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Preface
Many modeling languages, such as the Unified Modeling Language (UML), advocate the
use of graphical notations for modeling. This kind of representations usually allow a nice
high level description of the system, while getting into details is more often left to textual
modeling or formal languages.

The OCL’15 workshop, as previous editions, was aimed to serve as a forum were re-
searchers and practitioners could exchange ideas, experiences and results for the benefit
of both the software engineering community and the standards specifications. The work-
shop met its goal judging by the versatility of the contributions selected for discussion.
Indeed, the reader will find papers dealing with the applicability and limitations of con-
straints languages for adding precision to modeling and transformation languages, or to
bind modeling elements. Also, other works are concerned with the tool support for con-
straints and query languages, e.g., OCL lazy evaluation for large models, or version control
for textual modeling languages. Last but not least, semantics issues bring the question
of how specification standards should be enhanced, or how textual and visual notations
should be synchronized in order to assure consistency.

Every accepted paper was reviewed by at least three members of the program com-
mittee. We wish to thank all authors and participants for their contributions to the
workshop, and reviewers for ensuring the proceedings quality. We would like to thank
the committees of Models 2015 for making this workshop possible, and organizing the
successful surrounding events in Ottawa.

October 2015 Achim D. Brucker
Marina Egea

Martin Gogolla
Frédéric Tuong
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Opportunities and Challenges for Deep
Constraint Languages

Colin Atkinson1, Ralph Gerbig1 and Thomas Kühne2

1 University of Mannheim
{atkinson, gerbig}@informatik.uni-mannheim.de

2 Victoria University of Wellington
thomas.kühne@ecs.vuw.ac.nz

Abstract. Structural models are often augmented with additional well-
formedness constraints to rule out unwanted configurations of instances.
These constraints are usually written in dedicated constraint languages
specifically tailored to the conceptual framework of the host modeling
language, the most well-known example being the OCL constraint lan-
guage for the UML. Many multi-level modeling languages, however, have
no such associated constraint language. Simply adopting the OCL for
such multi-level languages is not a complete strategy, though, as the
OCL was designed to support the UML’s two-level class/instance di-
chotomy, i.e., it can only define constraints which restrict the properties
of the immediate instances of classes, but not beyond. The OCL would
consequently not be able to support the definition of deep constraints
that target remote or even multiple classification levels. In fact, no exist-
ing constraint language can address the full range of concerns that may
occur in deep modeling using the Orthogonal Classification Architecture
(OCA) as an infrastructure. In this paper we consider what these con-
cerns might be and discuss the syntactical and pragmatic issues involved
in providing full support for them in deep modeling environments.

Keywords: OCL; well-formedness; deep modeling; OCA

1 Introduction

Although structural modeling languages such as UML class diagrams can some-
times be used on their own for simple tasks, for more precise modeling they
usually need to be supported by accompanying constraint languages. The most
well-known language for this purpose is OCL, but today quite a number of other
constraint languages are available for use with the UML and other structural
modeling languages. Examples include AspectOCL [1], CdmCL [2], EVL [12]
and MOCQL [16].

The OCL is commonly used to augment class diagrams with further well-
formedness constraints. Constraints can be applied to other UML diagram types
but these are not addressed in this paper. The basic role of constraints is to add
additional requirements that (token-)models at the instance level must obey in
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order to be considered instances of their (type-)model at the class level. Since
the sets of valid token models are sometimes referred to as the semantics of the
(structural) type model, constraints can be regarded as improving the precision
of the semantics of the type model.

Since mainstream constraint languages in use today were designed to support
today’s mainstream structural modeling languages and tools, they are based on
the same underlying “two-level” modeling paradigm. In particular, this means
that the domain entities considered by the users are regarded as occupying one
of two levels – a type level or an instance level. This goes back to the idea that
all concepts are either universals or individuals but not both at the same time.
As a result, today’s constraint languages are often designed in the context of a
number of assumptions:

1. constraints are attached to types and are evaluated for instances of these
types.

2. constraints are implicitly universally-quantified, i.e., use a “forAll”-semantics
that applies them all instances of the type they are associated with.

3. there is only one instance level to control, i.e., deep control beyond more
than one metalevel boundary is not considered.

These assumptions are not an optimal fit for deep modeling. Constraint lan-
guages that are designed to complement deep models, i.e., models with an in-
stantiation depth higher than one, therefore have to be based on a different set of
assumptions with implications on what information is necessary to fully describe
a constraint in a multi-level context. Designing an approach for constraints that
incorporates the extended challenges of deep modeling in an optimal way is a
non-trivial task, and requires notational and pragmatic trade-offs that are influ-
enced by many factors. The goal of this paper is not to resolve these trade-offs,
but to identify the opportunities and challenges present in the expression of deep
constraints and therefore the design of Deep Constraint Languages (DCLs).

As well as supporting well-formedness constraints on structural models, there
are a variety of other applications for constraint languages or extensions thereof.
These range from queries to transformations, however, for space reasons, in this
paper we focus on well-formedness constraints. Most of the ideas apply to similar
languages as well, though, for example for deep transformations [5].

Summarising, the goal of this paper is to reevaluate the role of constraints for
deep modeling, identify different kinds of constraints, and establish terminology
for referring to them. The rest of the paper is structured as follows: In the
next section we give a brief overview of deep modeling and the principles it
is based on as well as discuss the main implementation choices that can be
used to implement deep models. Then, in Section 3 we introduce the different
kinds of constraints that can be defined given the two orthogonal classification
dimensions that underpin deep modeling. Section 4 then does the same given the
multiple ontological levels that can be defined in a deep model. Finally, section
5 concludes with some closing remarks.
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2 Deep Modeling

Deep modeling is built around the Orthogonal Classification Architecture (OCA)
which provides an alternative way of organizing models compared to the tradi-
tional linear modeling stack that underpins mainstream modeling technologies
such as UML and EMF. Figure 1 below shows the most widely used variant of
the OCA which has the linguistic dimension occupied by two linguistic levels –
the modeling language definition in L1, the ontological model content in L0 and
the real world (W ). Although variants with more linguistic levels are conceivable,
in this paper we assume the OCA only considers these levels. It can be observed
that the ontological (O-levels) and linguistic (L-levels) classification dimensions
are orthogonal to each other. This alignment of levels gives the name to the
orthogonal classification architecture.

L 1

L 0

W 

CarType2

price 2

Feature

Element
name

Clabject
potency durability

Method

Attribute
mutability

* feature

O 2 O 1 O 0

price =1759991

#3345 :Dragster0

price =1703320

Level

*
content

Dragster1

??? ?

Car0

Fig. 1. Three level OCA.

In Figure 1 the linguisistic dimension contains Level L1, which is often re-
ferred to as the “linguistic type model” or (less precisely) “metamodel”. This
linguistic level defines the basic concepts of Level , Clabject and potency etc. Level
L0 contains the ontological content defined by the end user. In this level the
clabjects are organized into multiple ontological classification relationships de-
pending on whether they model objects, types, types of types, etc. in the do-
main of interest. Liniguistic classification is indicated through dotted vertical
classification arrows while ontological classification is indicated through dashed
horizontal classification arrows. O0 contains pure objects (i.e. clabjects with no
type facet), O1 contains normal types (i.e. clabjects that have both a type and
an instance facet) and O2, in this example, contains types (of types) at the top
ontological level (i.e. clabjects which have no instance facet).

A second core idea underpinning deep modeling is that classes and objects,
which are modeled separately in traditional modeling approaches, are integrated
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into a single, unified concept known as “clabject”. In general, clabjects are classes
and objects at the same time, and thus simultaneously possess both type and
instance facets, e.g., consider Dragster at the middle level, O1, which is an instance
of CarType and type for #3345 at the same time. The third core idea underpinning
deep modeling is the notion of deep instantiation which uses the concept of
potency, attached as a superscript to the name of each clabject and their features
as seen in Figure 1. This concept limits the depth of the instantiation tree of a
clabject thus defining the degree to which a clabject can be regarded as a type. In
the example, CarType with potency two can be instantiated on the following two
levels. It is then instantiated with Dragster which can be instantiated one level
further below and #3345 , an instance of Dragster which cannot be instantiated
further as indicated by its potency zero value.

The features of deep modeling that present the biggest opportunities and
challenges from the perspective of defining constraints on deep models beyond
what is required for traditional “two-level” modeling are:

1. the two distinct, orthogonal classification dimensions,
2. dual facets of model elements (i.e. the existence of linguistic and ontological

attributes), and
3. an unbounded number of ontological classification levels.

2.1 Realization Strategies

Modeling environments, including deep modeling environments, are typically
built using traditional “two level” technology. It is possible to support multiple,
logical modeling levels on top of such two-level physical architectures in two ways.
The first is by supporting transformations between chains of two-level models,
each capturing a different window on the underlying multi-level model (referred
to as the “cascading” style in [6]). The second is by mapping the linguistic
metamodel(L2) to the type level of the implementation platform, and the domain
content (L1) to the instance level of the implementation platform, with some of
the relationships in the latter level being regarded as classification relationships.
For example, to support the second approach on a Java platform, the elements
of the linguistic metamodel (e.g. level, clabject etc.) would be mapped to Java
classes, and the L1 level content would be represented as instances in the JVM.
While many commercial tools use the first approach, the second approach is used
in the majority of academic tools and ultimately provides the simplest and most
flexible way of implementing deep modeling environments. We assume the latter
approach in the remainder of this paper, therefore.

In general, approach (b) can be applied in one of two ways. The simplest way
is for a modeler to simply model the linguistic metamodel as a class diagram
in some existing, “host” modeling environment and then to apply the tenets of
deep modeling itself at the instance level using certain well-known patterns [8].
If the host environment has a constraint language (e.g. OCL) this can be used
to express limited kinds of constraints over the deep model at the instance level.
This approach is taken by Gogolla et al. [8], for example, who represents various
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deep modeling scenarios within the two-level USE tool (i.e. by modeling L1 as a
class diagram and L0 as an object diagram) and uses standard OCL to express
constraints over the L0 content. We refer to a constraint language used in such
a way as a Standard Constraint Language (SCL).

In contrast, a DCL is a constraint language which includes extra support
(explicitly implemented as an extension to the host environment) for the concepts
embodied by deep modeling. In other words, a DCL provides additional features
for expressing constraints on deep modeling content which are not available in
an SCL. As with all DSLs, this support can take the form of additional library
functionality (cf. [8]), in which case it is an internal DSL, or it can be provided
along with additional syntax, in which case it is an external DSL) [7].

In the following sections we investigate, in turn, the consequences and oppor-
tunities resulting from the key features of deep modeling identified previously.
In each case we will identify different kinds of constraints that may occur in
deep models, show examples of these constraint kinds on a small running ex-
ample and discuss possible syntactic alternatives for expressing the constraints.
We show examples in a suggested syntax which includes notational ideas from
three existing constraint languages — the OCL, which plays the role of an SCL
in this context, MetaDepth [13] which is an external DSL built on top of the
Epsilon Object Language [11], and Deep OCL [10] from Melanee [3], which is an
external DSL built on top of the Eclipse MDT OCL.

