
Property-Based Methods for Collaborative Model

Development

Marsha Chechik1, Fabiano Dalpiaz3, Csaba Debreceni4, Jennifer Horko�2,
István Ráth4, Rick Salay1, and Daniel Varró4

1 Department of Computer Science, University of Toronto, Canada
2 City University London, UK

3 Utrecht University, the Netherlands
4 Budapest University of Technology and Economics, Hungary

Abstract. Large-scale software projects are often faced with the chal-
lenge of enabling the high degree of collaborative and concurrent de-
velopment required to meet the aggressive delivery schedules while still
maintaining a high standard of system correctness and safety. While
Model-Driven Engineering (MDE) can be e�ective in accelerating devel-
opment, traditional approaches to addressing the above challenges are de-
signed for code, and are not directly applicable to models. In this paper,
we propose a novel approach to addressing the problem of model-based
collaborative development using property-based techniques. We illustrate
our proposals and outline the challenges to realizing them.

1 Introduction

Large-scale software industries are often faced with the challenge of enabling
collaborative and concurrent development required to meet aggressive delivery
schedules, while maintaining a high standard of system correctness and safety.

In recent years, Model-Driven Engineering (MDE) techniques are being in-
creasingly used to accelerate software development in these domains. Here, mod-
els are used as the primary development artifacts amenable to continuous formal
veri�cation and validation. Concurrent modeling is becoming increasingly rele-
vant, due to the growing di�usion of cloud-based modeling environments such
as LucidChart, draw.io, Gli�y, and Creately.

E�ective collaborative development requires the ability to answer several
key analysis questions, such as (Q1) How to prevent interference between teams
potentially making updates to the same portion of the system model? (Q2) How
to ensure that local changes do not cause global inconsistencies? (Q3) How to
provide views of the system that are relevant to teams?

In this paper, we propose a set of novel property-based strategies for address-
ing the concurrent model development questions. Question Q1 is addressed by
introducing property locking � a technique in which, instead of �hard locking� an
entire region of the model, prevents changes introduced by one team that violate
the designated properties of other teams. For Q2, we propose to enable contin-
uous checking of models w.r.t. approximate properties that are quick to check
during the model editing time. They are intended to approximate the more de-
tailed checks done later in the veri�cation stage, and are enabled by incremental



Fig. 1. Washer/Dryer example adapted from [12].

checking as models get changed or when commits into a central repository are
attempted. To address Q3, teams can de�ne and use overlapping and continu-
ously updated property views of the model that show the parts relevant to the
properties of interest for resolving a con�icting change.

The property-based approaches we propose are speci�cally developed for
models rather than adapted from techniques for collaborative code development.
For code artifacts, these questions have traditionally been addressed by parti-
tioning the code and assigning portions to di�erent teams using �le-level locking
and textual merging techniques [11] followed by testing/veri�cation procedures
such as integration testing or model checking.

Unfortunately, such traditional approaches for managing concurrent code de-
velopment do not naturally extend to concurrent model-driven development.
Partitioning into �xed model fragments is di�cult due to the interconnected,
graph-like nature of models. Fixed fragments are in�exible when faced with
varying modeling tasks. Con�ict avoidance techniques such as locking lead to
over-locking due to the high degree of interdependence between parts of a model.
This signi�cantly limits the degree of concurrent development and does not scale
with the increasing number of collaborating teams. Model merging and con�ict

detection can be complex tasks, relying on comparing graphs instead of strings,
and the interdependence within a model makes con�icts easy to introduce and
hard to resolve. Finally, some model veri�cation and validation techniques are
too complex to be executed frequently, making quality control an expensive af-
terthought. Paul Dourish' pioneering work [5] argues against the in�exibility
of locking mechanisms based on the syntax of a collaborative artifact (here, a
model) and instead proposes a promise-guarantee paradigm. We are inspired by
this approach and bring it to the �eld of software/system modeling, where the
collaborative artifact is a (hyper)graph.

Paper organization. In Sec. 2, we describe a simple collaborative modeling
scenario. In Sec. 3, 4 and 5, we describe the three proposed property-based
techniques. We conclude in Sec. 6 with a summary and ideas for future work.

