
Programming against Multi-Version Metamodels:
A Model Differencing and Virtualization Approach

Robert Bill and Manuel Wimmer

Business Informatics Group
Vienna University of Technology

{lastname}@big.tuwien.ac.at

Abstract. Current model manipulation programs more and more have to cope
with multiple metamodel versions. This includes tool integration scenarios and
language evolution scenarios where newer metamodel versions are available while
legacy metamodels are still being used. However, in current metamodeling frame-
works such as the Eclipse Modeling Framework (EMF), specific model manipu-
lation programs are needed for each version leading to code duplication, and thus,
to high development and maintenance efforts.
By using virtualization techniques, interfaces for manipulating a set of models
instead of a single model on the Java level can be automatically generated. This
allows to avoid code duplication by introducing only a small syntactic overhead.
By using Java annotations for defining the virtualization strategy, we can achieve
virtual models being seamlessly integrated into Java as POJOs. Based on a run-
ning example, we demonstrate our architecture. The proposed approach is imple-
mented as an open-source project on top of EMF and has been already success-
fully applied for model migration scenarios.

1 Introduction

A common strategy when handling a set of different models to perform a particular task
is model integration with the aim to homogenize heterogeneous models. For example,
each model may be virtually transformed to the a unified representation (a.k.a. global-
as-view) or may be derived from a unified representation (a.k.a. local-as-view) [5].
Other options include linking, merging or migrating different models [1, 4] and then
migrating the instance data [3].

However, migration to a unified representation which is used instead of the different
models might not be appropriate if each model should stay autonomous. For instance,
it may be beneficial to use specific models for model manipulations like validation
or transformation to ensure that all edit operations performed on a model are correct
and lead to a well-defined output model. Furthermore, different models may exist on
purpose due to slightly different domains or viewpoints on one system. In that case,
working with a fully unified model may not only challenge the modelers, but also makes
information exchange with specific tools more complicated since these tools then would
need to support a more complex model than even needed for their domain. This is, for
example, the case for business documents [8], where core model components evolve
and are adjusted dependent on the domain users needs.



In the following sections, we present a solution for Java-based model manipulation
programming which combines the advantages of (i) using a unified model to reduce
code duplication in model manipulation programs and (ii) of using separate models
to process only relevant parts of the model by building virtual models handling a set
of persisted models. Section 2 introduces the running example, where different model
variants are used for school management domain. Section 3 discusses the general archi-
tecture of this approach. Section 4 shows a more detailed look on how the virtualized
classes are constructed and used. Finally, Section 4 concludes the paper with an outlook
to future work.

Due to space constraints, we do not show concrete code examples of how to use
the tool VirtAPT (Virtualization with APT) for model migration scenarios and dis-
cussing the code duplication reduction, but kindly refer the interested reader to http:
//cosimo.big.tuwien.ac.at/virtapt, where examples for handling model
variants and code migration are discussed.

2 Running Example

Person

name:CString
email:CString

Student
matrNr:Cint U

Teacher

Subject
name:CString
required:Cbool
weekHours:Cint
ects:Cint

p

studies
p

Study
name:CString

S/U
1

U
S

Class
name:CString

inClass1
P/S

inClass

p

Classroom
name:CString

main
0..1

Course«enum»
WeekDay

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

S/U

P/S
U

S

compulsoryelective
p

p
U

supplyTeacher
CCCCCCCCCCsupply

Classroom
name:CString

1
name:CString
Lecture
day:CWeekDay
from:Cint
to:Cint

p
Pteacher

pCteaches

p
lectures

inC1

lecturesCCp

subjectC1
subjectCp

S/U

class
1

attends

p

U

USP

SP US

P S U

Sensible model sets

attending

P
S/U

Fig. 1: Running example metamodel variants

The running example for the following sections is a simplified education manage-
ment system done for three types of schools: primary schools, secondary schools and
universities. Due to the slightly different nature of these school types, three different
model variants were used as shown in Fig. 1. Classes and attributes are marked with the
symbols (P), (S) and (U) for primary school, secondary school, and university, respec-
tively. Note that corresponding class and attribute names are mostly equal on purpose
for this example as EMFCompare, in its default setting, as many other model com-
parison frameworks, strongly relies on string similarities to find correspondences. The
attribute specifying supply teachers, which is different for primary schools than for
other school types, is an exception just to show that the rest of the approach can handle
heterogeneous attribute names in principle.

