose of proving
the limits of mechanistic theses and investigate aspects of the Church-
Turing Thesis, several results obtained in the formal setting of Epistemic
Arithmetic (EA) reveal the relation among different properties of knowl-
edge of machines, including self-awareness of knowledge and factivity of
knowledge. We discuss the main principles behind the Gödelian Argu-
ments and extend the results obtained in EA. In particular, we define
a machine that, in a specific case, knows its own code and the factivity
of its own knowledge, thus providing new insights for the analysis of the
Gödelian Arguments.

1 Introduction

In 1951 Gödel held one of the prestigious Gibbs Lectures for the American
Mathematical Society. The title of his lecture was Some basic theorems on the
foundations of mathematics and their implications [7]. The theorems in ques-
tion were precisely those of Incompleteness and the philosophical implications
were concerned with the nature of mathematics and the abilities of the human
mind 3. This was one of the few official occasions in which Gödel expounded his
opinion on the philosophical implications of his theorems. Without going into
details about Gödel’s paper, what is interesting here is the first part, where he
derives the thesis of essential incompleteness of mathematics from his famous
theorems. Such a thesis was sanctioned by the second theorem. Gödel’s idea is
that if one perceives with absolute certainty that a certain formal system 4 is
correct (sound), s/he will also know the consistency of the system, that is, s/he
will know the truth of the statement establishing the consistency of the system
itself. But, by Gödel’s second theorem, the formal system considered cannot
prove its own assertion of consistency, therefore the system does not capture
all arithmetical truths, and for this reason “if one makes such a statement he
contradicts himself” [7, p. 309].

3 A very accurate analysis of this work is proposed by Feferman [6], Tieszen [16], and
van Atten [17].

4 In this paper, the expression “formal system” indicates a system that is adequate to
derive Incompleteness Theorems.
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But what does all of this mean? Does it mean perhaps that a well defined
system of correct (sound) axioms cannot contain everything that is strictly math-
ematical?

In the following, we first recall and discuss Gödel believes about the possible
answers to such a question and then analyze the so called Gödelian Arguments.
In the last decades many scholars dealt with these arguments, which represent
the effort done to interpret Gödel’s Incompleteness Theorems with the purpose
of showing that minds cannot be explained in purely mechanist terms. Among
them, we concentrate on the approach followed by Reinhardt [13], Carlson [3],
and Alexander [1], who demonstrated a series of results in the formal setting of
Epistemic Arithmetic, which encompasses some typically informal aspects of the
Gödelian Arguments about the knowledge that can be acquired by (knowing)
machines. These results emphasize several relations among different properties
characterizing the expressiveness of machines, including self-awareness of knowl-
edge and factivity of knowledge. As a contribution of this paper, we integrate
these results with novel insights, thus providing the formal base for additional
elements supporting the Gödelian Arguments 5.

2 Gödel Perspective

With reference to the previous question, Gödel believes that it has two possible
answers:

It does, if by mathematics proper is understood the system of all true math-
ematical propositions; it does not, however if someone understands by it the
system of all demonstrable mathematical propositions. [. . . ] Evidently no well-
defined system of correct axioms can comprise all [of] objective mathematics,
since the proposition which states the consistency of the system is true, but
not demonstrable in the system. However, as to subjective mathematics it is
not precluded that there should exist a finite rule producing all its evident ax-
ioms. However, if such a rule exists, we with our human understanding could
certainly never know it to be such, that is, we could never know with mathe-
matical certainty that all the propositions it produces are correct; or in other
terms, we could perceive to be true only one proposition after the other, for
any finite number of them. The assertion, however, that they are all true could
at most be known with empirical certainty, on the basis of a sufficient number
of instances or by other inductive inferences. If it were so, this would mean that
the human mind (in the realm of pure mathematics) is equivalent to a finite
machine that, however, is unable to understand completely its own function-
ing. This inability [of man] to understand himself would then wrongly appear
to him as its [(the minds)] boundlessness or inexhaustibility [7, pp. 309-310].

Therefore, not only does the previous question pose the problem of the in-
exhaustibility or incompleteness of mathematics considered as the totality of all

5 Although there are some very interesting connections between Gödel’s Theorems and
contemporary research on deep learning, we do not analyze them in this contribute.
On this issue you can see [15].
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true mathematical propositions; but it also raises the question as to whether
mathematics is in principle inexhaustible for the human mind, that is to say,
whether the human minds demonstrative abilities are extensionally equivalent
to a certain formal system, or to the Turing Machine (TM) connected to it (the
TM that enumerates the set of theorems of the corresponding formal system).
The question, then, requires due consideration precisely of the relation between
what Gödel calls objective and subjective mathematics.

First, let T be the set of mathematical truths expressible within first-order
arithmetic, and call this objective arithmetic, or, following Gödel, “objective
mathematics”, that is “the body of those mathematical propositions which hold
in an absolute sense, without any further hypothesis” [7, p. 305]. By Tarski’s
theorem, T is not definable within the language of arithmetic, hence T is not re-
cursively enumerable. Let us then define K as the set of arithmetical statements
that a human being can know and prove absolutely and with mathematical cer-
tainty, that is what one can derive 6 and know to be true. Let us call it subjective
arithmetic or, following Gödel, “subjective mathematics”, which “consists of all
those theorems whose truth is demonstrable in some well-defined system of ax-
ioms all of whose axioms are recognized to be objective truths and whose rules
preserve objective truth” [6, p. 135-136]. What is then the relation between K
and T? Quoting Feferman, we could synthesize Gödel’s answer by saying that if
K was equal to T:

then demonstrations in subjective mathematics [would not be] confined to any
one system of axioms and rules, though each piece of mathematics is justified
by some such system. If they do not, then there are objective truths that can
never be humanly demonstrated, and those constitute absolutely unsolvable
problems [6, p. 136-137].

That is, if the equivalence K=T held, the human mind would not be equiv-
alent to any formal system or TM connected to it. In fact, having established
characteristics of T, for each formal system there would be a provable statement
by the human mind, but not within the formal system. Hence, the mechanistic
thesis would certainly be false: T non-recursive enumerability entails, in fact, the
non-existence of any effective deductive system whose theorems are only and all
truths of arithmetic. If, on the contrary, K did not coincide with T, and thus the
human mind were equivalent to a given formal system or to the TM related to
it, the existence of arithmetical statements humanly undecidable in an absolute
sense would follow. In fact, as underlined by Gödel, the second incompleteness
theorem does allow this conclusion: the proposition expressing the consistency
of K, say ConK, is true but is not provable within the system itself; the negation
of ConK is false and is not provable in K. Having established the equivalence
between the human mind and a formal system, ConK is not even provable by
the human mind. Finally, since ConK can be put in the form of a Diophantine

6 As Feferman [6, p. 140] emphasizes, Gödel believes that “the human mind, in demon-
strating mathematical truths, only makes use of evidently true axioms and evidently
truth preserving rules of inference at each stage”.
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problem, it is an absolutely undecidable problem. Such a proposition is, thus,
an unknowable truth. These arguments lead Gödel to the idea that from the
incompleteness results one can at the most derive the following disjunction:

Either [subjective] mathematics is incompletable in this sense, that its evident
axioms can never be comprised in a finite rule, that is to say, the human mind
(even within the realm of pure mathematics) infinitely surpasses the powers
of any finite machine, or else there exist absolutely unsolvable diophantine
problems of the type specified (where the case that both terms of the dis-
junction are true is not excluded, so that there are, strictly speaking, three
alternatives) [7, p. 310].