3 Linguistic, Ontological and Hybrid Constraints

The first important characteristic of deep modeling is that there are two dis-
tinct dimensions across which constraints can operate – the linguistic and the
ontological dimensions. In principle, modelers may wish to reference the on-
tological and/or the linguistic dimension when defining constraints. This gives
rise to three kinds of constraints – constraints only referencing the ontologi-
cal dimension, constraints only referencing the linguistic dimension, and hybrid
constraints.

3.1 Linguistic Constraints

Linguistic constraints reference concepts in terms of linguistic types and are
therefore independent of any ontological types. An example application for them
is the definition of the classification semantics of deep modeling. Constraint 1
shows how a linguistic constraint on Figure 2 can be used to define the basic
rules of deep instantiation – namely that the potency of an instance of a clabject
must be one lower than the potency of that clabject. Constraint 1 is a standard
OCL constraint, just applied within the linguistic dimension.

Constraint 1 The value of the potency of every clabject must be one lower
than that of its direct type

context Clabject
getDirectTypes() implies forAll(t | t.potency = potency+1)
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L 1

L 0

Element
name

Clabject
potency

O 2 O 1 O 0

Car0

Level

*

content

CarType2 Dragster1 #3345 :Dragster0

getDirectTypes():Set(Clabject)
getDirectInstances():Set(Clabject)

DeepModel
*
levels

Fig. 2. Linguistic constraints example.

Constraints which enforce certain modeling styles are also possible. For ex-
ample it is possible to require that clabject potency values must always match
level values (as in [13]) or to limit the number of levels available in a deep model
(Constraint 3).

Constraint 2 The value of the potency and level of every clabject must be equal

context Clabject
self.potency = self.level

Constraint 3 The number of levels in a deep model must be 3

context DeepModel
self.levels implies size = 3

These constraints are useful in scenarios where the number of ontological lev-
els has to be fixed, e.g. when model execution software is written against a certain
level of a deep-model. Like Constraint 1, both Constraint 2 and Constraint 3 are
standard OCL constraints whose context is the linguistic meta-model.

3.2 Ontological Constraints

Ontological constraints operate within level L0 to express well-formedness con-
ditions on the content of ontological levels. These well-formedness conditions
include the kind of constraints that end users (i.e. modellers) typically write
in conventional modeling environments to constrain the properties of domain
instances based on their domain types.

An example of a traditional constraint in the context of Figure 3 is the
constraint for a second-hand dealer that the default used price of a ProductType

(e.g., Lorry) has to be lower than the respective recommended retail price (RRP).
Using an OCL-like syntax, a DCL should allow this constraint to be expressed in
a way similar to Constraint 4. This constraint is defined “on” ProductType and
ensures that all ontological instances of ProductType, here Lorry and Dragster ,
have an RRP that is higher than their price.
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O 2 O 1

WheelType2

tyreWidth 2

ProductType2

price 2

RRP 2

3..*
wheels

CarType2

maxWheels 2

Dragster :CarType1

RRP =2000001

maxWheels =41

Lorry :CarType1

RRP =3000001

maxWheels =81

price =2225501

price =1759991

Fig. 3. Ontological constraints example.

Constraint 4 The value of a ProductType’s price attribute has to be smaller
than or equal to its RRP attribute

origin(1) ProductType
self.price <= self.RRP

An important notational difference in Constraint 4 is that we use the term
“origin” rather than “context” to specify to which element the constraint is
attached in order to avoid the traditional meaning associated with the term
“context” in OCL. In OCL, the class to which a constraint is attached does
not coincide with the evaluation context for the constraint, as OCL implicitly
assumes universal quantification of the constraint over all instances of the class.
We believe, in order to support more flexibility, it is worthwhile not always
making this assumption of implicit universal quantification over instances at the
level below. Therefore, in the remainder of the paper we express constraints in
the following form —

origin  (1)  ProductType
price < RRP

keyword scope origin

predicate
}constraint

Fig. 4. General structure of a constraint.

where the clabject appearing in the top line after the keyword “origin” is re-
garded as the definitional anchor for the constraint, whereas the “scope” of the
constraint (i.e., to what levels it applies to) is specified by the given range (e.g.
(1)) as further explained below. The constraint body, defined underneath the
header, specifies the predicate that must evaluate to true for all elements of type
“origin” within the scope.
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3.3 Hybrid Constraints

The constraints discussed in the previous section either operated purely across
the linguistic dimension or purely across the ontological dimension. In some situ-
ations, however, there is a need to mix the linguistic and ontological dimensions.
Such a scenario is shown in Constraint 5 on Figure 5 which ensures that each
concrete car must have a price greater than zero and that each car type must
have a default price greater than zero. This is achieved using a hybrid constraint
whose origin is CarType. This constraint uses the linguistic dimension to apply
the constraint to all CarType instances at levels 1 and 0, and the ontological di-
mension to ensure that the price of these model elements is greater than zero.
Note that Constraint 5 could be expressed more concisely using our proposed
scoping mechanism (cf. Section 4.2) and hence demonstrates the latter’s utility;
Constraints 8 and 9 are more natural examples of hybrid constraints.

L 1

L 0

Element
name

Clabject
potency

O 2 O 1 O 0

Level

*

content

Dragster1

price =1759991

CarType2

price 2
#3345 :Dragster0

price =1703320

Fig. 5. Hybrid constraints example.

Constraint 5 The (default) prices for instances of CarType and their instances
must be greater than zero

origin(1..2) CarType
(a) self.level < 2 implies self.price > 0
(b) self. l .level < 2 implies self. o .price > 0
(c) self. l .level < 2 implies self.price > 0
(d) self.ˆlevel < 2 implies self.price > 0

The example suggests four different possible notations to define the hybrid
constraint. The first notation (a) does not make a syntactic distinction between
the dimension in which a called attribute, method, etc. is located. For this ap-
proach to work in general, however, it is necessary to ensure that all names used
in the L1 (meta)-model do not appear in L0 (i.e. in any ontological levels). How-
ever, this could be difficult in practice because the L1 model naturally contains
names that could appear in many domains. For example, “level” may very well
not just occur in the linguistic dimension to represent the level a model-element

10



resides in, but may also be used to express the location of an elevator in the
ontological dimension. To avoid such naming clashes, either names used in the
L1 model must be changed to highly unnatural ones (e.g. “linguistic-residence-
level”) etc. or the use of the most natural names (e.g. level) has to be prohibited
in domain models. Neither of these would be particularly desirable.

An alternative approach shown in (b) is to introduce a special syntax for
selecting between linguistic and ontological features, so that no ambiguity exists
even when names from the L1 (meta)-model are used in an ontological model.
For every attribute, method, etc. this approach requires the origin of each refer-
enced element to be identified (i.e. “ l ” for linguistic and “ o ” for ontological),
which creates a big overhead when creating hybrid constraints. To minimize this
overhead, the notation can be further refined as suggested in (c). This notation
assumes the dimension in which the origin of the constraint resides as the default.
A dimension must then only be explicitly specified if a user intends to reference
the other dimension. In the example the default dimension is the ontological
dimension as CarType is an O2-level element.

The notation shown in (d), presented in [14], is used by MetaDepth to resolve
linguistic and ontological name disambiguities. MetaDepth allows constraints
accessing the ontological and linguistic dimension to be defined in the style of
(a). If an ambiguity occurs, the linguistic dimension is marked by prefixing it
with a ˆ symbol as shown in (d).

4 Deep Constraints

The aspect of deep modeling which creates the most interesting opportunities is
also the most challenging for DCLs: It is the unbounded number of ontological
levels that may appear in a deep model. Deep constraints are constraints that
may target levels more than one level below and may even have multiple levels
in their scope. In the OCA implementation assumed in this paper, linguistic
constraints cannot be deep because there are only two linguistic levels. In gen-
eral, however, deep linguistic constraints may be useful to constrain instances of
languages in a language family or ensure consistency across multiple language
levels.

Deep Constraints can be classified as either level-specific or level-spanning
constraints. In order to clarify the difference it is necessary to introduce some
further terminology. More specifically, it is necessary to distinguish between the
“instances” of a clabject and the “offspring” of a clabject. The instances of a
clabject exist at the level immediately below that clabject, and can be direct
or indirect instances. The offspring of a clabject, on the other hand, are all
clabjects in the transitive closure over the “classifies” relationship starting with
the subject. In other words, the set of offspring of a clabject includes all the
instances of the clabject plus all the instances of those instances, and so on. The
set of “direct offspring” is the set of all direct instances, plus all direct instances
of those direct instances and so on recursively. In contrast to regular offspring,
all indirect instances (at any depth) are excluded.

11



4.1 Level-Specific Constraints

Level-specific constraints are constraints that restrict the properties of clabjects
at one specific level in the deep model relative to the origin clabject. The “scope”
of the constraint then just comprises this single level. As explained above, we
avoid the term “context” since it may lead to confusion because of the implicit
universal quantification semantics of OCL constraints. In general, three cases
can be identified – (a) some arbitrary specified level below the starting element,
(b) the lowest level containing offspring of the origin and (c) the level containing
the starting element itself.

O 2 O 1

Dragster :CarType1WheelType2

tyreWidth 2

ProductType2

price 2

RRP 2

3..*
wheels RRP =2000001

CarType2

maxWheels 2

maxWheels =41

Lorry :CarType1

RRP =3000001

maxWheels =81

price =2225501

price =1759991

O 0

#3446 :Lorry0

RRP =3000000

maxWheels =80

price =2213560

Fig. 6. Level specific constraint example.

When the specified level is defined to be the level immediately below the
origin, the scope of the constraint coincides with that implied by an OCL “con-
text”. An example using the model elements of Figure 6 is shown in Constraint 6.
The constraint ensures that all instances of CarType have an RRP between 10k
and 400k, but specifically does not target the RRP values of cars. The scope of
the level is specified in brackets after the origin keyword. Here, the “1” specifies
that the relative distance of the scope to the level on which the constraint has
been defined is one. Obviously, this kind of single level scoping also provides the
option to evaluate the constraint on any arbitrary level below the origin.

Constraint 6 The recommended retail price must be between 10k and 400k

origin(1) CarType
self.RRP > 10000 and self.RRP < 400000

The second scoping category defines constraints that apply to the lowest-level
containing offspring of the origin clabject without making an explicit reference to
the respective instantiation depth. The constraint given in Constraint 7 requires
that all instances of CarType, at the bottom level have a price attribute which is
no more than 80% of the RRP. This is specified using the symbol “ ” for the
scope of the constraint.
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Constraint 7 The price actually paid for a car shall be no more than 80% of
the recommended retail price

origin( ) CarType
self.price <= self.RRP * 0.8

The last category represents constraints which cannot be supported in exist-
ing constraint languages even though the level they operate on (i.e. the scope)
“exists” in traditional modeling approaches. This is the level of the origin ele-
ment itself. For this reason we refer to this category of constraint as “intra-level”
constraints. Such constraints cannot be expressed in traditional environments be-
cause in OCL the constrained elements always occupy the instance level while
the starting element (referred to as the context in OCL) always occupies the
type level.

O 2 O 1

Dragster :CarType1WheelType2

tyreWidth 2

ProductType2

price 2

RRP 2

3..*
wheels RRP =2000001

CarType2

maxWheels 2

maxWheels =41

Lorry :CarType1

RRP =3000001

maxWheels =81

price =2225501

price =1759991

Car0

L 1

Element
name

Clabject
potency

Level

*
content

L 0

Fig. 7. Intra-level constraint example.