2 Motivating Example

We motivate the need for property views, property locking and approximate
properties using a simple, multi-model example adapted from [12]. Here, a UML
class diagram captures Controller, Washer and Dryer classes (middle of Fig. 1).

2



The Controller and Washer are further described via statecharts (left and right
of Fig. 1). Imagine the case where a number of teams must collaborate in order
to modify and update the models. Teams must manage concurrent changes and
avoid frequent con�icts. Consider Scenario 1, where Team 1 checks out the class
diagram from the repository, while Team 2 checks out the Washer state machine.
Now as highlighted by red circles in Fig. 1, Team 1 modi�es the class diagram
by restricting the navigability of the association cont from the class Washer to
Controller. However, as a side-e�ect of this change, SigDone can no longer be sent
from the Spinning state in the Washer (circled in Fig. 1), disrupting the work of
Team 2.

Motivated by this scenario, we ask instances of the broader questions from
Sec. 1: q1: How to prevent an interference when a change made by Team 1
a�ects the work of Team 2? q2: How to immediately detect whether Team 1's
change causes an inconsistency with Team 2, without interrupting their devel-
opment process by executing a potentially slow and costly check? q3: How to
highlight the parts of the class and state diagrams which are relevant to the
assumptions behind Team 2's work, in order to prevent an interference like the
one in Scenario 1, or to better understand such interferences when they occur?

Our proposal allows teams to specify what other teams must respect using
properties. If a property of Team 2 is violated by a change of Team 1 then the
change is detected and disallowed (Q1). To reduce the number of con�icts, such
property violations among collaborative teams need to be detected e�ciently
upon each change. In case properties of the model are complex to check, e.g.,
those requiring the use of an external tool such as a model checker, we can use
syntactic approximations to postpone complex semantic checks (Q2). Finally,
(Q3) we can use properties to derive views, showing collaborators what parts
of the model may a�ect desired properties. The rest of these paper outlines the
speci�cities of this technique using our example.

3 Property Locking

Property locking generalizes the traditional lock-based approach to managing
concurrent changes to a model. Instead of having each team lock a model frag-
ment for which they get exclusive write access, teams specify a property on

model elements that no other team can violate. Such a property captures the
assumptions/pre-requisites that the team's changes rely upon. Thus, other teams
can make whatever changes they like as long as they do not invalidate these as-
sumptions. The bene�t is greater �exibility in allowing concurrent changes.

The properties to lock are propagated to the modeling environment of other
collaborating teams and are checked either when a commit is initiated (batch
checks), or continuously upon each model change (incremental checks, e.g., using
IncQuery [14]). While property locks are typically speci�ed within the localized
context of a few model elements, to allow higher �exibility in collaborative mod-
eling, traditional global properties, e.g., deadlock avoidance, are also possible.

Illustration. To prevent Scenario 1 by maintaining a bidirectional communica-
tion between the Washer and Controller classes, Team 2 states property P1: �each

3



association end of the class diagram that is used in the Washer state machine
should remain navigable�, and use it as the lock. Thus, when Team 1 attempts
to change the navigability of association end cont in the class diagram and com-
mits the change, a violation of property P1 is detected and the corresponding
commit is prevented. Locking using P1 is less restrictive than traditional model
locks which would prevent changes in larger chunks of the model. With prop-
erty locking, any association end of the class diagram can be changed unless it is
used in the state machine Washer. Furthermore, the validity of P1 can be checked
incrementally, so as to detect violations as soon as they occur.

Related work. Dourish' work [5] (see Sec. 1) is most closely related to our
proposal. Existing collaborative modeling tools either lack locking support or
implement rigid strategies such as �le-based locking, or locking subtrees or el-
ements of a speci�c type, which hinder e�ective collaboration. Most of o�ine

collaborative modeling tools, e.g., ModelCVS [8] or EMFStore [7], rely on tradi-
tional version control systems, with contributors committing large deltas of work,
resulting in frequent con�icts. Model repositories such as CDO1 and Morsa [6]
support locking of subtrees and sets of model elements. These locks can prevent
others from accessing elements included in the lock, which weakens scalability
w.r.t. the number of collaborators. Online collaborative modelling frameworks

such as WebGME [10] and ATOMPM [13] rely on a short transaction model:
a single, shared instance of the model is concurrently edited by multiple users,
with all changes propagated to all participants instantaneously. These systems
lack con�ict management or provide only lightweight mechanisms, e.g., explicit
locking.