3 Architecture

Fig. 2 shows the architecture of our approach. Java annotations like @EcoreVM(name=
<pkgname>,ecoreFiles={<model1>,<model2>,...}) can be attached to a method
or a class specifying that the models stored in the Ecore-based metamodels should be
handled together and all classes generated should be made available in the package



m1.
ecore

m2.
ecore

VirtAPTVirtAPT

@EcoreVM(name="unify", ecoreFiles={
 "m1.ecore","m2.ecore"})

M1: 

M2: 

A B C

A' B'

A/A' B/B' CMunify:
cast

cast

Munify = M1+M2
B/B' = B+B'
... vconfig

something.java

EMF
Compare

Annotation processing tool input/output

Fig. 2: Architecture of VirtAPT
with the specified name. The annotation processor reads in the specified Ecore-based
metamodels and uses EMFCompare to find matching classes, attributes and references.
Features which match in all pairwise comparisons are mapped to the same feature in
the virtual class. Due to the nature of the annotation processor, only the annotations of
a compiled Java file are available. A file named vconfig stores which model sets have
been considered. This file is read and updated in each annotation processing step. Each
line contains <pkgname>:<foldername> to specify which packages are available and
in which folder they are found.

For each model set, a virtual model is generated which consists of the following
files in each package: (a) an interface package containing interfaces for the signatures
for all virtual classes and for each model in the model set, a package containing model-
specific implementations thereof and (b) a manager class allowing to load instances
from any model of the model set and (c) a config file containing information about the
the model sets used to generate the virtual model. All implementing classes implement
their behavior by proxying to the original EObject loaded from the model. Thus, no
explicit synchronization is necessary to propagate changes from an object for a model
set to an object for another model set based on the same original object. Virtual models
are arranged in a model lattice where the topmost virtual model is generated from the
largest subset of models. There are explicit cast operators to cast from one virtual model
to another if the model sets for both virtual models are in a subset or superset relation.
These operators return null if no downcasting is possible, i.e., the model is not in the
specified model subset. Special downcast operators can be called to cast to a single
model even if it is not defined as virtual model.

The config file for SecUni contains the file names of the merged models second.
ecore and univ.ecore and lines such as :SecUni.mvirtual1.Classroom:model
/second.ecore.//Classroom to specify that the Classroom class from the first
virtual model originated from the Classroom EClass from the secondary school model.

In the following sections, we will see how virtual models are generated for these
model sets in more detail.

4 The Virtual Model Manager

For each virtual model, a dedicated manager is used for loading and storing models.
Fig. 4 shows how the manager uses metamodel-specific factories for loading instances.
Initially, the manager selects the correct factory based on the metamodel of the model to
be loaded. Each factory knows how to construct the correct proxy for a single EObject.
Proxy objects resolve references on demand by letting the factory generate or retrieve
proxy objects when an attribute is accessed.

The manager is able to create a CloneState for any factory it uses. The CloneState
is able to recreate objects using a factory to create a skeleton and then using an in-



s1:School

p1:Student

p2:Teacher

prim.ecore

as1:Schoolam:Manager
«Singleton» af1:MFactory1

pf1:MFactory1 ps1:School

pp1:Student

AllSchool

PrimSec

persons

baseObject

baseObject

baseO
bject

getOrCreate(p1)

create

create
pm:Manager
«Singleton»

getOrCreate(s1)

getOrCreate(s1)

getOrCreate(s1)