Intra-level Constraints This kind of constraint expresses restrictions on model
content that resides on the same level as the origin clabject. An example of such
a constraint is Constraint 8 which can be considered to enforce one aspect of the
power type pattern [9] on the example displayed in Figure 7.

Constraint 8 Subtypes of Car with potency higher than 0 must be instances of
CarType (cf. PowerType Pattern)

origin(0) Car
self.getSubclasses() implies forAll(c |
???c. l potency > 0 implies c.isTypeOf(CarType))

Here, all subtypes of Car are required to also be instances of CarType. Such a
constraint cannot be reasonably expressed at the level of CarType since it would
be attached to CarType but would have to explicitly restrict its applicability to

13



subtypes of Car . If the same or a similar constraint is applied to all subtypes
of another superclass, e.g., CarPrototype then, in the absence of intra-level con-
straints, it would have to be attached to CarType as well with the respective
applicability restriction in place. Such an approach would become unwieldy over
time and its complexity is simply an expression of mis-locating the constraint(s).

Constraint 9 is another example of an intra-level constraint. It requires all
non-concrete subclasses of a specific class (here Car in Figure 7) to have more
attributes than Car , i.e., to exclude “hollow” subclasses. Again, it may not make
sense to exclude hollow subclasses for all instances of Car’s type and it seems to
be unwarranted to force users to define a dedicated “�non-hollow�”-stereotype
that is then applied only to CarType. In other words, we believe there are applica-
tions for “one-off” constraints that only apply to a particular instance, without
having relevance to other instances of the same type.

Constraint 9 Subtypes of Car with potency higher than 0 must add attributes

origin(0) Car
self.getSubclasses() implies forAll(c |
???c. l potency > 0 implies
?ii c.attributes→size() > self.attributes→size())

To fully support deep constraints, further capabilities are needed. First, ver-
tical access to offspring and types at any level may be necessary to ensure certain
kinds of consistency constraints. The functions isDirectOffspringOf() and isIndi-
rectOffspringOf() could be used like their corresponding OCL statements but
based on the notion of offspring rather than instances. Second, it is necessary to
support horizontal, intra-level navigation to other elements by using navigation
paths that are defined anywhere at levels above. A respective approach has been
explored in [4].

4.2 Level-Spanning Constraints

The common property of the previous category of scopes is that the constrained
clabjects all occupy one specific ontological level. It is also possible, depending
on the flavour of deep modeling in use, to also define constraints that span more
than one ontological level. Such constraints would therefore have a scope greater
than one in our terminology. This makes sense if the underlying deep modeling
language supports uniform (ontological) attributes which, at all levels, possess a
name, a type and a value. When an attribute has potency 1 or higher, the value of
the attribute is interpreted as a default value for the corresponding attributes of
the clabject’s instances. In those cases where the constraint for the default values
is the same as for the ultimate values, it is beneficial to interpret a constraint
as being applicable over more than one level. In this case two situations seem to
be useful in practice: (a) a specified arbitrary range of levels or (b) the level of
the starting clabject and all its offspring.

In the first kind of level-spanning constraint, the range of levels over which
the constraint should apply is explicitly specified relative to the origin clabject.
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Fig. 8. Level-spanning constraint example. Gray elements are extensions to the deep
modeling approach as described in [4].

The constraint shown in Constraint 10 constrains all WheelType instances in
Figure 8 occupying the following two levels (O1 and O0) to be not older than 24
months.

Constraint 10 All offspring of wheelTypes, over two levels, are not allowed to
be older than 24 months

origin(1..2) WheelType
self.info.age ≤ 24

The second kind of level-spanning constraint is a special case of the first kind.
It simply uses the maximum scope possible, i.e., the level of the origin itself up
to the lowest level containing offspring. Constraint 11 constrains all offspring of
CarType, and CarType itself, to have a (default-) price of at least 10000.

Constraint 11 A (default-) price for a car must exceed 10000

origin(0.. ) CarType
self.price ≥ 10000

An example of a level-spanning constraint that includes intra-level navigation
is shown in Constraint 12. The constraint specifies that, for security reasons,
a Dragster must have wheels which are not older than seven months. As can
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be seen in Figure 8, a Dragster is connected to its wheels using two different
types of connections. There is one type for the front wheels and one type for
the rear wheels, as dragsters require different wheel types depending on their
location. For the purposes of Constraint 12, however, it would be desirable to
navigate to all wheels in a convenient way, i.e., abstract away from the fact that
there are front wheels and rear wheels. Thus, in version (a) using the DeepOCL
syntax [10], the statement $CarType$ makes all navigations of its type available,
here wheels. The MetaDepth version presented in [15] is shown in (b) which uses
the “references” linguistic method to get the instances of the wheel references
and access their value using the value method. The version in (c) displays the
navigation semantics presented in [4]. The latter relies on the fact that the
“wheels” role was introduced with potency two and hence makes the connection
available at level O0, plus the fact that “frontWheels” and “rearWheels” are
declared to be instances of “wheels” (cf. Figure 8 (a)).

Constraint 12 The wheels of Dragsters are not allowed to be older than 7 months

origin(1) Dragster
(a) self.$CarType$.wheels.info implies forAll(age <= 7)
(b) self.references(“wheels”) implies
?????? forAll(r | self.value(r).info.age <= 7)
(c) self.wheels.info→forAll(age <= 7)

Default Scope for Constraints As constraints in a deep constraint language
may have a variety of scopes, the question arises as to which default scope
should be assumed in case the modeler does not provide one. Default values in
general, can reduce the complexity of a specification and relieve the modeler
from explicitly providing a value that they would typically use in most cases.
Requirements for a good default choice include

– frequency of occurrence. Making the value that occurs the most implicit,
has the largest effect on specification reduction and will also most frequently
relieve the modeler from providing it.

– robustness against change. Typical modifications to models should ideally
not require the replacement of a default value with a different, specific one.

– generality across different host languages. One and the same deep constraint
language may be applicable to a variety of different multi-level host lan-
guages. It would be desirable to be able to interpret constraints indepen-
dently of the host language (e.g., MOF vs UML) and hence the default
scope should ideally be always the same.

– validity of existing assumptions. It is desirable to make any extension –
such as introducing depth to constraints – conservatively, i.e., not invalidate
existing specifications if they do not need more than two levels. Changing the
default value from a two-level technology (such as standard OCL) to another
value in a multi-level context should only be done with a good justification
in order to avoid gratuitously breaking the conservative extension property.
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Currently there is no significant body of multi-level constraints from which solid
frequency figures could be derived. Anecdotal evidence suggests, however, that
most attributes follow a traditional pattern, i.e., are defined at a certain level
and receive a value at a lower level. In other words, the default scope should
probably not include “0”, i.e., the current level.

The robustness argument suggests that it is probably not advisable to have
the default scope include the lowest-level offspring (i.e., “ ”). Consider the ad-
dition of a new lower level of used book copies to an existing model of (new)
books. An existing constraint on prices for new books, should not be automati-
cally re-targeted to used book copy prices, as the latter prices will obey different
rules than new book prices.

Not all multi-level languages support the assignment to attributes at all lev-
els at which they (implicitly) occur. This suggests that a default scope should
probably not address multiple levels at once.

Finally, current OCL constraints assume an origin of “(1)” implying that
OCL experts would have the least effort to adapt to it as a default scope. In
combination, all prior observations suggest that the scope “(1)” has the highest
appeal. However, further research is necessary to make a more informed choice.
For example, there is a need to ascertain actual frequency of use figures, a need to
observe and record typical model changes, and track the development of future
multi-level languages to re-assess commonalities and differences.

5 Conclusion

In this paper we have identified the additional opportunities and challenges that
arise when expressing constraints in the context of deep modeling. It is pos-
sible to write types of constraints on deep models that cannot be specified in
traditional, two-level modeling environments (e.g. UML/OCL), such as hybrid
constraints, deep constraints (targeting remote levels and/or spanning two or
more levels) and intra-level constraints (supporting “one-off” constraints). These
constraints do not increase the expressiveness compared to a regular two-level
constraint language, as we do not introduce constraints over constraints and our
proposed mechanisms could be translated into a two-level scheme. However, we
believe that our proposed mechanisms are important for allowing modelers to ad-
equately express constraints in a multi-level context. Expressing such constraints
in a concise yet unambiguous way requires new concrete syntax and default con-
ventions that do not yet exist. Some initial ideas for these have been presented
in this paper, but it was not the goal to define or propose a definitive DCL. Nor
was it the goal of this paper to describe precisely what kinds of requirements
a DCL should aim to support, since the optimal language from a pragmatic
perspective may not need to support every conceivable kind of constraint that
can be imagined if no practical use case exists for them. The main goal of the
paper was to characterize the kind of constraints that may make sense in the
context of deep modeling and to provide a conceptual framework / terminology
for discussing them.
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16. Störrle, H.: Mocql: A declarative language for ad-hoc model querying. In:

Van Gorp, P., Ritter, T., Rose, L. (eds.) Modelling Foundations and Applications,
Lecture Notes in Computer Science, vol. 7949. Springer Berlin Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39013-5_2

18



An OCL-based Bridge from Concrete to
Abstract Syntax

Adolfo Sánchez-Barbudo Herrera1, Edward Willink2, Richard F. Paige1

1 Department of Computer Science, University of York, UK.
{asbh500, richard.paige} at york.ac.uk

2 Willink Transformations Ltd. ed at willink.me.uk

Abstract. The problem of converting human readable programming
languages into executable machine representations is an old one. EBNF
and Attribute grammars provide solutions, but unfortunately they have
failed to contribute effectively to model-based Object Management Group
(OMG) specifications. Consequently the OCL and QVT specifications
provide examples of specifications with significant errors and omissions.
We describe an OCL-based internal domain specific language (DSL) with
which we can re-formulate the problematic parts of the specifications as
complete, checkable, re-useable models.

1 Introduction

The Object Management Group (OMG) is a consortium whose members produce
open technology standards. Some of these target the Model-Driven Engineering
(MDE) community. OMG provides the specifications for languages such as UML
[1], MOF [2], OCL [3] and QVT [4].

The specifications for textual languages such as OCL and QVT define a
textual language and an information model using:

– an EBNF grammar to define the textual language
– a UML metamodel to define the abstract syntax (AS) of the language

The textual language is suitable for users and for source interchange between
compliant tools. The information model facilitates model interchange between
producing tools such as editors or compilers and consuming tools such as program
checkers or evaluators.

On one hand, textual language designers intend to create compact grammars,
without limiting the textual language capabilities and conciseness for end users.
On the other hand, model information designers intend to create well designed
abstract syntaxes to facilitate the model information adoption by producing and
consuming tools. These intentions are not normally aligned: unless we sacrifice
the interests of any of the mentioned stakeholders, we get the situation in which
we have a big gap between the textual language grammar and the model informa-
tion, and additional conversions between the different involved data structures
are required.
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Therefore, the conversion between these two representations must also be
specified and may make use of an additional intermediate concrete syntax (CS)
metamodel whose elements correspond to the productions and terminals of the
textual language grammar3. OMG specifications tend to provide concise textual
languages grammars, and well designed AS metamodels, without compromising
one in favour of the other. In consequence, CS to AS conversions are defined
in some OMG specifications, however, as we will see along this paper, there is
room for improvement.