So, following Tieszen [16], and considering the translatability between the
concept of a well defined formal system and that of a TM, we can say that Gödel’s
Incompleteness Theorems show that it could not be true that: (i) the human
mind is a finite machine (a TM) and there are for it no absolutely undecidable
Diophantine problems.

The incompleteness theorems show that if we think of the human mind as a TM
then there is for each TM some absolutely undecidable Diophantine problem.
The denial of the conjunction (i) is, in so many words, Gödel’s disjunction.
In formulating the negation of (i) Gödel says that the human mind infinitely
surpasses the powers of any finite machine. One reason for using such language,
I suppose, is that there are denumerably many different Turing machines and
for each of them there is some absolutely diphantine problem of the type Gödel
mentions. So Gödel’s disjunction, understood in this manner, is presumably
a mathematically established fact. It is not possible to reject both disjuncts.
[16, pp. 230-231].

The disjunction leaves open the three following possibilities:

(I) human intelligence infinitely surpasses the powers of the finite machine (TM),
and there are no absolutely unsolvable Diophantine problems (see [7, p. 310]).

(II) human intelligence infinitely surpasses the powers of the finite machine (TM)
and there are absolutely unsolvable Diophantine problems. That is, although
human intelligence is not a finite machine, nevertheless there are absolutely
irresolvable Diophantine problems for it.

(III) human intelligence is representable through a finite machine (TM) and there
are absolutely irresolvable Diophantine problems for it.

Gödel was convinced that (I) held, but he was also aware that his incomplete-
ness theorems did not make the existence of a mechanic procedure equivalent
to human mind impossible. Gödel, however believed that from his theorems it
followed that if a similar procedure existed we “with our human understanding
could certainly never know it to be such, that is, we could never know with
mathematical certainty that all the propositions it produces are correct”. This
exactly means that “the human mind (in the realm of pure mathematics) is
equivalent to a finite machine that, however, is unable to understand completely
its own functioning”. In 1972 Gödel expressed further on the matter saying [18]:
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On the other hand, on the basis of what has been proved so far, it remains
possible that there may exist (and even be empirically discoverable) a theorem-
proving machine which in fact is equivalent to mathematical intuition, but
cannot be proved to be so, nor even be proved to yield only correct theorems
of finitary number theory.

This formulation is significantly different from that of 1951, as now Gödel
appears to recognize that the mind, at least in his doing mathematics, could be
a machine and we could not recognize this fact or not be able to prove it.

3 Knowing Machines

After the speculative ideas formulated by anti-mechanists, like the famous ar-
gument by Lucas [8, 9], several authors, like Benacerraf [2], Penrose [10–12],
Chihara [4], and Shapiro [14] (see [5] for a comprehensive survey), proposed
more formal lines of reasoning on the implications of Gödel’s Theorems. Here,
we consider the results by Reinhardt [13], Carlson [3], and Alexander [1], who
analyzed a formal theory, called Epistemic Arithmetic (EA), encompassing some
typically informal aspects of the Gödelian Arguments about the knowledge that
can be acquired by (knowing) machines. EA is the language of Peano Arithmetic
enriched with a modal operator K for knowledge (or for intuitive provability).
The formal interpretation of K passes through the definition of the properties
at the base of an epistemic notion of knowability :

– Logic Consequence: if φ and φ→ ψ are known, then ψ is known.

– Infallibilism: what is known is also true.

– Introspection: if φ is known then such a knowledge is known.

The basic axioms of knowledge are:

B1. K∀xφ→ ∀xKφ
B2. K(φ→ ψ)→ Kφ→ Kψ

B3. Kφ→ φ

B4. Kφ→ KKφ

where B2-B4 formalize the intuitions above and are stricly related to, e.g., the
modal system S4, while B1 expresses a first-order condition stating that the
assertion “φ is known to be valid” implies the knowledge of each element that
can be assigned to x in φ and the truth of the formula under each such assign-
ment. 7 Assumed that the K-closure of φ is the universal closure of φ possibly
prefixed by K, the axioms of EA are the K-closure of B1-B4 and of the axioms
of Peano Arithmetic. The theory of knowledge defined in such a way extends
conservatively the classical interpretation of Peano Arithmetic.

7 We are assuming that φ is a formula with one free variable x.
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Under this theory of knowledge, variants of Church-Turing Thesis are in-
vestigated to analyze the relationship between properties that are weakly K-
decidable 8 and the TMs that formalize the decision algorithm for these proper-
ties. In the following, we assume that We is the recursively enumerable set with
Gödel number e.

Theorem 1 (Reinhardt’s schema [13]). ∃eK∀x(Kφ↔ x ∈We) is not con-
sistent in EA9.

Informally, Reinhardt’s schema states that a TM exists for which it is known
that it enumerates all (and only) the elements (for which it is known) that make
φ true. More precisely, as the assignments making φ true are a known recursively
enumerable set, we then derive the computability, through a known TM, of the
(weak K-) decision problem for φ. Following Carlson, the intuitive interpretation
is: I am a TM and I know which one. A weaker version of Reinhardt’s schema is
conjectured by Reinhardt himself and proved by Carlson, in which the outermost
K operator prefixes the statement.

Theorem 2 (Carlson’s schema [3]). K∃e∀x(Kφ↔ x ∈We) is consistent in
EA.

Quoting Carlson, I know that the set of x for which I know φ(x) is recursively
enumerable, or, by rephrasing an analogous hypothesis studied by Benacerraf
independently [2], I know I am a TM but I do not know which one. Carlson uses
the term knowing machine to denote any recursively enumerable proof system
that represents a model for the theory of knowledge, and shows that, indeed, EA
integrated with his schema is a knowing machine. As a corollary of this result,
the schema obtained by removing the outermost K operator is still consistent in
EA.