1
getOrCreate(s1) create1 1

2

2 2

3

getOrCreate(p1)
1
2
3

create AllSchool proxy object for s1
convert it to a PrimSec proxy object
retrieve its persons

4 and access the first object

:CollectionProxy
eobject

personsattr
manager

create4

4
4

Fig. 3: Proxy object generation example

minterface.T

Manager

ModelFactory

MFactory1

MFactory2
factory2

factory1

«m2.ecore»

CloneState factory

manager
setAttributesFrom(T)
cloneNew(CloneState)

m1.T

1

1

11
1 1

«m1.ecore»

«m1.ecore»
m2.T

«m2.ecore»

Fig. 4: Virtual model managing

place clone method generated for each class on the interface level which sets all setable
attributes values to the values of the attribute for the cloned object.

Let us consider the example of reading in a primary School EObject as virtual
instance of AnySchool.School, then specializing it into PrimSec.School and then
accessing the first object returned by the getPersons()-method on that as shown in
Fig. 3. The manager controls the generation of proxy objects. When reading in the s1
object, it recognizes that this is an object from prim.ecore and thus the first factory
is needed for object generation. Thus, the task of object creation is delegated to the
first factory. It first checks whether it already has generated a proxy object for this
EObject, but since it has not, it creates a new proxy object which is returned. Then, this
object should be specialized to to an instance of PrimSec.School. Thus, the singleton
instance of the Manager for the virtual model PrimSec is accessed and triggered to
create the proxy object ps1 for the base object of the current proxy object, s1. Like in
the previous case, it delegates the task to the correct factory. Then, the getPersons()
method is called. The ps1 object returns a proxy collection which knows that it should
proxy the person attribute of s1 for the manager pm. When elements of this collection
are accessed, the proxy object pp1 is generated by the proxy collection by delegating
to the manager for the proxy collection like in the previous cases. Accessing the next
object of the proxy collection would create a proxy object for p2.

5 Model Virtualization

Student

studies

Study
name: String

1

Student
matrNr: int

studies
*

= =

=

=

=

Primary
School

Secondary
School University

Primary School +
Secondary School All models

Student
matrNr: int

studies

Study
name: String

*

[readonly]

[readonly]

Study
name: String

Student

Study
name: String

1

Student virtual
downcast

virtual
downcast

Fig. 5: Virtual classes

For generating a virtual model for a model set, we use a simple model merging algo-
rithm. First, we pairwisely identify matching model elements using EMFCompare and
iteratively greedily merge model elements with least differences, where two classes,
attributes or references of the same model are never merged. The virtual model then
contains all model elements occurring in any model of the model set, where the alpha-
betically first name is taken in case corresponding elements have different names. All



model elements which do not occur in every model are set to readonly. The type of the
getter method of a merged attribute or reference is the least supertype of the correspond-
ing types of each attribute or reference in the virtual model and the multiplicity is the
most general one while the type of the setter method is a subtype of all types and none
if such a type does not exist and the multiplicity is the most restrictive. Fig. 5 shows the
generation virtual classes for Student and Study for the full model set. EMFCompare
detects all the given classes with the same name as corresponding, thus a single class is
generated for them with the same name. If the class Student would be called Collegian
in the university model and Pupil in primary and secondary school, then it would be
called Pupil in the virtual model for primary and secondary school, but Collegian in the
virtual model for all models. The attributes studies and matrNr are set to readonly since
they do not occur in all models. The attribute name, however, is not set to readonly since
it occurs in every model where the class Study occurs.

In some cases, multiplicity conversion has to be performed. If a single features is
set whereas the underlying EObject uses a collection, a new collection is created every
time this feature is set. If a collection is required by the get method, but the underly-
ing EObject uses a single value, a new proxy collection is generated for each access
performing operations such as add and remove on the EObject. A proxy collection is
also used for getting multi-valued features to proxy access to the EObject allowing to
modify the resulting list naturally. Unfortunately, this induces an asymmetry for get and
set. While changes made on a list got with the get method are reflected by the EObject,
the modification of a list after calling the set method has no effect on the EObject.