1.1 The OMG specification problem

The OCL [3] and QVT [4] specifications define four languages, OCL, QVTc
(Core), QVTo (Operational Mappings), and QVTr (Relations). The specifica-
tions all provide fairly detailed grammars and metamodels of their respective
abstract syntaxes.

Unfortunately the grammar to AS conversion is poorly specified.
In OCL, a CS is provided and the grammar is partitioned into ambiguous

productions for each CS element. Semi-formal rules define the grammar to CS
correspondence, the CS to AS correspondence, name resolution and disambigua-
tion.

QVTr has a single coherent grammar to accompany its CS and similar semi-
formal rules.

QVTc has a single grammar but no CS and no semi-formal rules.
QVTo similarly has a single grammar, but no CS and no semi-formal rules.

Instead, notation sections suggest a correspondence between source text and AS
elements by way of examples.

Since none of the conversions are modeled, tools cannot be used to check the
many details in the specifications. As a result, the major omissions identified
above are augmented by more subtle oversights and inaccuracies. The specifica-
tions fail to provide the complete, consistent and accurate details to help tool
vendors to provide compliant implementations of the text to AS conversions.

1.2 Our solution

The intermediate CS metamodel is close to the grammar, and it can be auto-
matically generated by modern Annotated EBNF tooling such as Xtext. It is in
the CS to AS conversion that greater challenges arise.

In this paper, we take inspiration from the substantial semi-formal exposition
of the OCL conversions (Clause 9.3 of [3]) and introduce a fully modeled CS2AS
bridge. The models can be used to variously check and even auto-generate a
consistent specification and also to auto-generate compliant tooling. In addition
to conventional CS and AS metamodels, we introduce new CS2AS mapping
models, name resolution models and CS disambiguation models. We demonstrate

3 Modern language workbenches, such as Xtext, can automatically generate the CS
metamodel from their input grammars
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how OCL itself can be used to provide a suitable internal DSL for these new
models.

The paper is structured as follows. Section 2 presents an example to introduce
the grammar and metamodels. Section 3 demonstrates the semi-formal solution
adopted by the OCL specification. Section 4 explains the proposed solution, i.e.
an OCL-based internal DSL. Section 5 describes related work and Section 6
talks about the current shortcomings of the approach. Section 7 outlines some
future work, including how tool implementors can benefit from the internal DSL.
Finally, Section 8 concludes.

2 Example

Our first example is a collection literal expression. This provides a simple exam-
ple of the grammars and models in use. In Section 3 we show the semi-formal
usage of these concepts by the OCL specification. In Section 4 we provide a con-
trast with our fully-modeled internal DSL solution. This example is too simple to
demonstrate more than the CS2AS characteristics of our solution. We therefore
introduce a further more relevant example later.

The listing in Figure 1 is an example of a collection literal expression com-
prising three comma-separated collection literal parts. The adjacent diagram
shows the corresponding AS metamodel elements. CollectionLiteralExp contains
many abstract CollectionLiteralParts. CollectionItem and CollectionRange are
derived to support the two cases of a single value or a two-ended integer range.
The example text must be converted to instances of the AS metamodel elements.

1 Sequence{1, 1+1, 3..9+1}
2

3 -- equivalent to:
4

5 -- Sequence{1,2,3,4,5,
6 -- 6,7,8,9,10}

Fig. 1: CollectionLiteralPart Example and partial AS Metamodel

The listing in Figure 2 shows the EBNF grammar that parses a collection lit-
eral part as a CollectionLiteralPartCS comprising one direct OclExpressionCS or
a CollectionRangeCS comprising two OclExpressionCS s. The adjacent diagram
shows the intermediate CS model, which is similar to the AS but which omits a
‘redundant’ CollectionItemCS preferring to share a single/first expression from
the non-abstract CollectionLiteralPartCS.
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1 CollectionLiteralPartCS:
2 OclExpressionCS | CollectionRangeCS
3

4 CollectionRangeCS:
5 OclExpressionCS ’..’ OclExpressionCS

Fig. 2: CollectionLiteralPartCS Grammar and partial CS Metamodel

3 Semi-formal solution: OCL Clause 9.3

The OCL specification provides a full attribute grammar in which inherited and
synthesized attributes are used to describe how the AS is computed from the CS.
Figures 3 and 4 shows our first example. The specification uses OCL expressions
to express how the different attributes are computed.

Fig. 3: OCL specification for CollectionLiteralPartCS to CollectionLiteralPart

The first section defines the EBNF production(s). The example merges two
alternate productions and so many of the rules have an [A] or [B] prefix to
accommodate the alternative rules.

The AS mapping declares the type of the resulting AS element as the type
of a special property of the CS element: ast.

The synthesized attributes populate the AS element using an assignment for
[A]. The more complex [B] worksaround OCL 2.4’s inability to construct a
CollectionItem by imposing constraints on a hypothetical CollectionItem.

The inherited attributes contribute to the name resolution by flowing down
an Environment hierachy of all available name-element pairs from parent to child
nodes using another special CS property: env. In this case all names visible in
the parent are passed without modification to the children.
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The disambiguating rules provide guidance on the resolution of ambiguities.
In this simple example, there is no ambiguity.

Fig. 4: OCL specification for CollectionRangeCS to CollectionRange

The rules for collection range follow a similar pattern. There is now just one
grammar production whose two OclExpressions are distinguished by [1] and
[2] suffixes. The synthesized attributes have two properties to populate.

3.1 Critique

The presentation comes quite close to specifying what is needed, but uses an
intuitive mix of five sub-languages without any tool assistance. In Figure 3, the
typo whereby CollectionItem::OclExpression rather than CollectionItem::item is
used in the final line of the synthesized attributes has gone unreported for over
10 years.

The lack of tooling also obscures the modeling challenge for the inheritances
between CollectionLiteralPartCS, CollectionRangeCS and OclExpressionCS. The
[B] grammar production in Figure 3 requires OclExpressionCS to inherit from
CollectionLiteralPartCS, if CollectionLiteralPartCS is to be the polymorphic
type of any collection literal part in the CS.

The lack of any underlying models makes it impossible for tool vendors to
re-use the rules. Tool vendors must transcribe and risk introducing further errors.

4 Modeled Solution: CS2AS internal DSL

The critique of the semi-formal exposition highlights the lack of checkable or
re-useable models. In this section we formalize the semi-formal approach using a
DSL to declare the bridge between the CS and the AS of a language. The DSL is
internal [5] and uses only facilities proposed for OCL 2.5. The DSL constrains the
use of the general purpose OCL language to define a set of idioms that express
CS2AS bridges.

Our rationale for choosing OCL as the host language is as follows:
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– OMG specifications have a problem with bridging the CS to AS gap, so we
would like an OMG-based solution.

– OCL contains a rich expression language which can provide enough flexibility
to express non trivial CS2AS bridges in a completely declarative way.

– Other OMG related languages could be considered (such as one of the QVT
languages), however OCL is a well known OMG language and is the basis of
many others. A QVT practitioner inherently knows OCL but not vice-versa.

Instances of the internal DSL take the form of Complete OCL documents and
can be maintained using Complete OCL tools [6]. Multiple documents can be
used to partition the specification into modules to separate the distinct mapping,
name-resolution, and disambiguation concerns of the CS2AS bridge.

4.1 Shadow Object Construction

The internal DSL uses the proposed4 side-effect-free solution to the problem of
constructing types in OCL. This avoids the need for the hypothetical objects
used by the semi-formal approach. The proposed syntax re-uses the existing
syntax for constructing a Tuple. The Tuple keyword is replaced by the name
of the type to be constructed. A Complex number with x and y parts might
therefore be constructed as Complex{x=1.0,y=2.0}.

4.2 CS2AS mappings

In this subsection we explain the main CS2AS mappings description language.
We start by introducing an instance of the language so that the reader can have
an indication of the DSL used to describe the bridge. Listing 1.1 corresponds
to the CS2AS description of the OCL constructs introduced in Section 2. The
listing should be contrasted with the semi-formal equivalent in Figures 3 and 4.

1 context CollectionLiteralPartCS
2 def : ast() : ocl::CollectionLiteralPart =
3 ocl::CollectionItem {
4 item = first.ast(),
5 type = first.ast().type
6 }
7

8 context CollectionRangeCS
9 def : ast() : ocl::CollectionRange =

10 ocl::CollectionRange {
11 first = first.ast(),
12 last = last.ast(),
13 type = first.ast().type.commonType(last.ast().type)
14 }

Listing 1.1: CS2AS bridge for CollectionLiteralPart and CollectionRange

The mapping is described by defining the ast() operation on a CS element.
The ‘abstract syntax mapping’ and ‘synthesized attributes’ of the semi-formal
approach are modeled by the shadow construction of the appropriate AS type

4 Shadow object construction was called type construction in the Aachen report [7]
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and initialization of its properties. (The initialization includes the type property
omitted by the OCL specification.)

Declarativeness: An important characteristic of the DSL is that it com-
prises declarative OCL constraints. The OCL constraints specify only true cor-
respondences between AS and CS after a valid conversion. In a scenario of exe-
cuting the proposed CS2AS descriptions, discovery of a suitable order in which
to perform CS to AS conversions requires an implementing tool to analyze the
OCL constraints and exploit their inter-dependencies. (This was also the un-
stated policy of the semi-formal approach.) An automated analysis is desirable
since they are almost too complicated for an accurate manual formulation as a
multi-pass conversion.

Operations: The CS2AS bridge is described using operation definitions.
The underlying rationale is that operation definitions on a potentially complex
class hierarchy of the CS can be overridden. Due to this overriding mechanism,
we provide some flexibility to cope with language extensions such as QVT. The
operation name is not relevant, but we propose the name ”ast” since it is aligned
with the name used in the attribute grammar exposed in the OCL specification.

Shadow object construction: Shadow object constructions express how
AS elements are constructed and how their properties are initialized.

Operation Calls: To compute properties of any AS element, we need to
access the AS elements to determine a CS to AS correspondence. Since ast() is
a side-effect-free query, we may call ast() as many times as necessary to obtain
the appropriate AS element. For example, at line 4, in order to initialize the
CollectionItem::item property, we use the ast() to obtain the OclExpression cor-
responding to the first OclExpressionCS of the context CollectionLiteralPartCS.

Self-contained: With the goal in mind of using the proposed internal DSL
to rewrite part of the OMG specifications, the declaration of the CS2AS bridge
for a particular CS element is complete and self-contained. The computations for
all non-default-valued properties of the corresponding AS element are expressed
directly in the shadow type expression since there is no constructor to share
inherited computations.

Reusable computations: Having OCL as the host language for our internal
DSL, we can factor out and define more complex and reusable expressions in
new operation definitions. The operations can be reused, by just introducing
operation call expressions, across the different computations of the AS element
properties. For example, a t line 13 of Listing 1.1, commonType is a reusable
operation to compute the common supertype of source and argument types.