The proofs of the results above rely on the validity of K(Kφ → φ), stating
that in the formal system the factivity of knowledge is known. In between these
two limiting results, Alexander has recently proved a dichotomy: a machine can
know its own factivity as well as that it has some code (without knowing which,
as stated by Carlson’s schema), or it can know its own code exactly (proving the
consistency of Reinhardt’s schema) but cannot know its own factivity (despite
actually being factive). Providing that the axioms of EA mod factivity consist
of the axioms of EA except for the universal closure of B3 prefixed by K (that
represents knowledge of factivity of knowledge), it is possible to prove that:

Theorem 3 (Alexander [1]). Reinhardt’s schema is consistent in EA mod
factivity.

and then to construct the previous dichotomy.
In this setting, we show a result related to a specific case. An interpreter fu

is a function mimicking the behavior of any other function. Formally, fu(x, y) =
fx(y). For instance, the universal TM is an interpreter. Interpreters represent a

8 The assignments of x satisfying φ are known.
9 The inconsistency of this schema is proved as a consequence of first Gödel’s theorem.
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classical tool in computability theory and play a fundamental role for program-
ming languages. Now, let us consider Reinhardt’s schema in EA mod factivity
and φ(x) := (fx(x) = 1). Then, from:

∃eK∀x(Kφ↔ x ∈We)

by taking x = e we derive:

∃eK(Kφ(e)↔ e ∈We) (1)

and:
K(Kφ(e)→ φ(e)) (2)

which expresses a limited form of knowledge of factivity that is allowed in EA
mod factivity. More precisely, we have a machine that, for (at least) a specific
choice of the function φ and of the input x, i.e., the interpreter function and the
Gödel number of the machine itself, knows its own code and its own factivity.
We have to note that taking x = e roughly speaking means that if I allow the
machine to know its own identity, then of course it will possess this knowledge.
Attributing this capacity to a machine is very natural for us and in our opin-
ion it shows that Alexander’s framework is adequate to analyze the machines’
knowledge 10. By virtue of such a choice, the intuition that we stem is that
the machine knows its own code and is aware of the factivity of the knowledge
resulting by interpreting its own code, while such an awareness, according to
the dichotomy above, is lost when interpreting other inputs. As a consequence,
by rephrasing Carlson and Benacerraf intuitions, we could say: If I know which
universal TM I am, then I know the factivity of my knowledge.11 Hence, to some
extent, self-reference increases the expressiveness of knowledge, provided that
the machine is an interpreter. In our opinion, this is an interesting enhancement
of the tradeoff result provided by Alexander that can represent an additional
formal element for the analysis of the Gödelian Arguments.
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implications. In K. Gödel, editor, Collected Works, volume III, pages 304–335.
Oxford University Press, 1995.

8. J.R. Lucas. Minds, Machine and Gödel. Philosophy, 36:112–127, 1961.
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Abstract. This paper focuses on the automated extraction of concrete entities 
from a specialized-domain corpus. Then, in a bootstrapping phase, the candi-
dates are used to extract new candidates. Concrete entities are automatically 
identified by a set of spatial features. In a spatial scene something is located by 
virtue of the spatial properties associated with a reference object. The axial 
properties are represented by place adverbs. Additionally, for identifying refer-
ent objects in a sentence we consider syntactical patterns extracted by chunking. 
In order to reduce noise in results, we take into account a corpus comparison 
approach and linguist heuristics. Results show high precision in candidates with 
high weights. 

Keywords: Concrete entities, lexical relation, information extraction, term 
extraction, axial properties, nominalization. 

1. Introduction 

In recent years, the automatic mining of relevant knowledge in the biomedical domain 
has become in an interesting research area, particularly in tasks related to the genera-
tion of taxonomies and ontologies (Smith and Kumar, 2004). This kind of tasks re-
quire the design and implementation of efficient information extraction (IE) methods, 
capable of identifying and extracting textual patterns that contain such relevant 
knowledge. 

Therefore, in this work we propose a methodology for the automatic extraction of 
concrete entities implicit in medical documents. Then, in a bootstrapping phase, these 
candidates are used for extracting a larger set of new candidates.  

Linguistically speaking, a main concern is those noun phrases (NP) whose modi-
fiers are relational adjectives and where the noun head is a concrete entity, because 
relational adjectives introduce semantic features which describe specific properties 
such as formal, constitutive, telic and agentive qualities (Fábregas, 2007). The identi-
fication of this type of NP contributes to delimit the number of possible semantic rela-
tions. For testing our method, we work with a corpus of medical texts in Spanish. 

We organize our paper as follows: in section 2 we define what a concrete entity is, 
taking into account the description proposed by Fellbaum (1998) for classifying 
names in WordNet. Then, in section 3, we show a brief explanation about the repre-
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sentation of space in natural language, according to a cognitive framework. In section 
4, we describe the most common deverbal nominalizations in specialized texts. In 
section 5 we explain the relation noun + relational adjective in order to delineate a set 
of linguistic heuristics useful for filtering non-relevant adjectives. In section 6 we 
describe our methodology. In section 7 we offer a description of preliminary results. 
Finally, in section 8, we give our conclusions. 

2. Concrete entities 

We understand all that exists in the world as a concrete entity which something can be 
predicated (in Aristotle’s categories: substance). For example, concrete entities can be 
artifactual categories like vehicles, clothing and weapons, or natural kinds like birds, 
fruits and vegetables (Landau and Jackendoff, 1993; Murphy, 2002). This is in line 
with 8 of the 25 main categories considered in the WordNet hierarchy for nouns de-
noting tangible things: {animal, fauna}, {artifact}, {body}, {food}, {natural object}, 
{person, human being}, {plant, flora}, {substance}. From our point of view these 
categories can be collapsed in artifactual and natural kinds.  

3. Space in language and cognition 

Levinson (2004) points out that the spatial thinking is a crucial feature in our lives: 
we constantly consult our spatial memories in events such as finding our way across 
town, giving route directions, searching for lost keys, and so on. This importance is 
mirrored in real discourse where knowledge about formal, agentive, constitutive and 
telic features, as well as spatial features, are found in specialized domains. 
 There are three frames of reference lexicalized in language: intrinsic, relative 
and absolute frame. Intrinsic frame involves an object-centred coordinate system, 
where the coordinates are determined by the “inherent features”, sidedness or facets 
of the objet to be used as the ground (i.e., he’s in front of the house). Relative frame of 
reference presupposes a viewpoint where a perceiver is located, a figure and ground 
distinct from the viewpoint. Thus, it offers a triangulation of three points, and utilizes 
coordinates fixed on viewpoint to assign directions to figure and ground (i.e., the ball 
is to the left of the tree). Finally, absolute frame refers to the fixed direction provided 
by gravity (i.e., he’s north of the house). 

3.1. Work related 

Mani et al. (2010) focused on the problem of extracting information about places, 
considering both absolute and relative references. Their goal was on grounding such 
references to precise positions that can be characterized in terms of geo-coordinates. 
These authors use a supervised approach to mark up PLACE tags in documents. Spa-
tialML is an annotation scheme derived from this work and which has been applied to 
annotated corpora in English and Mandarin Chinese. An automatic tagger for Spa-
tialML extents scores 86.9 F-measure, which is a reasonable performance. On the 
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other hand, Clementini et al. (1997) propose a unified framework for the qualitative 
representation of positional information in a two-dimensional space in order to per-
form spatial reasoning. The orientation and distance relations for objects modeled as 
points can determine positional information. The implicit characteristics of an object 
are its topology and its extension, while, with respect to other objects, topological, 
orientation, and distance relations have to be considered. 