Challenges. The crucial problem of our approach is the e�ective speci�cation
of properties for locking. While teams may specify the properties of their interest
using a property (or query) language, we believe that the key to property speci-
�cation is creating (or using) a library of properties which include, for example,
well-formedness constraints and design rules for a given modeling language, as
well as their customizations for the team's goals and the speci�c application
domain. A secondary challenge concerns the e�cient management of property
locks with the increasing number of collaborators.

4 Approximate Properties

Formal veri�cation or testing often use semantic properties to check correctness
of changes made, after they have been completed. If these checks can be partially
moved to the modi�cation time, this could eliminate the check-fail-�x iterations
thereby reducing the development time.

To do so, we aim to produce syntactic model properties that are e�cient to
check and that approximate the desired semantic properties. Let P be a semantic
property that needs to hold. One possibility is to de�ne an approximate property
P ′ to be a �necessary condition� for P , i.e., ¬P ′ ⇒ ¬P . Then, if P ′ is violated,

1 http://eclipse.org/cdo

4



there is an error in the model and the change should be rejected. Of course, if
P ′ is satis�ed, the original property P should still be checked at a later phase.

Another approximate property type can be used to generate warnings, i.e.,
a violation of a syntactic property P ′′ indicates an increased likelihood that the
original property P is violated, but does not guarantee it.

Illustration. We use our Washer/Dryer example to illustrate the usage of both
types of approximate properties.

Consider a scenario where Team 3 aims to maintain a liveness property of
Controller P2 : �after state Locking, eventually state Unlocking will be reached�.
We de�ne an approximation P′2: �for all signals S that are triggers on a path from
Locking to Unlocking, there exists some state machine that sends S�. Clearly,
P2 ⇒ P′2 and so satisfying P′2 is necessary for satisfying P2. Checking P2 requires
a model checker, but P′2 speci�es an e�cient incremental syntactic check which
helps coordinate the interaction between concurrent teams. If Team 2 were to re-
move sending of the SigDone signal from the Washer state machine, the violation
of P′2 would be immediately detected, and the change would be rejected.

Now consider a safety property of Controller P3: �state DoingDry cannot oc-
cur before state DoingWash�. We de�ne the approximation property P′3: �no path
from state DoingDry to state DoingWash exists�. While it is possible to have an
infeasible path between these two states, it is suspicious and should be investi-
gated. Thus, a violation of P′3 may be a potential violation of P3.

Related work. Producing approximations of behavioral properties in order to
simplify model checking is often done using abstract interpretation. This tech-
nique involves �rst abstracting the model itself and then deriving the approxi-
mated property from the abstraction. In contrast, we propose using abstractions
of the property directly, without changing the model on which the property is
being checked.

Anti-patterns have been studied for software engineering in general [2] and, to
a lesser extent, in the context of models [3]. Instances of these patterns are con-
sidered to be red-�ags indicating potential problems. These are similar to what
we mean by approximate warning properties. Yet anti-patterns are generic and
apply in any software whereas we are aiming to generate properties speci�cally
for modeling contexts.

Challenges. The main challenge for realizing approximate properties is in devel-
oping algorithms for automatically generating e�ciently checkable approximate
properties from requirements and the current states of the models. A secondary
challenge concerns providing the modeler with useful feedback about property
violations in a non-intrusive way.

5 Property Views

In order to limit cognitive complexity, teams want to focus their attention to
parts of the model that cause, or help avoid, con�icts. Unfortunately, such related
model parts are not always easy to �nd (or available in the form of a diagram)
in the underlying modeling language.

5



Fig. 2. A property view of a UML model.

We propose to compute property views by adapting model slicing [1] to a
collaborative scenario. We assume that the slicing criterion is captured by prop-
erties to derive a slice by �ltering a source model. This model may contain
derived elements (i.e., objects, references, attributes) which were not present
in the original model but are calculated from it, and it may even comply to a
di�erent metamodel.

Illustration. The semantic problem caused by removing the signal SigDone from
the Washer state machine is not easy to highlight in UML as it does not have
diagrams for depicting the possible event �ow between state machines. However,
we can use the approximate property P′2 from Sec. 4 to de�ne a new UML view
where each node corresponds to a state machine while each edge between two
nodes denotes sending a signal from the source to the target state machine. The
corresponding property view, automatically derived by using [4], is shown in
Fig. 2.