4.3 Name resolution description

In this subsection, we explain how name resolution is described when defining
CS2AS bridges by the means of our OCL-based internal DSL. In a name reso-
lution activity we can typically find two main roles:

– a producer provides a name-to-element map for all possible elements in its
producing scope.
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– a consumer looks up a specific element corresponding to a name in its con-
suming context

Our previous example had no need to resolve names, so we will now in-
troduce a new example with a name producer and a consumer. The listing in
Figure 5 is an example of a let expression that declares and initializes a variable
named var for use within the ’in’ of the let expression. In this example the ’in’
comprises just a variable expression that references var. The adjacent diagram
shows the corresponding AS metamodel elements. A LetExp contains the pro-
duced Variable and an arbitrary OclExpression ’in’. For our simple example the
’in’ is just a VariableExp. The complexity of the example lies in the initializa-
tion of the consuming VariableExp.referred Variable to reference the producing
LetExp.variable.

1 let var : String = ’something’
2 in var

Fig. 5: LetExp/VariableExp Example and partial AS Metamodel

Figure 6 shows the corresponding grammar and CS definitions5. A LetExpCS
contains a VariableDeclarationCS and OclExpressionCS which for our example
is just a VariableExpCS.

1 LetExpCS:
2 ’let’ VariableDeclarationCS
3 ’in’ OclExpressionCS
4

5 VariableDeclarationCS:
6 simpleName (’:’ TypeCS)?
7 (’=’ OclExpressionCS)?
8

9 VariableExpCS:
10 simpleName | ’self’

Fig. 6: LetExpCS/VariableExpCS Grammar and partial CS Metamodel

In typical programming languages every use of a variable has a correspond-
ing declaration. The variable declaration is the producer of a name-to-variable
mapping. The variable usage consumes the variable by referencing its name.

5 The complexity of multi comma-separated variables has been removed, because it is
not needed to explain how name resolution is described in our interal DSL
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Name resolution searches the hierarchy of producing contexts that surround the
consuming context to locate a name-element mapping for the required name.

In our example, the required cross-reference in the AS is represented in the CS
by the distinct VariableDeclarationCS.varName and VariableExpCS.varName
properties. These are both parsed with the value var and so, when consump-
tion of the VariableExpCS.varName is analyzed, the analysis must discover the
corresponding VariableDeclarationCS.varName production.

The semi-formal approach adopted by the OCL specification re-uses the con-
tainment hierarchy of the CS as the scope hierarchy for its ‘inherited attributes’.
The name-to-element mappings are maintained in an Environment hierarchy.
The mappings flow down from the root CS element to all the leaf elements which
accumulate additional name-to-element mappings and/or nested environments
at each intermediate CS element in the CS tree.

In Section 3 we saw the very simple unmodified flow-down for a Collection-
LiteralPart. The equivalent exposition for a LetExp in the OCL specification is
complicated by performing the CS2AS mapping of multiple comma-separated
let-variables with respect to the CS rather than the AS. We therefore present its
logical equivalent in Listing 1.2.

1 LetExpCS ::= let VariableDeclarationCS in OclExpressionCS
2

3 VariableDeclarationCS.env = LetExpCS.env
4 OclExpressionCS.env = LetExpCS.env.nestedEnvironment().addElement(

VariableDeclarationCS.ast)

Listing 1.2: Semi-formal LetExpCS equivalent

The environment of the LetExpCS is passed unchanged to the VariableDec-
larationCS so that name resolution within the VariableDeclarationCS initializer
sees the same names as the LetExpCS.

The environment for the OclExpressionCS is more interesting. A nested Envi-
ronment is created containing the name-to-variable mapping for the let-variable.
The use of a nested environment ensures that the let-variable name occludes any
same-named mapping in the surrounding environment.

Our modeled approach is very similar but re-uses the AS tree rather than
the CS tree as the scope hierarchy. The rationale is that we are interested in
looking up AS elements for which we might not have the corresponding CS (e.g
OCL standard library or user model elements – classes, properties, operations,
etc. –).

1 context OclAny
2 def : env : env::Environment =
3 if oclContainer() <> null
4 then oclContainer().childEnv(self)
5 else env::Environment{}
6 endif
7

8 def : childEnv(child : OclAny) : env::Environment =
9 env

10

11 context LetExp
12 def : childEnv(child : OclAny) : env::Environment =
13 if child = variable
14 then env
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15 else env.nestedEnv().addElement(variable)
16 endif

Listing 1.3: Name resolution producers

Listing 1.3 presents the name resolution description written in our OCL-
based internal DSL. Line 2 declares an env property to hold the immutable
Environment of the AS element. env is initialized by a containment tree descent
that uses oclContainer()6. Line 5 provides an empty environment at the root,
otherwise Line 4 uses childEnv(child) to request the parent to compute the child-
specific environment.

The default definition of childEnv(child) on lines 8-9 flows down the prevailing
environment to all its children. This can be inherited by the many AS elements
that do not enhance the environment.

The non-default override of childEnv(child) for LetExp on lines 12-16 uses the
child argument to compute different environments for the Variable and OclEx-
pression children. As we saw for the semi-formal approach, the environment for
the Variable is unmodified. The environment for the OclExpression is extended
by the addition of the variable in a nested environment.

The environment is exploited by consumers to satisfy their requirement to
convert a textual name into the corresponding model element. The conversion
comprises three steps

– locate all candidate elements
– apply a filtering predicate to select only the candidates of interest
– return the selected candidate or candidates

The first stage is performed by the environment propagation described above.
The filtering predicate invariably selects just those elements whose name

matches a required name. It may often provide further discrimination such as
only considering Variables, Properties or Namespaces. For operations, the pred-
icate may also match argument and parameter lists.

The final return stage returns the one successfully selected candidate which
is the only possibility for a well-formed conversion. For practical tools a lookup
may fail to find a candidate or may find ambiguous candidates and provide
helpful diagnostics to the user.

The specification is made more readable if the three stages are wrapped up
in helper functions such as lookupVariable or lookupProperty7.

List 1.4 shows the polymorphic ast() operation to map VariableExpCS to
VariableExp. The lookupVariable helper function is used to discover the appro-
priate variable to be referenced by referredVariable.

6 oclContainer() returns the containing element which is null at the root.
7 A practical implementation may provide alternative helper implementations that

exploit the symmetry of the declarative exposition to search up through the con-
tainment hierarchy examining only candidates that satisfy the filtering predicate.
This avoids the costs of flowing complete environments down to every AS leaf ele-
ment where at most one element of the environment is of interest.
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1 context VariableExpCS
2 def : ast() : ocl::VariableExp =
3 let variable = ast().lookupVariable(varName)
4 in ocl::VariableExp {
5 name = varName,
6 referredVariable = variable,
7 type = if variable = null
8 then null
9 else variable.type

10 endif
11 }

Listing 1.4: CS2AS bridge for VariableExpCS to VariableExp

4.4 Disambiguation

As we commented in the introduction, CS disambiguation is another important
concern which needs to be addressed during the CS2AS bridge. To explain the
need of disambiguation rules, we consider the simple OCL expression x.y.

At first glance, the ’y’ property of the ’x’ variable is accessed using a property
call expression and a variable expression. However ’x’ is not necessarily a variable
name. It could be that there is no ’x’ variable. Rather ’x’ may be a property of
the implicit source variable, self, since the original expression could be a short
form for self.x.y. Semantic resolution is required to disambiguate the alternatives
and arbitrate any conflict.

The OCL specification provides disambiguation rules to ’resolve’ grammar
ambiguities. Clause 9.1 states : “Some of the production rules are syntactically
ambiguous. For such productions disambiguating rules have been defined. Using
these rules, each production and thus the complete grammar becomes nonam-
biguous.”. Figure 7 and Figure 8 are extracted from the OCL specification. It
can be seen that a simpleNameCS with no following @pre matches the [A] pro-
duction of a VariableExpCS and the [B] production of a PropertyCallExpCS.

Fig. 7: Partial OCL Specification for VariableExpCS to VariableExp

The disambiguation rule for VariableExpCS is relatively simple delegating
to the lookup helper and imposing a constraint that the result must be a Vari-
ableDeclaration. This is potentially correct, although unfortunately the specifi-
cation that VariableDeclaration is the supertype of Variable and Parameter is
missing.

The disambiguation rule for PropertyCallExpCS has some ambiguous word-
ing and many details that do not correspond to the “In OCL”. This requires
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Fig. 8: Partial OCL Specification for PropertyCallExpCS to PropertyCallExp

intuition by the implementor who may also wish to consider how the rules apply
to implicit opposite properties in EMOF.

Both of these disambiguation rules require semantic information which is
not available when the syntactic parser requires it. The problem can be avoided
by unifying the ambiguous alternatives as unambiguous productions that can be
parsed to create a unified CS tree. Once parsing has completed, semantic analysis
of the unified CS can resolve the unified elements into their disambiguated forms.

We therefore introduce additional unifying CS elements that can be resolved
without semantic information. A unifying NameExpCS element replaces Proper-
tyCallExpCS and VariableExpCS. Figure 9 shows the new unifying CS element.

1 NameExpCS:
2 simpleName isMarkedPreCS?

Fig. 9: NameExpCS Grammar and partial CS Metamodel

Listing 1.5 shows the definition for the CS2AS mapping of a NameExpCS,
in which the isAVariableExp() at line 3 is a call of the operation providing the
disambiguation rule. The return selects whether a NameExpCS is mapped to a
VariableExp (lines 5-13), otherwise a PropertyCallExp (lines 15-23).

1 context NameExpCS
2 def : ast() : ocl::OclExpression =
3 if isAVariableExp()
4 then
5 let variable = ast().lookupVariable(name)
6 in ocl::VariableExp {
7 name = name,
8 referredVariable = variable,
9 type = if variable = null

10 then null
11 else variable.type
12 endif
13 }
14 else
15 let property = ast().lookupProperty(name)
16 in ocl::PropertyCallExp {
17 name = name,
18 referredProperty = property,
19 type = if property = null
20 then null
21 else property.type
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22 endif
23 }
24 endif

Listing 1.5: CS2AS description for an ambiguous name expression

This approach has the benefit of localizing the disambiguation in the isAVari-
ableExp() operation, and so making VariableExpCS and PropertyCallExpCS re-
dundant. The simple two-way disambiguation decision is shown in Listing 1.6

1 context NameExpCS
2 def : isAVariableExp() : Boolean =
3 let variable = ast().lookupVariable(name)
4 in variable <> null

Listing 1.6: NameExpCS disambigutation rule

Simple choices such as the various forms of CollectionLiteralPartCS can be
resolved syntactically. Semantic decisions are required for the unified name exam-
ple above. The conflicts between the use of parentheses for template arguments,
operation calls and iteration calls can be resolved in the same way but with a
more complex semantic decision tree.

5 Related work

In this section we briefly discuss how the proposed OCL-based CS2AS bridge
relates to previous work. To the best of our knowledge there does not exist a
DSL approach based on OMG specifications to describe bridges between CS and
AS. The Complete OCL document based approach was introduced in [8] and
this paper aims to explain the whole approach (i.e. the internal DSL). Recently,
OCLT [9] has been proposed as a functional transformation language to tackle
model transformations. Apart from being too novel to be considered in this work,
OCLT is not domain specific and it needs additional constructs (e.g. pattern
matching) in order to cover more complex transformation scenarios.