3.2. Axial properties 

Evans (2007) explains that a spatial scene is a linguistic unit containing information 
based on our spatial experience. This space is structured according to four parameters: 
a figure (or trajector), a referent object (that is, a landmark), a region and —in certain 
cases— a secondary reference object. These two reference objects configure a refer-
ence frame. We can understand this configuration by considering the following exam-
ple: un auto está estacionado detrás de la escuela (Eng.: “a car is parked behind the 
school”). In this sentence, un auto is the figure and la escuela is the referent object. 
The region is established by the combination of the adverb detrás  which sketches a 1

spatial relation with the referent object. This relation encodes the location of the fig-
ure. 

Moreover, Evans (2007) points out the existence of axial properties, that is, a set of 
spatial features associated to a specific referent object. Considering again the sentence 
a car is parked near to the school, we can identify the location of the car searching 
for it in the region near to the school. Therefore, this search can be performed because 
the referent object (the school) has a set of axial divisions: front, back and side areas. 

3.3. Axial properties and place adverbs 

Axial properties are linguistically represented by place adverbs. In this experiment we 
only consider adverbs functioning in Spanish with preposition de (Acosta and 
Aguilar, 2015):  

Enfrente, delante (Engl. In front to/of); Detrás, atrás (Engl. Behind); so-
bre, encima (Engl. On); abajo, debajo (Engl. under); dentro, adentro 
(Engl. In/inside); fuera, afuera (Engl. Out/outside); arriba (Engl. Above/
over). 

Additionally, we use some synonymous nouns such as exterior (outside) and inte-
rior (in), as well as side nouns synonymous with the dimensions left and right. 

4. Nominalization 

According to Martin (1993: 203-220) and Vivanco (2006), from a linguistic perspec-
tive, the discourse neutrality in science and technology is presented by means of im-

 In English, behind is a preposition. In contrast, in Spanish is an adverb.1
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personation: missing second person, low presence of first person, abundance of im-
personal verbs and passive voice, as well as nominalizations hiding actions made by 
the subject. These nominalizations are used by scientists to support their arguments, 
coining new terms by means of nouns and summarizing information previously pro-
vided in a text. 

In line with the frequent use of nominalization in specialized texts, in the case of 
Spanish, Cademártori, Parodi and Venegas (2006) show data concerning the use of 
deverbal nominalizations in three domains: commercial, maritime and industrial. The 
most used suffixes for constructing nouns are: -ción, -miento, -sión, and -dor. 

5. Adjectives-Noun modifiers 

An adjective is a grammatical category whose function is to modify nouns (Demonte, 
1999). There are two kinds of adjectives: descriptive and relational adjectives. The 
descriptive adjectives refer to constitutive features of the modified noun characterized 
by means of a single physical property: color, form, character, predisposition, sound, 
and so on, e.g., el libro azul (Eng.: “the blue book”). On the other hand, relational 
adjectives assign a set of properties, i.e., all the characteristics jointly defining names 
as sea: puerto marítimo (Eng.: “maritime port”). In terminology, relational adjectives 
represent an important element for building specialized terms. For example, inguinal 
hernia, venereal disease and others are considered terms in medicine as opposed to 
NPs with more contextual interpretations like rare hernia, serious disease, and criti-
cal disorder. 

5.1. Identifying syntactically non-relevant adjectives 

If we consider the internal structure of adjectives, we can identify two types: perma-
nent and episodic adjectives (Demonte, 1999). The first kind of adjectives represents 
stable situations, permanent properties characterizing individuals. These adjectives 
a re loca ted ou ts ide of any spa t ia l o r t empora l res t r ic t ion ( i . e . , 
psicópata/“psychopath”). On the other hand, episodic adjectives refer to transient 
situations or properties implying change and with time-space limitations. 

Almost all descriptive adjectives derived of participles belong to this latter class as 
well all adjectival participles (i.e., harto/“jaded”). Spanish is one of the few languages 
that in its syntax represent this difference in the meaning of adjectives. In many lan-
guages this difference is only recognizable through interpretation. In Spanish, indi-
vidual properties can be predicated with the verb ser, and episodic properties with the 
verb estar, which is an essential test to recognize what class an adjective belongs to. 
In this sense, with the goal of identifying and extracting non-relevant adjectives, we 
propose extracting adjectives predicated with the verb estar (Acosta, Aguilar and 
Sierra, 2013).  

Another linguistic heuristic for identifying descriptive adjectives is that only these 
kinds of adjectives accept degree adverbs or are part of comparative constructions, 
e.g., muy alto/“very high”, Juan es más alto que Pedro/“John is taller than Peter”.  
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Finally, only descriptive adjectives can precede a noun because —in Spanish— rela-
tional adjectives are always postposed (e.g., la antigua casa/“the old house”). 

5.2. Types of relational adjectives 

According to Bosque (1993) relational adjectives such as salivary in the noun phrase 
salivary gland belong to a kind of relational adjectives which do not occupy positions 
in the argument structure of the predicate, but they denote entities which establish a 
specific relation with the head noun. Bosque refers to these relational adjectives as 
classification relational adjectives, while the term thematic relational adjectives is 
left for the other group, e.g., the case of renal infection, where infection is derived 
from a verb. 

6. Methodology 

In this paper we propose a methodology for extracting concrete entities from a spe-
cialized domain corpus with part-of-speech tags. 

6.1. Part-of-Speech Tagging 

Part-of-Speech (POS) tagging is the process of assigning a grammatical category to 
each word in a corpus. The most common taggers used for Spanish are TreeTagger 
(Schmid, 1994) and FreeLing  (Carreras et al., 2004). In this experiment, we use 2

FreeLing because it is more precise than TreeTagger for tagging texts in Spanish. The 
following example shows a sentence in Spanish tagged with the FreeLing tag-
ger: 

el/DA tipo/NC más/RG común/AQ de/SP lesión/NC ocurrir/VM cuando/CS 
algo/PI irritar/VM el/DA superficie/NC externo/AQ del/PDEL ojo/NC 

6.2. Chunking 

Chunking is the process of identifying and classifying segments of a sentence by 
grouping the major parts-of-speech that form basic non-recursive phrases.  

In this work, we concern the automated extraction of concrete entities. Concrete 
entities relevant to a domain are terms and the most productive patterns of terms con-
sist of a noun and zero or more adjectives (Vivaldi, 2001). Using FreeLing tags, these 
patterns can be represented as a regular expression in a single pattern: 

<NC><AQ>* 

The above regular expression is considered in the first phase of extraction of candi-
dates. 

 FreeLing based on the tags of the EAGLES group.2
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Concrete entities can be located in spatial scenes as figures or reference objects. In 
this experiment, only reference objects are extracted with their axial properties that 
can be linguistically represented as: 

<RG|NC><PDEL><DA>?<NC><AQ>* 

The regular expressions used to extract non-relevant adjectives according to the lin-
guistic heuristics mentioned in section 5.1 are: 

<RG><AQ> 
<VAE><AQ> 

< D.*|P.*|F.* |S.*><AQ><NOUN> 

Where RG, AQ and VAE as tagged with FreeLing, correspond to adverbs, adjectives 
and the verb estar, respectively. Tags <D.*|P.*|F.*|S.*> correspond to determinants, 
pronouns, punctuation signs and prepositions. The expression <D.*|P.*|F.*|S.*> is a 
restriction to reduce noise, since elements wrongly tagged by FreeLing as adjectives 
are extracted without this restriction. 

