
Towards a Unifying Approach for
Performance-Driven Software Model Refactoring

Davide Arcelli, Vittorio Cortellessa, Daniele Di Pompeo

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università degli Studi dell’Aquila

67100 L’Aquila, Italy
{davide.arcelli|vittorio.cortellessa}@univaq.it,

dipompeodaniele@gmail.com

Abstract. Performance is a pervasive quality attribute of software sys-
tems. Since it plays a key role in the success of many projects, it is
important to introduce approaches aimed at satisfying performance re-
quirements from the early phases of software life-cycle. However, this
is a complex problem, because a large gap exists between performance
analysis results and the feedback expected by software designers. Some
approaches proposed in the last few years aim at reducing such gap,
based on automated Model-Driven Engineering techniques, but they are
fragmented across different paradigms, languages and metamodels.
The goal of this paper is to work towards an approach that enables
performance problems detection and solution within an unique support-
ing environment. We rely on the Epsilon platform, which provides an
ecosystem of task-specific languages, interpreters, and tools for MDE.
We describe the approach that we are implementing, and we show how
some of these languages nicely fit the needs of a unifying paradigm for
performance-driven software model refactoring.

Keywords: Model-Driven Engineering, Software Refactoring, Software Perfor-
mance Engineering, Performance Antipatterns

1 Introduction

Over the last decade, research has highlighted the importance of integrating per-
formance analysis in the software development process. Performance is a crucial
quality attribute of many software systems, but it is a complex and pervasive
property difficult to study. If performance targets are not met, then a variety
of negative consequences (such as user unsatisfaction, lost income, etc.) can im-
pact on significant parts of a project [1]. These factors motivate the activities of
modeling and analyzing performance of software systems early in the life-cycle,
by reasoning on predictive quantitative results.

Despite the amount of model-based performance analysis techniques that
have been proposed in the last few years, the identification of performance prob-
lems is still critical, because the results of performance analysis (i.e., mean val-
ues, variances, and probability distributions) are difficult to be interpreted and



translated into software feedback (i.e., design alternatives) improving system
performance.

Figure 1 illustrates a typical model-based performance analysis process aimed
at detecting and removing performance problems. Shaded boxes represent pro-
cess activities, whereas white boxes represent artifacts.

Fig. 1: Model-based Performance Analysis Process.

The process starts with an initial (performance-annotated) Software Model,
which represents an abstraction of the system under analysis. Performance anno-
tations are meant to add specific information necessary for performance analysis,
such as the incoming workload, service demands, etc. A Performance Model (e.g.,
Petri Net, Queuing Network) is obtained through model transformation from a
performance-annotated software model, and it is solved analytically (in most of
the cases) or by simulation during the Performance Model Solution step, which
carries out performance indices of interest, e.g., mean response times, throughput
distributions, and utilizations.

This represents the forward path of the process. Well-founded model-driven
approaches have been introduced in this path for inducing automation in all
steps [2], whereas there is a clear lack of automation in the backward path,
namely the Result Interpretation & Feedback Generation box that shall bring
the analysis results back to the software model in order to build a new software
model showing better performance.

The backward path takes place in case performance indices do not meet the
requirements. In such case performance analysis results have to be interpreted
in order to detect performance problems. Then solutions (i.e., model refactoring)
have to be applied to remove problems.

The contribution of this paper concerns the backward path of the process, and
it consists of a first step towards building an approach that enables performance
problems detection and solution within an unique supporting environment [3]. To
this aim, we rely on some task-specific languages of the Epsilon Platform [4] to
implement the Result Interpretation & Feedback Generation step. In particular,



we exploit their main characteristic, i.e., the possibility of defining (i) declarative
conditions that can be used to notify the user about performance problems
occurrences, and (ii) imperative blocks that support software model refactoring
based on violations of those conditions.

The paper is organized as follows. Section 2 provides a background on the
main ingredients of this work, i.e., performance antipatterns and the Epsilon
platform. Section 3 reviews related work. Section 4 represents the core of this
paper, that is how to exploit the Epsilon platform to achieve our goal, and finally
Section 5 concludes the paper.