We can find languages conceived to sort out the CS2AS bridges in other
contexts, i.e in the context of some specific tools. We highlight two of them:

NaBL [10] & Stratego [11]: These are two separate languages for different
purposes used by the Spoofax language workbench [12]. The former is used to
declare name resolution and the latter to declare syntax rewrites (tree based
structure transformations). As a main difference with respect to our approach,
these languages are completely unrelated: whereas the former is integrated dur-
ing the parsing activities in order to resolve cross-references when producing the
CS tree, the latter is a general purpose program transformation language further
used to obtain the potentially different AS tree. In our approach, we integrate
the name resolution language into a further CS2AS activity, provided that the
parsing activity first produces a CS tree. As it was commented in Section 4.3,
the name lookups are performed on AS elements rather than on CS ones.

Gra2Mol [13]: Gra2Mol is an approach that is closer in objective to the
approach presented in this paper. It is a domain specific transformation language
conceived to define those bridges, and as our approach does, the name resolution
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activity is also declared as part of the transformation language. However, whilst
their name resolution relies on explicitly specifying a direct search (thus, the
name consumer needs to know where the name producer is located in the syntax
tree), our approach for specifying name resolution is more declarative based on
an independent declaration of name producers and consumer (thus, the name
consumer doesn’t need to know where the producer is located in the syntax
tree). Another difference is that whilst we use OCL as the expression language
to express the bridges, they define a structure-shy8 query language instead. They
claim that the usage of their query language is more compact and less verbose
when compared to using OCL expressions. However such languages are not suit-
able from the point of view of OMG specifications. Besides, we can add that
structure-shy languages are more error prone or sensitive to changes in the in-
volved metamodels (metamodel evolution): when having a static typed language
such OCL, supporting tools can better assist with metamodel evolution.

6 Limitations and shortcomings

From the point of view of the OMG specification, we do not see any limitations of
the proposed internal DSL. Having OCL as the host language is a good solution
for OMG specifications, because the instances of the DSL can be directly ported
to those specifications in order to precisely define the corresponding CS2AS
bridges. Likewise, the flexibility and modularity that Complete OCL documents
provide has promise in addressing very large CS2AS gaps.

On the other hand, from the final user point of view, i.e the user of the DSL,
and specially when comparing with related work, we perceive that having an
external DSL fully designed to deal with concepts related to name resolution
(e.g. NaBL) or disambiguation may be more convenient. We discuss this further
in the next section when talking about future work.

Another shortcoming to mention is that the DSL is based on the concept of
shadow type expression, which is not yet part of the OCL specification, although
it is planned to be included in the next OCL version (2.5) [7]9. The number of
OCL tools which can currently be used to validate the CS2AS bridges is therefore
limited (we are using Eclipse OCL[6] which prototypes some proposed OCL 2.5
features).

7 Ongoing and future work

Apart from using this OCL-based internal DSL to define CS2AS bridges, we are
also producing the Java based source code responsible for obtaining AS models
from CS ones. This ongoing work follows the line drawn in the introduction which
highlights that the CS2AS internal DSL can be exploited by tool implementers.
Although in this paper we are unable to go into further detail, we can point

8 Xpath is an example of this kind of language
9 It is cited in the report as type construction expression, Section 3.1
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the reader out to some JUnit test cases10 working on small examples, which
demonstrate that the instances of the CS2AS internal DSL can be transformed
to executable code and perform the CS2AS gap resolution of a language.

In terms of future work, we highlight the following.

– Definition of CS2AS bridges for OCL and QVT. We will apply the
proposed OCL-based internal DSL to provide complete CS2AS bridge de-
scriptions for the whole OCL and the three QVT languages. We expect these
CS2AS bridge specifications to be included as part of the future OCL and
QVT specifications. Likewise, we expect auto-generated code from from these
bridge specifications to be used in future releases of the Eclipse OCL and
QVTd projects. This should eliminate errors attributable to hand-written
conversion source code.

– Incremental CS2AS bridges. Since generation of code from the declar-
ative CS2AS bridges requires a detailed dependency analysis to identify a
valid conversion schedule, we plan to exploit this analysis to synthesize in-
cremental code for use in interactive contexts such as OCL editors. This
should improve accuracy and performance dramatically since accurate effi-
cient incremental code is particularly hard to write manually and pessimistic
simplifications to improve accuracy are not always sound.

– Creation of an external DSL. By bringing together the good aspects
of other related languages such as NaBL or Gra2Mol, we plan to create an
external DSL and with a higher level of abstraction and more concise than
the one presented here, to ease even more the creation of those bridges. This
external DSL can embed the OCL expressions language, and the supporting
tooling can include a code generator to modularly produce the instances of
the internal DSL presented in this paper.

– Integration with existing language workbenches. As added value of
the DSL and to provide more proofs about how tool vendors may benefit
from it (not covered in this paper), we want to exploit the proposed DSL in
the context of a modern language workbench called Xtext.

8 Conclusions

We have introduced a Concrete Syntax to Abstract Syntax bridge that is:

– Sound. We have shown how intuitive aspects of the current OCL specifica-
tion are formalized by OCL definitions and faults corrected.

– Executable. We can use the dependencies behind the OCL definitions to
establish an execution schedule.

– Extensible. We can reuse the formalization of the OCL bridge in a QVT
bridge.

Our bridge modularizes and separates the specification concerns:

10 http://git.eclipse.org/c/mmt/org.eclipse.qvtd.git/tree/tests/org.eclipse.qvtd.cs2as.
compiler.tests/src/org/eclipse/qvtd/cs2as/compiler/tests/OCL2QVTiTestCases.java
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– Mapping. An OCL operation hierarchy maps CS artifacts to the AS.
– Name Resolution. An OCL operation hierarchy flows the visible names

down to the point of access.
– Disambiguation. Unified CS artifacts, plus CS disambiguation rules, avoid

the need for semantic resolution within a syntactic parser.

Our bridge is currently ready-to-go; it works on test examples. It will now be
applied to replace manual tooling in Eclipse OCL and QVT by tooling generated
direct from the potential OCL 2.5 specification models.
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source code in software modernization. Software & Systems Modeling, 13:1–22,
2012.

34



On the Use of Active Operations for Incremental
Bidirectional Evaluation of OCL

Frédéric Jouault and Olivier Beaudoux

Groupe ESEO, Angers, FRANCE,
{firstname.lastname }@eseo.fr

Abstract. Many relations between model elements are expressed in
OCL. However, tool support to enable synchronization of elements based
on OCL-expressed relations is lacking. In this paper, we propose to use
active operations in order to achieve incremental execution of some OCL
expressions. Moreover, bidirectionality can also be achieved in non-trivial
cases.

1 Introduction

Relations between model elements are often expressed as OCL [9] expressions.
These may be intra-model relations, which may for instance specify the values of
derived features with respect to the values of other features. They may also be
inter-model relations, which may for instance specify transformations. Although
it is generally easy to compute the value of OCL expressions, doing so in such
cases is often not enough.

Consider two variables a and b. A relation between them can be expressed in
several ways: 1) a = f(b), 2) b = g(a), 3) h(a) = i(b), or 4) j(a, b) = true, where
f , g, h, i, and j are functions denoting potentially complex OCL expressions
involving their arguments. It is easy to compute the value of a given b from 1),
or of b given a from 2). However, computing the value of b given a from 1), of
a given b from 2), or of a or b given the other from 3) or 4) can be much more
complex.

Moreover, models do change, thus potentially invalidating relations. Synchro-
nization corresponds to performing appropriate changes to make relations hold
again. It is generally not trivial. If changes always happen on one part (e.g.,
non-derived features, or source models), then relations may be expressed such as
the other part (e.g., derived features, or target models) can be computed easily.
If changes can happen on any part (e.g., with changeable derived features, or
bidirectional transformations), then there is no way to express relations in OCL
such that computation is always easy.

Figure 1 illustrates synchronization of two models MA and MB related by
relation R (decomposable into model-element-level relations). At some point,
MA evolves into M ′

A after some changes (denoted by an arrow labeled a), and
relation R may not hold between M ′

A and MB . Synchronizing MB with M ′
A

consists in evolving it into M ′
B by performing some changes (denoted by an
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arrow labeled b) such as R holds between M ′
A and M ′

B . Alternatively, changes
denoted by arrow b may happen before those denoted by arrow a, and MB may
be the first model to evolve into M ′

B , requiring MA to be evolved into M ′
A.

Fig. 1. Synchronization of models MA and MB related by relation R

Active operations [2,1] enable evaluation of operations on collections in a way
that is both: 1) incremental (i.e., propagating changes instead of recomputing
whole expressions), and 2) bidirectional (i.e., enabling changes to the value of an
expression to be propagated back to its source collection). Following a proposal
made during the OCL 2014 Workshop panel discussion (see Section 5 of [5]),
this paper presents how active operations can be applied to OCL in order to
partially address this synchronization problem. A Java implementation of an
active operation framework supporting EMF1 has been developed. As of writing
this paper, it is available in a development branch2 of Papyrus3. Manual rewriting
of OCL expressions into active operations has been experimented. The resulting
active operations have been used in a bidirectional transformation between a
profiled UML model, and a model conforming to a metamodel corresponding to
the profile. Change propagation in both directions have been extensively tested
to behave as expected.

Incrementality is defined in Section 2. Section 3 exposes what active oper-
ations consider as immutable and mutable values. Active operations are intro-
duced in Section 4, and their application to OCL is presented in Section 5. In
Section 6, our implementation is briefly described. Section 7 discusses some lim-
itations of the approach, along with some ways to mitigate them. Finally, some
related works are listed in Section 8, and Section 9 concludes.

1 Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/
2 http://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/

tree/extraplugins/aof?h=committers/fnoyrit/aofacade&id=

8bec1ad60253cc854cbd3734efa424bfed0e0bbe
3 https://eclipse.org/papyrus/
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2 Incrementality

When a model is represented by an immutable data structure (e.g., in purely
functional approaches), then the only way to perform synchronization is to com-
pute a new model. For derived features, this requires computing a new version of
the model in which the corresponding relations hold again. For transformations,
the model that was not changed need to be recomputed from the one that did
change such that the corresponding relations hold again. However, models are
often represented by mutable data structures (e.g., with EMF in Java). In such
a case, it is still possible to recompute whole models like with immutable data
structures. However, another possibility is to update models in-place by per-
forming small changes that make relations hold again. This is called incremental
synchronization.

Incremental synchronization has the potential to be more efficient because
only relatively small changes are typically required when compared to whole
model recomputation. It also updates traceability links between the synchro-
nized models instead of creating new ones with the recomputed model. More-
over, it also avoids creating new elements but rather updates existing ones. This
results, for instance, in an interesting advantage when models are being edited
in graphical views. Visual shapes are typically bound to the model elements they
represent, and are updated when they change. Updating models in-place means
that visual editors can directly reflect changes to users. Conversely, recomputa-
tion results in whole new models with elements not bound to any visual shape,
which means no change is being made visible to users.