6.3. Bootstrapping phase 

We use the candidates to concrete entities obtained in the first step as seeds for ex-
tracting more candidates. On the one hand, we assume that coordinating phrases 
where a good candidate occurs have a high probability of containing other good can-
didates for a concrete entity: 

<NC><AQ>*<CC><NC><AQ>* 

Where <CC> tag corresponds to the disjunction (i.e.: kidney or liver) and conjunction 
(i.e.: kidney and liver). 

On the other hand, noun phrases with at least an adjective take advantage of the 
noun head of candidates for a concrete entity for finding more specific candidates 
(i.e., artery-femoral artery):  

<NC><AQ>+ 

6.4. Reducing noise 

We sought to remove non-relevant words from noun phrases before ranking candi-
dates for concrete entities. After the chunking phase, noise was reduced by removing 
non-relevant open-class words. One of our goals consists of building this stopword 
list as automatically as possible.  

Since concrete entities are terms in the domain, a list of non-relevant words from 
the domain (i.e., stopword list) can be used to refine the terminology obtained from an 
automatic process. We considered a list constructed with high frequency words in a 
reference corpus to have drawbacks because, apart from the selection by occurrence 
frequency (in the domain corpus, words with high frequency can be terms), human 
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supervision is required in order to determine whether a word is relevant to the do-
main. 

Given the above, we consider that linguistic heuristics operating in a specific lan-
guage can be taken into account in order to automate the selection of non-relevant 
words. One of the disadvantages, however, is that this leads to language dependence. 
For the case of adjectives, in Spanish, characteristic features have been proposed in 
order to distinguish between descriptive and relational adjectives as mentioned in 
section 5. On the other hand, with a corpus comparison approach, we obtain both 
nouns and adjectives where the relative frequency in a reference corpus is greater or 
equal than in the domain corpus. These words can be used as part of the stopword list. 
Additionally, we take into account empirical evidence concerning the use of deverbal 
nominalizations in specialized discourse (Cadermártori, Parodi and Venegas, 2006) 
for removing phrases where noun heads are indicative of actions, events and states but 
not concrete entities (in a NP with a noun head of this type,  a thematic relational ad-
jective is found). In this sense, suffixes as –ción, -miento, and –sión were used for 
filtering out noun phrases. Finally, a short list with the more frequent non-relevant 
nouns operating as noun heads in phrases: form, type, kind, cause, effect and so on, 
were considered for removing noun phrases. 

Adjectives from the reference corpus can be used as a fixed-size list where non-
relevant adjectives automatically extracted from the domain can be added. These can 
be obtained taking into account the three heuristics mentioned in section 5.1. Then, 
these adjectives can be manually reviewed in order to determine their relevance to 
any specialized knowledge domain (i.e., adjectives as relevant, important, necessary, 
appropriate, and so on can be considered for the stopword list). This is a fixed-size list 
and can be the base-list where non-relevant adjectives automatically extracted from 
the domain can be added. 

6.5. Ranking words 

We evaluate termhood of simple words by means of rank difference (Kit and Liu, 
2008) between two different corpora as in the formula (1). Given the syntactical pat-
tern used for terms in this study, we take into account only nouns and adjectives in 
both corpora because they are the kind of words most used for building terms: 

  (1) 

Where fdom and Ndom correspond to the absolute occurrence frequency of wi and the 
size of the domain corpus, respectively. Similarly, fref and Nref correspond to absolute 
occurrence frequency of wi and the size of the reference corpus.  

Kit and Liu (2008) only focus on extracting single-word term candidates, so they 
only weigh words occurring in both the domain and the general corpus. In our exper-
iment we also consider words that only occur in the domain corpus. We assumed that 
the reference corpus is large enough to filter out non-relevant words, hence words 
only occurring in the domain corpus have a higher probability of being relevant and 
the word’s frequency reflects its importance: 
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  (2) 

We consider that the larger the reference corpus, the higher the exhaustivity  of open 3

class words of general usage, as well as a higher probability that specialty terms occur 
at least one time (the reference corpus was collected from an online newspaper where 
news about science and technology are published too), so that we would expect a 
higher precision in ranking. 

6.6. Ranking multi-word term candidates 

Formally, if a candidate noun phrase (np) has a length of n words, w1 w2 …wn, where 
n>1, then the ranking of the candidate np is the sum of the frequency of np as a whole 
plus the weights of all the individual words wi: 

  (3) 

7. Results 

This section presents the results of our experiment considering a subset of 1,200,000 
tokens of the MedLineplus corpus. 

7.1. Sources of textual information 

Domain corpus 
The source of textual information is constituted by a set of documents of the medical 
domain, basically human body diseases and related topics (surgeries, treatments, and 
so on). These documents were collected from MedlinePlus in Spanish.  

The size of the corpus is 1.2 million tokens, but we carried out our experiment with 
a subset of 200,000 words in order to determine manually the number of concrete 
entities present in the results. As an ongoing work, we are manually determining how 
many concrete entities are present in the complete corpus. We chose a medical do-
main due to the availability of textual resources in digital format. Finally, we assume 
that the choice of domain does not suppose a very strong constraint for generalizing 
the results to other domains. 

Reference corpus 
With the goal of ranking words relevant to the domain by means of their relative fre-
quency ratio, a large reference corpus was collected from an online newspaper  with 4

new articles from 2014 (the size of corpus is about 5 million tokens). URLs from the 

  Exhaustivity of a document description is the coverage it provides for the main topics of the 3

document. So, if we add new vocabulary terms to a document, the exhaustivity of the docu-
ment description increases (Baeza and Ribeiro, 2011).

  www.lajornada.com.mx. Mexican newspaper with information available online.4
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main heads were automatically extracted using the Python library BeautifulSoup . 5

Then, this set of URLs was introduced in WebBootCat, a search tool of Sketch En-
gine , in order to automatically collect the textual information from each WEB page. 6

The description of the structure of the reference corpus is showed in table 1. 

Table 1. Structure of the reference corpus. 

7.2. Other resources 

The programming language used in order to automate all tasks required was Python 
version 3.4 as well as the NLTK module version 3.0 (Bird, Klein and Loper, 2009). 
Additionally, the POS tagger used in this experiment was FreeLing which is included 
in Sketch Engine. 