Related work. [9] identi�es four basic approaches used for slicing to support
code impact analysis: behavioral � traditional dependency analysis; historical
� mining software repositories, e.g., to support co-checkin; textual � measur-
ing coupling, and behavioral execution � collecting execution information. The
property view is a �fth approach � �nding a subset of the model that impacts
satisfaction of the property and thus is relevant for the intended changes.

The use of queries or declarative constraint languages has been explored in
[1] for the purpose of computing slices. Slices are frequently de�ned similarly
to views by a declarative query or constraint language. However, unlike slicing,
property views need to be maintained incrementally upon each change of the
model, in order to provide immediate and continuous feedback to collaborating
teams. Using the categorization of [1], our approach can be categorized as active
model slicing with possibly imported output metamodels.

Challenges. Incremental query-based view computation necessitates smart caching
and processing of model elements. We intend to rely upon incremental model

query frameworks [14] for this purpose.

6 Summary and Future Plans

In this paper, we outlined three approaches to using property-based techniques
for addressing the problem of model-based collaborative development.

6



In the future, we will aim to address the challenges identi�ed in the paper.
e.g., create approaches for de�ning and managing property locks, for synthesizing
e�ciently checkable approximate properties, and for incremental maintenance of
property views. We foresee the development of an open source prototype that
integrates the concepts of properties with popular collaborative modeling tools.

References

1. A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux. Kompren: Modeling and
Generating Model Slicers. SoSyM, 2012.

2. W. Brown, T. McCormick, H.and Mowbray, and R. Malveau. AntiPatterns: Refac-
toring Software, Architectures, and Projects in Crisis. Wiley, 1998.

3. V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani. Dig-
ging into UML Models to Remove Performance Antipatterns. In Proc. of QUO-

VADIS@ICSE'10, pages 9�16, 2010.
4. C. Debreceni, Á. Horváth, Á. Hegedüs, Z. Ujhelyi, I. Ráth, and D. Varró. Query-

Driven Incremental Synchronization of View Models. In Proc. of VAO'14, 2014.
5. P. Dourish. Consistency Guarantees: Exploiting Application Semantics for Con-

sistency Management in a Collaboration Toolkit. In Proc. of CSCW'96, 1996.
6. J. Espinazo Pagan, J. Sanchez Cuadrado, and J. García Molina. Morsa: A Scalable

Approach for Persisting and Accessing Large Models. In Proc. of MODELS'11,
volume 6981 of LNCS. 2011.

7. M. Koegel and J. Helming. EMFStore: A Model Repository for EMF Models. In
Proc. of ICSE'10, Vol. 2, pages 307�308, 2010.

8. G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and
W. Schwinger. Towards a Semantic Infrastructure Supporting Model-Based Tool
Integration. In Proc. of GaMMa@ICSE'06, 2006.

9. B. Li, X. Sun, H. Leung, and S. Zhang. A Survey of Code-Based Change Impact
Analysis Techniques. J. Software Testing, Veri�cation and Reliability, 23(8):613�
646, 2013.

10. M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz, T. Leven-
dovszky, and A. Lédeczi. Next Generation (Meta)Modeling: Web- and Cloud-based
Collaborative Tool Infrastructure. In Proc. of MPM@MoDELS'14, pages 41�60,
2014.

11. N. Niu, E. Easterbrook, and M. Sabetzadeh. A Category-Theoretic Approach to
Syntactic Software Merging. In Proc. of ICSM'05, pages 197�206, 2005.

12. J. Rubin. Cloned Product Variants: From Ad-Hoc to Well-Managed Software Reuse.
PhD thesis, University of Toronto, 2014.

13. E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. V. Mierlo, and H. Ergin.
AToMPM: A Web-based Modeling Environment. In Proc. of MODELS'13 Tool

Demonstrations, pages 21�25, 2013.
14. Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári,

and D. Varró. EMF-IncQuery: An Integrated Development Environment for Live
Model Queries. Science of Comp. Prog., 2014.

7


	Property-Based Methods for Collaborative Model Development