Incremental evaluation of OCL expressions can be used to achieve incremen-
tal model synchronization. It is based on the same idea of in-place updates, and
similarly relies on mutable values4. Values resulting from expression evaluation
as well as intermediate values corresponding to sub-expressions are updated in-
place. For instance, given an ordered set s with initial value OrderedSet {1,
2, 3}, and expression s->collect(e | e + 2)->select(e | e > 4). The ini-
tial evaluation of the expression yields value OrderedSet {5} with intermediate
value (after the collect, but before the select): OrderedSet {3, 4, 5}. If s
changes into OrderedSet {1, 4, 3} (i.e., 2 is replaced by 4), then incremen-
tal evaluation will start by updating the intermediate value to OrderedSet {3,
6, 5} (i.e., replacing 4 by 6). Then, the value of the whole expression will be
updated into OrderedSet {6, 5} by adding 6 to it.

3 Mutability of Values

This section starts with values that cannot change before going into mutable
values that active operations consider. Finally, it is applied to models.

4 This does not prevent OCL expressions from always having the same values as if
they operated on immutable values, following the OCL specification [9].
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3.1 Immutable Values

Primitive values are defined as immutable. These notably include: booleans,
numbers, and strings. This is consistent with OCL, and is a choice made by
many programming languages (e.g., Java), even if they support mutability.

An immediate consequence is that operations on immutable values do not
need to propagate changes. Therefore, these operations are defined in the usual
way.

3.2 Mutable Values

Mutable values wrap other (mutable or immutable) values. There are two kinds
of mutable values supported by active operations: boxes and objects. A box can
be a singleton, or a collection. Each box is observable. It notifies listeners of its
changes: addition, removal, replacement, or move of a wrapped value.

Remark: the value wrapped by a singleton box may be replaced by another
one. Since a mutable primitive type variable cannot have its immutable primitive
value mutated, it is actually defined as a mutable singleton wrapping a primitive
value. In this way, changing the value of the variable actually corresponds to
replacing the value wrapped by the singleton box with another one (i.e., changing
the content of the box without changing the box itself).

The two kinds of singleton boxes, and four kinds of collection boxes are:

– Mandatory singletons (called one) are boxes that must contain exactly
one value. The contained value can be a different one at different times.

– Optional singletons (called opt) are boxes that may be empty or contain
exactly one value. They may notably become empty, or full.

– Collections are boxes that may contain any number of values. They are
further classified into four kinds, according to ordering and uniqueness:
– Sets (called set) forbid duplicate values and are unordered.
– Ordered sets (called oset) forbid duplicate values and are ordered.
– Bags (called bag) may contain duplicate values and are unordered.
– Sequences (called seq) may contain duplicate values and are ordered.

The type of a box is immutable. This means that, for instance, a set will
always remain a set and never become an oset, a bag, or a seq. The type of
elements contained in a box (its element type) may be written in brackets (e.g.,
one(String) for a mandatory singleton wrapping a string value). Objects are a
special kind of mutable value that contain named slots holding boxes as values.

3.3 Application to Models

Each model element is represented by an object having a fixed type, which is a
meta-element coming from a metamodel. The type of an object constrains the
types of its slots. Each slot of an object corresponds to a property (attribute
or reference) belonging to its meta-element. The type of box used to hold the
value of a slot is given by the multiplicity of its corresponding property: an opt
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for 0..1, a one for 1..1, and a collection box for n..m with m > 1. In the last
case, bounds narrower than 0..* are not enforced by the box itself. The specific
kind of collection box depends on ordering and uniqueness (as defined above).
The element type of a slot value is either a primitive type (for attributes) or a
meta-element (for references).

This scheme can be applied to any kind of modeling framework supporting
observation, even one not explicitly based on boxes. We have notably applied it
to EMF. We leverage the fact that EMF can notify listeners (called Adapters)
of changes to model element properties to provide a box-based view on models.
A box is created to represent each slot, but it delegates storage of its contents
to actual EObjects: there is no need for content duplication.

4 Active Operations

4.1 Operations on Boxes

Active operations enable bidirectional incremental evaluation of expressions in-
volving boxes. The result of each active operation is also a box. Available oper-
ations correspond to well-known OCL operations (e.g., conversion between box
types, concatenation, isEmpty, notEmpty, size) and iterators (e.g., collect,
select) on collections or operations available in other languages.

An example of the latter category is the zipWith operation (e.g., available
in Haskell). zipWith operates on two collections, and is given a function (called
a zipper) taking two arguments. It traverses both collections in parallel, and
expects them to have the same size. It returns a collection in which every element
is obtained by applying the zipper function to one element from each collection.
For instance, applying zipWith on OrderedSet {1, 2, 3} and OrderedSet {1, 1, 2} with
integer addition as zipper function results in OrderedSet {2, 3, 5}.

The additional bind operation can be used to propagate changes between
two result boxes. Each active operation propagates changes from its source(s)
to its result, and vice versa. It does so using operation-specific algorithms (see
[2,1]).

Active operations distinguish between: a) forward change propagation from
source to result, and b) reverse change propagation from result to source. For-
ward direction is always supported, but reverse direction often requires more
information. Consequently, reverse direction is only supported if enough informa-
tion is available. In practice, on a concrete bidirectional transformation, reverse
direction can be made to work in most cases. Note that only a) is necessary for
incrementality, but both a) and b) are necessary for bidirectional incrementality.

Here is how an operation like size works. It observes its source box, and its
result is a one(Integer) that contains as value the size of the box on which it is
applied (its source box). It is updated upon removal or addition of values in its
source box. The size operation is currently only implemented in a unidirectional
way: it only supports forward change propagation. However, limited support for
reverse change propagation could make sense, and therefore be implemented. For
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instance, replacing the value in its result box with a lower value could actually
resize its source box by dropping tail elements. Moreover, the size operation
could be augmented to a fully bidirectional operation size(p) where p would
be a provider function. Provider p would return the elements to append to the
source box whenever its size increases.

Although this paper is not the place to look at the algorithms between each
operation, an overview of how the collect operation works is useful. This oper-
ation is applied on a source box containing source elements, and is given a col-
lector function. It returns a box containing the result of applying the collector to
each source element. There are actually ten variants of the collect operation5

exposed to users. Each variant handles a specific combination of change propa-
gation direction (i.e., supporting reverse or not), and mutability of its collector.
There is also a forward variant that keeps traceability information, and uses it
in order to retrieve already computed elements. Finally, there is a corresponding
reverse variant that can read this traceability information.

Reverse change propagation is typically only supported if a reverse collector
function is also provided. Property navigation is handled in a special way, and is
able to support limited reverse change propagation without requiring a reverse
collector. Collecting different values depending on a mutable predicate (e.g.,
aCollection->collect(e | if p(e) then f(e) else g(e) endif)) also re-
quires special handling.

The collector function given to collect is either immutable or mutable. An
immutable collector is a function taking a value as argument, and returning an
immutable value. A mutable collector is a function taking a value as argument,
and returning a box. Collecting with an immutable collector only requires lis-
tening for changes on the container boxes (on the source box for forward change
propagation, and on the target box for reverse change propagation). Collecting
with a mutable collector further requires listening for changes on the result of
applying the collector to every source element (called inner boxes).

4.2 Lifting Immutable Operations

Immutable operations (functions or operators) defined on immutable values may
be lifted6 to work on boxes wrapping such immutable values. This enables change
propagation for many existing operations. It is trivial for bijective operations
such as number or boolean negation, by leveraging collect. Non-bijective oper-
ations (e.g., absolute value on numbers) can be easily lifted to support forward
change propagation on boxes. However, reverse change propagation can gener-
ally be performed in several way. For instance, setting the result of an absolute
value operation to a positive number (e.g., 5) may be reversed by setting its

5 Remark: there are also five variants of the select operation.
6 In this context, lifting consists in taking a function operating on simple values, and

transforming it into a function operating on boxed values. It works by taking the
values out of the boxes before operating on them, and putting them back in boxes
afterward.
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source to that number (e.g., 5), or to its opposite (e.g., −5). In general, this
requires ad hoc handling, but a default behavior may be provided (e.g., always
returning the positive value). In the general case where no default behavior can
solve every problem, users may have to implement the reverse behavior, or at
least choose among several possible behaviors (e.g., using annotations).

While collect can be used to lift unary operations, binary operations (e.g.,
the conjunction of boolean values) can be lifted by leveraging zipWith. As ex-
plained above, there are variants of collect without reverse collector that only
support forward change propagation, as well as variants with a reverse collector
that also support reverse change propagation. When the reverse direction is re-
quired to be supported, a reverse collector can be specified to implement default
or specific reverse behavior. Similarly, zipWith also exists in two variants: one
with only a forward zipper function supporting only forward change propaga-
tion, and one with an additional reverse zipper function also supporting reverse
change propagation. When the reverse direction is required to be supported, a
reverse zipper can be specified to implement default or specific reverse behavior.

5 Application to OCL

There are two main aspects to consider in order to apply active operations
to OCL: mapping OCL types to active operation types, and rewriting OCL
expressions to use active operations such as presented in Section 4.

5.1 Types Mapping

Collection box types and OCL collection types are very closely related, with
simple correspondences: set for Set, oset for OrderedSet, bag for Bag, and seq
for Sequence. Model elements are mapped to objects. Although we have not
experimented with OCL tuples yet, it seems that they could also map relatively
easily to objects.

As for singleton boxes, OCL does not explicitly distinguish nullable values
from non-nullable values. However, modeling languages like UML, MOF, and
Ecore do. The value of a slot typed by a property with multiplicity [0..1] is
mapped to an opt. The value of a slot typed by a property with multiplicity
[1..1] is mapped to a one. In order for every singleton expression to have a definite
one or opt box, static analysis of OCL expressions need to be extended with
nullability analysis, which determines whether each sub-expression can actually
be null.

5.2 Expression Rewriting

Firstly, operations on primitive values can be made to be the same with active op-
erations and OCL. Secondly, active operations on boxes are quite close to opera-
tions on OCL collections. However, several active operations actually correspond
to some OCL iterators such as collect or select. Therefore, in order to know
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which one to use, static analysis of OCL expressions need also be extended with
mutability analysis. That is, whether each sub-expression can actually mutate
must be determined. Moreover, complex collector functions need to be rewritten
into several simpler functions in order to make sure that each navigation step is
actually observed by an active operation. For instance, persons->collect(p |

p.bestFriend.name) needs to be rewritten into persons->collect(p | p.best-

Friend)->collect(p | p.name).
Manually writing relatively complex active operations expressions is cum-

bersome. But it showed that static mutability analysis can work. Indeed, in
our Java-based implementation of active operations, mutable values are distin-
guished as being instances of interface IBox. Any expression that types as an
IBox is therefore mutable. Of course, this still needs to be implemented for OCL.

Finally, the bind active operation generally corresponds to the OCL equality
operator applied on collections.

6 Implementation, Debugging and Testing

So far, our implementation of active operations does not handle translation from
OCL. However, it does support EMF models, and a significant-enough subset of
active operations that enables writing bidirectional incremental transformations.

Debugging is supported by three tools:

– Inspection. The first one is the inspect pseudo-operation. It has no effect
on the data flow, and returns its source box. It is similar to the trace

function in Haskell, or to the debug operation in ATL, except that it stays
active and listens to its source box. It logs every change in the console.