Category Docs %

Sciences 24 0.4

Politics 1865 29.3

Entertainment 98 1.5

Sports 515 8.1

Society 416 6.5

City 424 6.7

States 449 7.1

Economy 658 10.4

World 662 10.4

Culture 137 2.2

Editorial 316 5.0

Mails 318 5.0

Opinion 319 5.0

Homepage 155 2.4

  www.crummy.com/software/BeautifulSoup/bs4/doc/5

  https://the.sketchengine.co.uk6
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7.3. Analysis of results 

The first phase of extraction of candidates to concrete entity without filters achieves a 
global precision of 56%. The tables 2 and 3 show precision with different thresholds 
of candidates starting with the better ranked candidates. With the stopword list built as 
mentioned in section 6.4, we achieve a global precision of 76%. Global precision with 
a stopword list reflects an improvement of 20%, but a significant loss of 17% of true 
candidates. As can be seen from these tables, the ranking of words and noun phrases 
is useful for sorting results from the most relevant to the least relevant results. 

Table 2. Comparison of results. 

Bootstrapping phase 
The bootstrapping phase taking into account coordinating phrases achieves a set of 
1248 candidates, of which 262 are new true candidates. The global precision with this 
second phase is of 47%, with a precision by thresholds as shown in table 3. The ad-
vantage of this phrase structure is that single-word candidates can be extracted. 

On the other hand, the bootstrapping phase considering noun phrases achieves a 
set of 2796 candidates, of which 1534 are good candidates. The global precision of 
this phase is of 55%, with a precision by thresholds as shown is table 3. One disad-
vantage of this structure is that only candidates with at least one adjective can be se-
lected. 

Table 3 shows a better performance with noun phases. The identification of the 
concrete entities present in corpus is an ongoing task that will let us evaluate in terms 
of recall too. 

Candidates Precision

Without 
filter

With 
filter

100 91% 96%

200 87% 87%

300 73% 83%

400 69%

500 63%
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Table 3. Bootstrapping phase. 

7.4. Discussion 

The candidates in a bootstrapping phase give us insight about the kind of semantic 
relations implicit in noun phrases of the type <NC><AQ>. Given the phase of reduc-
tion of non-relevant adjectives, we have a great deal of relational adjectives where it 
is possible to find different relations. For example, salivary gland has implicit a telic 
relation. On the other hand, testicular gland has a part-whole or locative relation. Fi-
nally, meibomian gland may be considered as a specific type of gland.  

With respect to the extraction of lexical relations, specifically hyponymy-hyper-
nymy relations (Hearst, 1992; Wilks, Slator and Guthrie, 1995; Pantel and Pennac-
chiotti, 2006), as well as meronymy relations (Berland and Charniak, 1999; Girju, 
Badulescu and Moldovan, 2006), these works are based on patterns where two terms 
are located in the context of a sentence: the hand has fingers, the dog is an animal, 
and so on, but there are few jobs working with noun phrases, which we consider it is 
very important because we could consider a noun phrase as salivary gland as an hy-
ponym of gland, but it is clear that if we dig a little deeper that the semantic relation 
implicit is telic. 

8. Conclusions 

We discussed a methodology for extracting concrete entities in the medical domain. 
Concrete entities have been studied since Aristotle’s works, particularly in his biolog-
ical and zoological descriptions. According to Aristotle’s categories (the first catego-
ry), many things can be predicated of substances. We assume that substances are con-
crete entities, with a more extended meaning, i.e.: the eight tangible categories formu-
lated by Fellbaum for WordNet (1998). Thus, we consider that the automated identifi-
cation and extraction of this kind of information is an important advance in further 
NLP tasks. 

Cognitive abilities as the spatial knowledge and his representation in natural lan-
guage are important for our extraction methodology. We observe that spatial descrip-
tions are frequent in specialized discourses. Additionally, we propose a further step of 
bootstrapping in order to find a great number of candidates for concrete entities. Can-

Candidates Coordinating phrases Noun phrases

100 55% 71%

200 59% 71%

300 59% 69%

400 59% 68%

500+ 53% 65%
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didates with a concrete entity as a noun head and a relational adjective show semantic 
relations as part-whole, locative, agentive and telic, which can be interpreted, at first, 
as hyponymy/hyperonymy relations.  

On the other hand, to assign relevance to words is an important step for ranking 
candidates, according to our exposed results. In this sense, as ongoing work, we are 
collecting more information about science and technology at the same electronic 
journal in order to improve the results in the ranking process. 

Finally, it is necessary to mention that POST taggers as FreeLing and TreeTagger 
fail in the task of identifying nouns, adjectives and verbs closely related with the do-
main. This failure has a negative impact on the results. We believe it is important to 
face this problem in future extraction tasks. 
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Abstract. Visual analytics has become an important tool for gaining
insight on big data. Numerous statistical tools have been integrated with
visualization to help analysts understand big data better and faster. How-
ever, data is inherently uncertain, due to sampling error, noise, latency,
approximate measurement or unreliable sources. It is very important
and vital to quantify and visualize uncertainties for analysts to improve
the results of decision making process and gain valuable insights during
analytic process on big data. In this paper, we propose a new frame-
work to support uncertainty in the visual analytics process through a
fuzzy self-organizing map algorithm running in MapReduce framework
for parallel computations on massive amounts of data. This framework
uses an interactive data mining module, uncertainty modeling and knowl-
edge representation that supports insertion of the user’s experience and
knowledge for uncertainty modeling and visualization in the big data.

1 Introduction

The rapid development of data collection technologies in the last decades has
led to accumulate the massive amounts of data referred to as Big Data. Today,
big data has become an important and hot research topic and a very realis-
tic problem in industry [15]. One of the important and vital aspects of the big
data is its veracity, which accounts for the degree of uncertainty (e.g. vagueness,
ambiguity, imprecision, and noise) in the content of user- or system-generated
data. There are various factors that lead to data uncertainty including approx-
imate measurement, data sampling fault, transmission error or latency, data
integration with noise and so on [8][9]. These factors produce a lot of vague
and imprecise data which implicitly contains valuable information. The repre-
sentation of uncertainty is an ongoing unresolved problem and emerging as a
problem of great importance in the field of visualization [16]. Hence, various
companies and many researchers have been recently attempting to enable and
identify new opportunities for markets and design innovative products through
the uncertainty visualization in the big data era [1]. The value of uncertainty
visualization in the big data is to accurately convey uncertainty to help users
and decision makers understand potential risks and hidden knowledge, and to
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minimize misleading results and interpretations [7]. A challenging and key ques-
tion is how users can effectively and efficiently understand the uncertain data
in the big data sets and interact with them through the user interface. Inter-
action and user interface challenges are critical aspects of extreme-scale visual
analysis to understand and cope with uncertainties. Adapting and applying vi-
sual analytics to the big data problems presents new challenges and opens new
research questions [18]. Visual analytics is a relatively new field of study that
aims at bridging this gap by integrating visualization and analytics in order to
turn the information overhead into an opportunity [12]. Contributions in this
area integrate information visualization, interaction and computational analysis
by data mining techniques in order to transform massive data into knowledge.
There have been several researches about visual analytics in the big data such as
[18][3][13]. The disadvantages of the existing works are their inability to quantify
and visualize uncertainty accurately.
The main contribution of this paper is a novel prototype system embracing un-
certainty in the big data through the visual analytics. This system can provide
valuable guidance through a close interaction between human operators, pre-
processing data, refining model’s parameters, building model, visualizing and
understanding uncertainty in the data through the visual interface where op-
erators are able to interact and provide desired inputs and configurations. For
uncertainty modeling in the big data, we extend our previous work in [8] -a
mechanism for mining and visualizing uncertainty in a centralized-batch data
processing- through the MapReduce framework. MapReduce [5] is a program-
ming model for executing distributed computations on massive amounts of data
in order to model a decentralized-batch data processing. This system leads to an
appropriate uncertainty-aware visualization in a massive amounts of data to help
both experienced and novice users understand hidden knowledge through mini-
mizing misleading interpretations. In section 2 we present background material
related to uncertainty modeling, visual analytics and MapReduce framework.
Section 3 presents our designed prototype for uncertainty visualization in the
big data. Section 4 discusses proposed interface design suitability from a visual
analytics perspective. Finally, section 5 concludes this paper and outlines future
work.