6 Conclusion and Future Work

This work presented an approach to handle a family of models using model virtual-
ization. The prototype allows Java developers to specify and use the type of virtual
models they would like to while completely staying in their Java development environ-
ment. Thus, this approach may serve several needs. First, it might even further lower
the entry barrier of using model-based techniques for Java developers since the inclu-
sion of models into Java does not even take a single button push any more. Second,
it might reduce code duplication when handling multiple model variants, and thus, in-
crease code maintainability. Third, it can be used to some extent for automated model
migration. The applicability of this approach is shown by an example which is available
at: http://cosimo.big.tuwien.ac.at/virtapt.

Of course, there is room for future improvements. Advanced model merging and
comparison may allow to handle more heterogenous models. To separate the task of
model comparison and model virtualization, the input may be refined to use a base
model and delta models [9] for the different model variants instead of the model variants
themselves.

Model handling might be complicated by different contexts in model definition and
use. For example, a model for schools and universities might include information about
the grade of each course of the student, while for some tasks only the average grade
would be important, e.g., fundings. Thus, a dedicated virtual model for each context
should be built. For databases, the importance of contexts when relating elements has



already been recognized [7]. Providing a framework for dealing with model contexts
might help building improved virtual models for a given program context as specified
by additional Java annotation properties.

While a single integrated model may be insufficient, sophisticated model integra-
tion approaches to build each individual virtual model would certainly be beneficial. A
lot of work has been done in that area in the past, cf. [2] for a survey, which may be
used to improve the construction of the virtual model. Simple integration patterns men-
tioned by [2, 7] may be integrated in the presented prototype such as attribute-to-entity
relationships, abstraction relationships, functional dependencies between model parts
and so on.

Also, it might be sensible to be able to manually define or refine the model virtu-
alization, e.g., by letting the user specify the relations between models or even directly
letting them formulate the relation between virtually derived and given models.

The support for Ecore is currently not complete. EOperations are not supported
and there are some issues with EEnums and custom data types. It is also currently not
possible to add custom methods to the generated classes. This could be either done via
a dedicated language or by using the usual @Generated annotation.

While initial experimental results look promising, no exhaustive evaluation of the
presented approach has been conducted. There are some promising candidates for case
studies in that area, e.g., the model repository used for Business Document Evolution
[8]. Another promising candidate is the evolution of GMF, where both metamodel and
model manipulation programs are available [6].

Acknowledgments. This work has been funded by the Vienna Business Agency (Aus-
tria) within the COSIMO project (grant number 967327).

References

1. Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. A survey on model versioning
approaches. International Journal of Web Information Systems, 5(3):271–304, 2009.

2. Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A Comparative Analysis of
Methodologies for Database Schema Integration. ACM Comput. Surv., 18(4):323–364, 1986.

3. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating Co-evolution in Model-
Driven Engineering. In Proc. of EDOC, pages 222–231, 2008.

4. Cauê Clasen, Frédéric Jouault, and Jordi Cabot. Virtual Composition of EMF Models. In
Proc. of IDM, 2011.

5. Alon Y Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294, 2001.
6. Markus Herrmannsdoerfer, Daniel Ratiu, and Guido Wachsmuth. Language Evolution in

Practice: The History of GMF. In Proc. of SLE, pages 3–22, 2012.
7. Vipul Kashyap and Amit P. Sheth. Semantic and Schematic Similarities Between Database

Objects: A Context-Based Approach. VLDB J., 5(4):276–304, 1996.
8. Christian Pichler and Manuel Wimmer. Model-Driven Business Document Evolution. In

Proc. of CSMR, pages 325–328, 2011.
9. Christoph Seidl, Ina Schaefer, and Uwe Aßmann. DeltaEcore - A Model-Based Delta Lan-

guage Generation Framework. In Proc. of Modellierung, pages 81–96, 2014.