2 Background

In this section we provide the background of this work, i.e. Performance An-
tipatterns and the Epsilon platform.

2.1 Performance Antipatterns
Since more than a decade, Performance Antipatterns [5,6] revealed to be strong
support for performance-driven software model refactoring, since they have been
used to: (i) “codify” the knowledge and experience of analysts by describing po-
tentially bad design patterns that have negative effects on performance of soft-
ware systems, and (ii) remove such negative effects through refactoring actions.

Performance antipatterns have been originally defined in natural language
[7,8,9]. In [10] a formal technology-independent interpretation has been pro-
vided, based on first-order logic rules, that defines a set of system properties
under which a performance antipattern occurs in a software model. A specific
characteristic of performance antipatterns is that they contain numerical param-
eters that represent thresholds referring to either performance indices (e.g., high
device utilization) or design features (e.g., many interface operations) [11,12].

Figure 2 provides an UML-like graphical representation of the Pipe & Filter
(PaF) antipattern, which occurs when the slowest filter in a “pipe and filter”
architecture causes the system to have unacceptable throughput. In Figure 2a,
the slowest filter is represented by the Operation Op and its execution causes a
bottleneck in the Interaction S, which shows a throughput lower than a certain
threshold. This is due to the Operation Op, owned by a Component C, that has
resource demands (computation, storage, bandwidth) larger than corresponding
thresholds. The Component C is manifested by an Artifact A which is deployed
to a Node N showing a mean utilization util which is greater than a certain
threshold.

A solution to a PaF antipattern occurrence (see Figure 2b) consists of moving
the slowest filter to an ad-hoc software component deployed to a specific node.
This refactoring is aimed at reducing the utilization of the node where the com-
ponent owning the largest filter is deployed, and at increasing the throughput
of the involved service. In Figure 2b, the Operation Op representing the slowest
filter is moved to a new Component Cnew, which is manifested by a new Artifact
Anew deployed on a new Node Nnew.



(a) PaF occurrence. (b) A PaF solution.

Fig. 2: Pipe and Filter performance antipattern characterization.

2.2 Epsilon

Epsilon stands for Extensible Platform of Integrated Languages for mOdel maN-
agement. It is a platform for building consistent and interoperable task-specific
languages for model management tasks such as model transformation, code gen-
eration, model comparison, merging, refactoring and validation.

Epsilon currently provides eigth languages, and for each language Eclipse-
based development tools and an interpreter that can execute programs written
in that language are provided.

The Epsilon ecosystem provides an infrastructure suitable for implementing
our antipattern-based software model refactoring approach in several ways. In
fact, Epsilon Validation Language (EVL), Epsilon Wizard Language (EWL),
and Epsilon Pattern Language (EPL), allow to define declarative conditions (i.e
guard and/or check) and imperative blocks (i.e., do) that have to be executed
if the conditions are not satisfied. This paradigm matches with the concept of
detection and solution of performance antipatterns: the declarative conditions
codifies antipatterns, whereas in the imperative blocks refactoring actions that
might lead to antipatterns solution are codified. The different execution seman-
tics of the three languages mentioned above allow to provide different automated
support to the user (see Section 4).

3 Related Work

The problem of model (and metamodel) refactoring has been largely investigated
in the last few years, and the refactoring criteria span from usability through
modifiability up to evolution needs [13]. However, few approaches deal with
performance-driven model refactoring.

The work in [14] presents the ArchE framework that assists the software ar-
chitect during the design to create architectures that meet quality requirements.
However, defined rules are limited to improve modifiability only. A simple per-
formance model is used to predict performance metrics for the new system with
improved modifiability.



In [15] a technique for automatic refactoring a Service-Oriented Architecture
(SOA) design model by applying a design pattern and for propagating the in-
cremental changes to its Layered Queuing Network (LQN) performance model
is introduced. In this paper we take the opposite direction, in that we refactor
software models by removing performance antipatterns rather than introducing
patterns. In addition, we work for a unifying approach that is not bounded to
any paradigm (such as SOA) or performance model (such as LQN).