2 Background

2.1 Uncertainty modeling

Uncertainty is widely spread in real-world data. A data can be considered un-
certain, vague or imprecise where some things are not either entirely true nor
entirely false. To model uncertainty, numerous techniques have been proposed,
including probabilistic measures, Bayesian networks, belief functions, interval
sets and fuzzy sets theory [4]. There has been a lot of research in the applica-
tion of fuzzy sets theory to model uncertainty [8]. The Fuzzy set (FS) theory
introduced by Zadeh [17] is a more flexible approach than classical set theory,
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where objects belong to sets (clusters) with certain degree of membership rang-
ing [0..1]. In this paper, we use fuzzy sets theory as a mean to measure and
quantify uncertainty.

2.2 Visual analytics process model

Visual analytics is defined as analytical reasoning supported by highly interac-
tive visual interfaces that involves information gathering, data pre-processing,
knowledge representation, interaction and decision making. A process model of
visual analytics by Keim et al. [11] is illustrated in Fig. 1. According to Fig. 1,
the first step is pre-processing such as data cleaning and data transformation
over input data to be able to use it in the desired format for further inves-
tigations. After the pre-processing step, visualization methods and automated
analysis methods are applied to the data. Afterward, automated analysis meth-
ods using data mining methods are applied to generate models. These models
can be evaluated and refined by the user through a modification of initial pa-
rameters or selecting other type of analysis algorithms. User interaction with the
visualization is needed to reveal information by applying different visualization
techniques on the data such as descriptive analysis, graphical representations etc.
Based on this interaction, the user can conduct the model building and refine-
ment in the automatic analysis. Furthermore, knowledge can be gained during
mentioned different types of user interaction. Finally, the feedback loop stores
this knowledge of insightful analyses in the system and enables the analyst to
draw faster and better conclusions in the future.

Fig. 1: The visual analytics process model (adapted from [11])

2.3 MapReduce framework for big data processing

MapReduce is a programming model popularized by Google for processing and
generating large data sets with a parallel and distributed algorithm using many
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low-end computing nodes [14]. It is a scalable, fault-tolerant, and ubiquitous data
processing tool gaining significant attention from both industry and academia.
The main idea of the MapReduce is to hide details of parallel execution and allow
users to focus only on data processing strategies [6]. The MapReduce model is
composed of two procedures: Map and Reduce, written by the user. The Map
function computes a set of intermediate key/value pairs (i.e. a list of (key, value))
from the input. The intermediate key/value pairs are then grouped together on
the key-equality basis as (key, list(value)). The Reducer function performs a
summary operation on the list of all values based on each unique key. This
allows us to handle lists of values that are too large to fit in memory. The reduce
function finishes the computation started by the map function, and outputs the
final answer.

3 Proposed method: A Framework for Uncertainty-Aware
Visual Analytics in Big Data

Fig. 2: The proposed model for visual analytics

Our proposed model (see Fig. 2) is derived from the model of visual analytics
presented by Keim et al. in Fig. 1. Input data is collected, transformed and pre-
processed, both automatically, through the visualization and the user interaction
to be ready in the desired format for the analysis. After pre-processing, one of
the main challenges is the selection of an appropriate technique for uncertainty
modeling. The applied technique is based on our previous work in [8], a fuzzy
self-organizing map for uncertainty visualization in uncertain data sets. We have
extended our previous work integrating by MapReduce framework to be able to
use the big data for uncertainty modeling and visualization (see section 3.1).
We add an interactive module in our prototype design that allows refinement
of the applied techniques by the user. This prototype also consists of a graph-
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ical representation to support uncertainty visualization as well as a descriptive
analysis for knowledge representation to draw conclusion.

3.1 Uncertainty modeling

Our proposed uncertainty modeling is derived from our previous work in [8],
called Fuzzy Self-Organizing Map (FSOM). In [8], we proposed a fuzzy self-
organizing map algorithm using fuzzy c-mean (FCM) to model uncertainties
based on a centralized-batch processing framework. FSOM works in three phases.
In the first phase (we called it fuzzy competition), FCM technique has been
employed to assign a membership degree in clusters’ centers in terms of the input
data. Then in the second phase (we called it fuzzy cooperation), all the clusters’
centers cooperate by a Gaussian function with their neighbors in terms of the
membership degree. Finally at the third phase (we called it fuzzy adaption), all
the centers’ positions are updated. These three phases are repeated, until the
maximum number of iterations is reached or the changes become smaller than a
predefined threshold.
First, in this section we present the main design for parallel FSOM based on
MapReduce framework for a decentralized-batch processing which is depicted in
Fig. 3. Then we explain how the necessary computations can be formalized as
map and reduce operations in detail.

Fig. 3: The schematic of the MapReduce framework. C1, C2, C3 refer to cluster centers,
X1, X2, X3, X4 refer to corresponding uncertain data points in each mapper, and the
color of data points refers to target class (red = class 1 and black = class 2).
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According to Fig. 3, The map phase applies FSOM algorithm from [8] per-
forming the procedure of defining the membership degree of cluster centers from
corresponding uncertain data points while the reducer phase performs the pro-
cedure of updating the new centers.
Map Function: The input data set is stored in Hadoop Distributed File System
(HDFS) [2]. Data in HDFS is broken down into smaller pieces (called chunks)
and distributed throughout the cluster. In this way, the map and reduce func-
tions can be executed on smaller subsets of larger data sets, and this provides
the scalability that is needed for the big data processing. MapReduce reads a
single chunk of data on the input datastore, then call the map function to work
on the chunk. The map function then works on the individual chunk of data
and adds one or more key-value pairs to the intermediate KeyValueStore ob-
ject. MapReduce repeats this process for each of the chunks of data, so that the
total number of calls to the map function is equal to the number of chunks of
data. Each mapper runs FSOM algorithm from [8]. The result of this phase is a
KeyValueStore object that contains all of the key-value pairs added by the map
function. The key is the cluster centers and the corresponding values are the
position of centers in each mapper, the membership degree of each center, and
the membership degree of each center for different target classes. After the map
phase, MapReduce prepares for the reduce phase by grouping all the values in
the KeyValueStore object by unique key in the intermediate phase.
Reduce Function: The reduce function scrolls through the values from the
KeyValueStore to perform a summary calculation. We calculate the average of
aggregated values to sum up the results (see Fig. 3).
The MapReduce framework is repeated until the clusters’ centers do not change
any more in the predefined number of iteration (we set 500 iterations) or a max-
imum purity has been reached. It is highly probable that the formed clusters
containing normal data (correct classification) will have a number of abnormal
data (incorrect classification) and vice versa. Therefore, we assigned a good-
ness value in range of [0..1] for each cluster by purity metric. The purity metric
determines the frequency of the most common category/class into each cluster:

Purity =
1

n

k∑

q=1

max
1≤j≤l

njq (1)

Where, n is the total number of samples; l is the number of categories, njq is the
number of samples in cluster q that belongs to the original class j(1 ≤ j ≤ l). A
large purity (close to 1) is desired for a good clustering. If the all data samples
in a cluster have the same class, the purity value set to 1 as a pure cluster.

3.2 Case study

To test our framework, we use a case study based on KDD-CUP’99 anomaly de-
tection data set contains a standard set of data, which includes a wide variety of
intrusions simulated in a military network environment. Each record in this data
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set was labeled as either normal or as exactly one specific kind of attack. Attack
labels are classified as DOS (denial-of-service, e.g. syn flood), R2L (unauthorized
access from a remote machine, e.g. guessing password), U2R (unauthorized ac-
cess to local superuser (root) privileges, e.g., various buffer overflow attacks),
and probing (surveillance and other probing, e.g., port scanning). These differ-
ent attacks are considered as a single attack by same labeling in our study. This
data set consists of 41 features and 494021 records. In the experiments, 75%
of data set is used as training and the rest is considered as testing in order to
validate the functionality of the proposed method. To add uncertainty in the
considered data set, we add a Gaussian white noise with a zero mean and the
standard deviation with the normal distribution [0, 2 ∗ f ], where, f is an integer
parameter from the set of {1, 2, 3} to define different uncertain levels for some
features randomly.
This example helps security data analysts to monitor computer network traffic
for security purposes. The challenge for an analyst is the discrimination between
real attacks and normal traffic, where the nature of the traffic data is uncertain.
The proposed framework for uncertainty-aware visual analytics enables insight-
ful analyses in the system and allows the analyst to understand uncertainty for
drawing faster and more accurate conclusions.

Fig. 4: Prototype design: uncertainty visualization in the big data including configura-
tion section (top left); numerical results section for evaluating model by training and
testing data (bottom left); uncertainty visualization plot (top right); the history of
recent training (bottom right).
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3.3 Performance measurement

To evaluate the results by the proposed algorithm, we apply several criteria
including detection rate (DR), false positive rate (FPR), F-measure, accuracy
and specificity (true negative rate) which are frequently used measures in the
classification problems [10].

4 Prototype system design for visualizing uncertain
clusters

The prototype design is depicted in Fig. 4 to provide an useful and effective
uncertainty visualization of KDD-CUP’99 traffic data. This prototype was im-
plemented by the MATLAB R2014b. The graphical user interface is designed
to allow users for visual analytics through the embedded modules. The graph-
ical interface has been divided into three main modules: data preparation (top
left: input data, model properties and pre-processing), numerical results (bottom
left: performance metrics for knowledge representation), and graphical represen-
tation (right: uncertainty visualization in the top and history of the training
in the bottom). The operators can consistently train and test the data, then
save the results for further usage or open preexisting results. To visualize the
uncertainty, we map the magnitude of the propagated uncertainty to the size (to
visualize the volume of the clusters) and the color (to encode the purity of the
clusters) of nodes in a 2D plot defined as the projection of the 41 variables from
the uncertain input big data. This projection is shown in Fig. 5.

Fig. 5: Uncertainty visualization in the big data

The blue nodes denote normal traffic while the red nodes denote attack traf-
fic. We multiply the third value of the KeyValueStore (see Fig. 3) to the corre-
sponding red and blue colors in order to define the impurity of the normal and
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attack clusters. The more uncertain a cluster is, the more impure is its visual
representation. For instance, the purple color denotes a 100% uncertainty in a
formed cluster (purity = 0.5), neither completely normal nor attack traffic. This
is useful for discovering the sources of uncertainty. This visualizes the effect of
uncertainty and steers the user’s attention towards the most reliable clusters
over uncertain data points so that only the most reliable clusters are highlighted
to the user. On the other hand, a large size of a node denotes the more uncertain
data involved while a small size of a node denotes the less uncertain data in-
volved which can be interpreted as outliers. As a consequence, these small nodes
steer the user’s attention visually towards the most unreliable nodes as outliers.
This prototype design displays a high-level view of entire uncertain big data
together with the numerical results. Preliminary results show that the designed
prototype produces satisfactory outcomes. Users can steer and control uncer-
tainty based on their own practices or analytic needs in the data preparing step,
find outliers visually as well as distinguish visually reliable and unreliable clus-
ters. User evaluations by zooming into sub-regions of clusters and reveal more
details (i.e., details on demand) will be carried out in the future.

5 Conclusion

In this paper, we propose a framework for uncertainty-aware visual analytics in
the big data. We integrated a fuzzy self-organizing map algorithm with MapRe-
duce framework in order to execute a parallel computing on big data.
The prototype system includes a set of interactive visual representations that
supports the analysis of the uncertain data and user interaction. We believe that
this prototype system is useful when the analyst wants to extract a model that
explains the behavior of uncertain data, find outliers visually and makes insight-
ful decisions. The future work is needed by more user evaluations: zooming into
sub-regions of uncertain clusters and reveal more details.

6 Acknowledgment

This work was partially supported by projects TIN2013-47272-C2-2 and SGR-
2014-881.

References

1. Bendler, J., Wagner, S., Brandt, T., Neumann, D.: Taming uncertainty in big data.
Business & Information Systems Engineering 6(5), 279–288 (2014)

2. Borthakur, D.: The hadoop distributed file system: Architecture and design.
Hadoop Project Website 11(2007), 21 (2007)

3. Cook, K., Grinstein, G., Whiting, M., Cooper, M., Havig, P., Liggett, K., Nebesh,
B., Paul, C.L.: Vast challenge 2012: Visual analytics for big data. In: Visual An-
alytics Science and Technology (VAST), 2012 IEEE Conference on. pp. 251–255
(2012)

A. Karami et al. A Framework for Uncertainty-Aware Visual Analytics in Big Data

154



4. Correa, C.D., Chan, Y.H., Ma, K.L.: A framework for uncertainty-aware visual an-
alytics. In: IEEE Symposium on Visual Analytics Science and Technology (VAST).
pp. 51–58 (2009)

5. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Symposium on Operating System Design and Imple-
mentation (OSDI). pp. 137–150 (2004)

6. Grolinger, K., Hayes, M., Higashino, W.A., L’Heureux, A., Allison, D.S., Capretz,
M.: Challenges for mapreduce in big data. In: IEEE World Congress on Services
(SERVICES). pp. 182–189 (2014)
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