In [16], two specific EMF-based languages are integrated for model refactor-
ing. Due to the multi-view nature of performance antipatterns, we target mod-
els describing software components, their interactions, and their deployment,
whereas the approach in [16] mainly considers classes and their interactions, i.e.
models that are closer to the code. Moreover, in [16] only design quality at-
tributes and metrics are taken into account, whereas we target performance, i.e.
a pervasive software quality attribute that involves more unpredictable metrics.

4 Refactoring Approach

In this section, we describe our approach in some detail. The main idea is illus-
trated in Figure 3. The approach is centered on three performance antipatterns
detection and solution engines, providing different interactive support to the de-
signer, based on EPL, EVL, and EWL. The designer selects the engine to use
in order to perform refactoring sessions starting from an initial software model,
i.e. M0, which conforms to a metamodel MM and is given as input to the se-
lected engine. During a refactoring session, a number of new refactored models,
i.e., M1, .., Mn−1, are created, until a software model that satisfies performance
requirements is obtained, i.e. Mn. Note that, for each engine, with respect to the
metamodel MM which the software model conforms to, the performance expert
has to build the basic knowledge, i.e. KMM , manually. This means that she has
to write the EPL/EVL/EWL code that implements performance antipatterns
occurring conditions and refactorings that can be applied to remove them.

4.1 Sample Implementation for the PaF Antipattern

Figures 4a, 5a, and 6a, show examples of the PaF detection condition and refac-
toring of Figure 2, as an EPL pattern, an EVL critique condition, and an EWL
wizard, respectively.

In particular, the PaF occurring condition is verified on UML Operations and
it consists of four operations returning boolean values (i.e., PaF_resDemand(),
PaF_F_probExec(), PaF_F_throughtput(), and PaF_F_maxHwUtil()) embed-
ded in the PaF formulation [10].

The do block of a pattern/critique/wizard contains a call to the opera-
tion namedmoveToNewComponentDeployedOnNewNode, which codifies the PaF
refactoring illustrated in Figure 2b1.
1 The implementation can be found at http://www.di.univaq.it/davide.arcelli/

resources/projects/Epsilon4PAs.rar.

http://www.di.univaq.it/davide.arcelli/resources/projects/Epsilon4PAs.rar
http://www.di.univaq.it/davide.arcelli/resources/projects/Epsilon4PAs.rar


Fig. 3: Epsilon-based approach for model refactoring.

(a) Excerpt of an EPL pattern for PaF. (b) Refactoring session with EPL.
Fig. 4: EPL refactoring engine.

(a) Excerpt of an EVL pattern for PaF. (b) Refactoring session with EVL.
Fig. 5: EVL refactoring engine.

(a) Excerpt of an EWL pattern for PaF. (b) Refactoring session with EWL.
Fig. 6: EWL refactoring engine.



Figure 7 graphically shows an EVL-based model refactoring. The upper side
of the figure illustrates an excerpt of a performance-annotated software model,
focusing on its Static and Deployment views, expressed as a UML Component
and a Deployment Diagram, respectively. Under these diagrams, their tree-based
textual representations within the Eclipse UML perspective are shown. After ex-
ecuting an antipattern detection step that uses the EVL engine of our approach,
several actions are proposed to remove the detected antipatterns (see the popup
in the middle of Figure 7). When the refactoring application is completed, a
new model is obtained (see the bottom of the figure), where antipatterns have
been removed. In the example of Figure 7, a detected occurrence of the Pipe and
Filter antipattern is removed by applying the solution described in Section 2.1.

4.2 Sample Designer Support for the PaF Antipattern

The kind of support that our approach provides strictly depends on the execution
semantics of the specific languages of the Epsilon ecosystem. The three languages
that we consider in this paper allow to provide the following kind of refactoring
sessions to the user.

Batch refactoring sessions (see Figure 4b): implemented as EPL patterns
(see Figure 4a), they allow to execute the series of antipattern detection and
refactoring specified in the corresponding .epl file. In case of iterative mode, the
process is repeated until no more antipattern occurrences have been found or
until the specified maximum number of iterations has been reached.

EPL provides the most limiting support to the designer, due to the fact that,
in presence of two or more EPL patterns matching on identical conditions in the
same .epl file, it is not possible to determine which pattern will be chosen by
the Epsilon engine. For this reason, we assume that two EPL patterns matching
on identical conditions cannot exist in the same .epl file. As a consequence, each
antipattern can be codified only as one EPL pattern, thus limiting the solution
to the unique randomly-chosen refactoring.

User-driven multiple refactoring sessions (see Figure 5b): implemented
as EVL critiques (see Figure 5a), they allow to execute interactive antipattern
detection and refactoring sessions, where antipattern occurrences are firstly de-
tected on the software model, and a number of available refactorings (i.e. EVL
fixes) are then selected by the user. Each selection immediately triggers the ap-
plication of a refactoring on a temporary version of the software model. When
the user stops the refactorng session, the temporary software model is finalized.

In the context of performance antipatterns detection and solution, we can
assume that, even if more possible solutions are available for the same antipat-
tern, they do not depend one each other (otherwise they could be collapsed into
an unique refactoring). Moreover, since each refactoring is aimed at solving a de-
tected antipattern occurrence, we can assume that the designer selects at most
only one refactoring to apply for each detected occurrence.

User-driven single refactoring sessions (see Figure 6b): implemented
as EWL wizards (see Figure 6a), they are directly integrated in the Eclipse-



Fig. 7: Example of model refactoring effect in Epsilon.



based modeling environment of the user (e.g., Papyrus2), thus automatically
detecting performance antipattern occurrences whenever an element is selected
in the modeling environment. They also enable solutions among which the user
can select the one to apply immediately on the software model, thus carrying
out a refactored one. At this point, the refactoring session is terminated, and a
new one might start.

Differently from EPL patterns, two EWL wizards matching on identical con-
ditions can exist in the corresponding .ewl file. As a result, similarly to EVL,
more than one solution can be enabled with EWL.

5 Conclusion and Future Work

In this paper, we have proposed a first step towards an approach that embeds
performance antipatterns detection and solution within an unique supporting
environment. In the context of the Epsilon platform, which provides an ecosystem
of task-specific languages, interpreters and tools for MDE activities, we have
selected EPL, EVL, and EWL as basis for three engines that provide different
kinds of support to performance-driven software model refactoring.

Several aspects have been discussed in this paper and some other ones have
been just mentioned. However, we need to work on them in the near future.

So far, we have implemented occurring conditions and refactorings for four
performance antipatterns over twelve existing ones. Hence, we aim at extending
our work to other performance antipatterns. Beside this, two next steps ahead
in process automation, aimed at reducing redundant coding effort, shall be: (i)
generating code from antipattern formulations, and (ii) porting the code among
the three considered languages.

Finally, for sake of a future vision, we like to mention two long-term goals.
Metamodel-independence. In general, our approach is metamodel-inde-

pendent, in the sense that its founding idea works for any modeling notation.
However, we have experimented it on UML software models profiled with the
MARTE profile. Nevertheless, several other performance-oriented modeling lan-
guages exist, e.g., Palladio and Æmilia. With this respect, we intend to enlarge
the spectrum of modeling notations addressed by our approach. The approach
shall be based on a pivot language (i.e., a DSL transparent to the final user)
representing a neutral notation, whose constructs can be mapped to the ones of
other modeling languages.

Threshold values. As discussed in [11,12], thresholds cannot be avoided in
the performance antipatterns definition, and their multiplicity and estimation
accuracy heavily influence both detection and refactoring activities. With this
respect, we aim at extending our approach by introducing heuristics for assigning
values to antipattern thresholds. Such heuristics would also assign probability
and effectiveness values to detected antipattern occurrences and available refac-
toring actions, respectively, as discussed in [17].
2 https://www.eclipse.org/papyrus/

https://www.eclipse.org/papyrus/


References

1. C. Smith, “Introduction to software performance engineering: Origins and out-
standing problems,” in Formal Methods for Performance Evaluation, ser. Lecture
Notes in Computer Science. Springer, 2007, vol. 4486, pp. 395–428.

2. H. Koziolek, “Performance evaluation of component-based software systems: A
survey,” Perform. Eval., vol. 67, no. 8, pp. 634–658, Aug. 2010.

3. D. Arcelli and V. Cortellessa, “Assisting Software Designers to Identify and Solve
Performance Problems,” in First International Workshop on the Future of Software
Architecture Design Assistants (FoSADA), WICSA and CompArch 2015, Montréal,
Canada, CA, May 2015.

4. D. Kolovos, L. Rose, R. Paige, and A. Garcıa-Domınguez, “The epsilon book,”
Structure, vol. 178, pp. 1–10, 2010.

5. W. J. Brown, R. C. Malveau, H. W. McCormick, III, and T. J. Mowbray, AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley &
Sons, Inc., 1998.

6. C. U. Smith and L. G. Williams, “Software performance antipatterns,” in Proc.
of the 2nd ACM International Workshop on Software and Performance. ACM,
2000.

7. ——, “Software Performance AntiPatterns; Common Performance Problems and
their Solutions,” in CMG Conference, 2001, pp. 797–806.

8. ——, “New software performance antipatterns: More ways to shoot yourself in the
foot,” in CMG Conference, 2002, pp. 667–674.

9. ——, “More new software antipatterns: Even more ways to shoot yourself in the
foot,” in CMG Conference, 2003, pp. 717–725.

10. V. Cortellessa, A. Di Marco, and C. Trubiani, “An approach for modeling and
detecting software performance antipatterns based on first-order logics,” Software
and Systems Modeling, vol. 13, no. 1, pp. 391–432, 2014.

11. D. Arcelli, V. Cortellessa, and C. Trubiani, “Influence of numerical thresholds on
model-based detection and refactoring of performance antipatterns,” First Work-
shop on Patterns Promotion and Anti-patterns Prevention, 2013.

12. ——, “Experimenting the influence of numerical thresholds on model-based detec-
tion and refactoring of performance antipatterns,” ECEASST, vol. 59, 2013.

13. D. Tamzalit, B. Schätz, A. Pierantonio, and D. Deridder, “Introduction to the
sosym theme issue on models and evolution,” Software and System Modeling,
vol. 13, no. 2, pp. 621–623, 2014.

14. A. Diaz-Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann, “Integrating Quality-
Attribute Reasoning Frameworks in the ArchE Design Assistant,” in Quality of
Software Architectures, Models and Architectures, ser. LNCS, 2008, vol. 5281, pp.
171–188.

15. N. Mani, D. C. Petriu, and C. M. Woodside, “Studying the Impact of Design
Patterns on the Performance Analysis of Service Oriented Architecture,” in EU-
ROMICRO Conference on Software Engineering and Advanced Applications, 2011,
pp. 12–19.

16. T. Arendt and G. Taentzer, “Integration of smells and refactorings within the
eclipse modeling framework,” in Fifth Workshop on Refactoring Tools 2012, WRT
’12, 2012, pp. 8–15.

17. D. Arcelli, V. Cortellessa, and C. Trubiani, “Performance-based software model
refactoring in fuzzy contexts,” in Fundamental Approaches to Software Engineering,
2015, pp. 149–164.


	Towards a Unifying Approach for Performance-Driven Software Model Refactoring
	Introduction
	Background
	Performance Antipatterns
	Epsilon

	Related Work
	Refactoring Approach
	Sample Implementation for the PaF Antipattern
	Sample Designer Support for the PaF Antipattern

	Conclusion and Future Work