– Data Flow Serialization. Once an active operations expression has been
evaluated, a data flow graph exists in memory to handle change propagation.
It is possible to display this data flow graph textually, and to show it in the
variable inspection view of the Java debugger.

– Data Flow Visualization. Finally, the whole data flow corresponding to
the evaluation of all expressions can also be serialized to a textual file. This
file can then be further processed by graph layouting tools7.

Testing active operation expressions (e.g., used for derived features or trans-
formations) has two aspects. First, the passive functionality of the expression
(i.e., the computation it initially performs in the absence of change) needs to be
tested (e.g., using unit testing). This can be performed using traditional tech-
niques. Second, the active behavior needs to be tested to make sure: 1) that the
active operations implementation behaves properly (but this is not the responsi-
bility of a user of active operations), and 2) that the reverse change propagation
behaves as intended. The second point is especially important considering that
reverse change propagation can often be performed in several ways, but only one
may make sense in a given context. We built some tools to do this by comparing
the result of change propagation with full passive reexecution.

7 We use PlantUML: http://plantuml.com/.
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7 Limitations

Although the approach presented in this paper enables bidirectional incremental
evaluation of many useful OCL expressions, it has the following limitations in
addition to general bidirectionality issues:

1. Reverse change propagation typically requires more information than avail-
able in OCL expressions (e.g., reverse collector or zipper functions).

2. It is not clear yet that all OCL expressions can be rewritten using a fixed
set of active operations, and if so, what these operations are.

3. The current active operations algorithms do not support arbitrary-level traver-
sals such as can occur in arbitrary-level collection flattening or closures.

While all these points are open issues, it is possible to mitigate them:

– To mitigate 1:
• Lifted immutable operations may be annotated with information about

which reverse behavior to choose from. For instance, a lifted number
addition may be annotated to reverse propagate changes by modifying
only one of its operand, or both. If both are modified, it may distribute
the change evenly, or not.

• Specific active operations may be defined with semantics appropriate for
a given context. However, this is not trivial since this requires designing
a custom bidirectional propagation algorithm.

• A search-based approach that explores possible solutions to find a “good”
one (according to a fitness function) could be used. However, it is unclear
at this time how this could interact with active operations algorithms.

• Finally, if reverse propagation cannot be defined in a meaningful way, it
is always possible to make corresponding properties read only in meta-
models.

– To overcome 2 and 3, other techniques can be used for forward change prop-
agation (e.g., reevaluating whole sub-expressions). However, reverse change
propagation may not be possible in such a case.

– To ease the developer’s job despite 1 and 2, a development environment
could help. It could warn expression writers of problems (e.g., missing reverse
annotation, rewriting impossibility), thus making it easier to write in the
appropriate subset of OCL. At least it would make it easy to know when we
loose some property (e.g., support for reverse change propagation).

8 Related Work

Firstly, ad hoc solutions for bidirectional synchronization can be implemented in
general purpose languages such as Java. However, such approaches mix together
domain-specific concern with technical aspects. Some frameworks like AngularJS
do support data-binding that can perform change propagation. However, the
kind of supported relations is quite limited.
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Secondly, functional approaches based on lenses can be used to express re-
lations similarly to what can be done with OCL. Some approaches such as [6]
enable bidirectional transformations based on lenses. However, functional ap-
proaches are not easy to marry efficiently [7] with side-effect based modeling
frameworks like EMF.

Finally, there are some graph-pattern based approaches such as IncQuery
[10]. IncQuery uses a custom query language based on graph patterns. There is
tool support to translate some OCL expressions into these patterns [3]. Although
active operations also require some rewriting from OCL, expressions built us-
ing active operations are structurally similar to corresponding OCL expressions,
whereas graph patterns have different structure. Furthermore, IncQuery may be
used as part of VIATRA [4] transformations. VIATRA enables fine-grained cus-
tom reactions to specific change events. It should be possible to achieve similar
results with active operations, by coupling them with as powerful a transfor-
mation language (e.g., possibly by making VIATRA use active operations in
addition to IncQuery).

9 Conclusion

This paper proposes an approach that enables incremental (i.e., supporting for-
ward change propagation) evaluation of OCL expressions. Furthermore, this ap-
proach can also be made to support reverse change propagation directly in some
cases, and with additional annotations in others. Bidirectional incremental eval-
uation of OCL expressions can thus be achieved in some cases. Applying this
approach to the implementation of a model transformation has shown that bidi-
rectionality can be achieved in non-trivial cases.

The approach is based on active operations, of which an overview has been
given. Not all OCL expressions can be translated into active operations, and of
those which can, not all can propagate changes in the reverse direction. However,
it is not clear yet which subset of OCL can be translated, and which (smaller)
subset can support reverse propagation. We expect that further works on the
rewriting of OCL expressions into active operations will help define these subsets
more precisely. The presented approach is still missing automatic rewriting of
OCL expressions into active operations, and still has to be evaluated for perfor-
mance and scalability.

While working on this approach, we noted that it could be useful to have the
notion of optional values in OCL. This would enable tools to support null-checks
and safe navigation. By combining the approach presented in this paper with the
OCLT approach presented in [8], it may become possible to express bidirectional
incremental transformations directly in OCL.
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Abstract. The Object Constraint Language (OCL) is a central com-
ponent in modeling and transformation languages such as the Unified
Modeling Language (UML), the Meta Object Facility (MOF), and Query
View Transformation (QVT). OCL is standardized as a strict functional
language. In this article, we propose a lazy evaluation strategy for OCL.
We argue that a lazy evaluation semantics is beneficial in some model-
driven engineering scenarios for: i) lowering evaluation times on very
large models; ii) simplifying expressions on models by using infinite
data structures (e.g., infinite models); iii) increasing the reusability of
OCL libraries. We implement the approach on the ATL virtual machine
EMFTVM.

1 Introduction

The Object Constraint Language (OCL) [1] is widely used in model-driven engi-
neering (MDE) for a number of different purposes. For instance, in the Unified
Modeling Language (UML), OCL expressions are used to specify: queries, in-
variants on classes and types in the class model, type invariants for stereotypes,
pre- and post-conditions on operations and methods, target (sets) for messages
and actions, constraints on operations, derivation rules for attributes. Besides its
role in UML, OCL is embedded as expression language within several MDE lan-
guages, including metamodeling languages (e.g., the Meta Object Facility, MOF)
and transformation languages (e.g., the Query View Transformation language,
QVT, and the AtlanMod Transformation Language, ATL [2]).

In the standard specification of the OCL semantics [1], the language is de-
fined as a side-effect-free functional language. While several implementations of
the specification exist as a standalone language (e.g., [3]), or as an embedded
expression language (e.g., in [2]), they all compute OCL expressions by a strict
evaluation strategy, i.e., an expression is evaluated as soon as it is bound to a
variable. Conversely, a lazy evaluation strategy, or call-by-need [4] would delay
the evaluation of an expression until its value is needed, if ever. In this paper
we want to: 1) clarify the motivation for lazy OCL evaluation and capture the
main opportunities of application by means of examples; 2) propose a lazy eval-
uation strategy for OCL by focusing on the specificities of the OCL language
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w.r.t. other functional languages; 3) present an implementation of the approach
in the ATL virtual machine EMFTVM4 [5].

The first effect we want to achieve is a performance increase in some scenar-
ios by avoiding needless calculations. Companies that use MDE in their software
engineering processes need to handle large amounts of data. In MDE, these
data structures would translate into very large models (VLMs), e.g., models
made by millions of model elements. Examples of such model sizes appear in
a range of domains as shown by industrial cases from literature: AUTOSAR
models [6], civil-engineering models [7], product families [8], reverse-engineered
software models [9]. A lazy evaluation strategy for a model navigation language
like OCL would allow to 1) delay the access to source model elements to the mo-
ment in which this access is needed by the application logic and, by consequence,
2) reduce the number of processed model elements, by skipping the unnecessary
ones (if any). When the OCL evaluator is embedded in an MDE tool, lazy OCL
evaluation may have a significant impact on the global tool performance.

Our second purpose is enabling the use of infinite data structures in the
definition of algorithms with OCL. Indeed, infinite data structures make some
algorithms simpler to program. For instance, they allow to decouple code in a
producer-consumer pattern: a producer function defines data production without
caring for the actual quantity of data produced; a consumer function explores
the data structure, implicitly driving the production of the necessary amount of
data. For instance, it is simpler to lazily generate infinite game trees and then
explore them (e.g., by a min-max algorithm), rather than estimating at each
move the part of the game tree to generate. In this paper we argue that infinite
data structures simplify also the development of common queries in MDE.

Finally our third objective is to use laziness to improve the reusability of OCL
libraries, by reducing their dependencies. Indeed, laziness promotes definitions
reuse. For instance, the minimum of a collection can be defined as the composi-
tion of sorting with selection of the first element. Such a definition reuses code
but it can be vey inefficient in a strict evaluation strategy, requiring the full col-
lection sorting. Laziness makes it practical, at least for some sorting algorithms,
since only the computation for sorting the first element will be executed. Simi-
larly, composing libraries in a producer-consumer pattern, enables the definition
of general (hence reusable) generators that compute many (possibly infinite) re-
sults. Consumers specialize generators to the context of use by demanding only
part of the generated elements.

The remainder of this paper is organized as follows: Section 2 motivating the
need for lazy evaluation in OCL by introducing two running scenarios; Section 3
describes our approach; Section 4 discusses the implementation strategy; Section
5 lists the main related works; Section 6 concludes the paper with a future
research plan.

4 available from http://wiki.eclipse.org/ATL/EMFTVM
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trigger ∗ ∗ effect

Fig. 1. State Machine metamodel (excerpt)

2 Motivating Examples

This section introduces two examples of OCL queries with the purpose of high-
lighting the benefits of lazy evaluation in the specific case of model queries.

The state machine in Fig. 2 conforms to the State Machine metamodel dis-
played in Fig. 1. This metamodel defines a StateMachine as composed of several
State elements. A kind property is used to distinguish special states, such as the
unique initial state and possibly several final states. Transitions connect
couples of States. Each transition is triggered by a set of events (trigger) and
when it fires it produces new events (effect).

We provide this state machine with a simple execution semantics. The ma-
chine maintains a queue of events to process, that is initially not empty. The
execution starts from the initial state and checks the top of the queue for events
that match the trigger of some outgoing transition. If such events are found, the
transition is fired: the machine moves to the target state of the transition, the
triggering events are removed from the top of the queue and the effect events are
added to the bottom of the queue. In our simple model the machine proceeds
autonomously (no external events are considered) and deterministically (triggers
outgoing from the same state are disjoint).

2.1 Queries on Large Models

As a first example scenario we check if there exists a non-final state that contains
a self-transition5:
5 The query structure is identical to the one introduced in [9] and used in several

works to compare the execution performance of query languages, but here we apply
it to state machines instead of class diagrams.

s1

s2

s3

s4

s5

e1/e2

e2/e1

e3/

e4,e2/
e2/e1,e3

e3,e1/

Fig. 2. State machine example (transitions are labeled as trigger/effect)

48



State . allInstances ( )−>select ( s | not s . kind = ’ final ’ )
−>exists ( s | s . outgoing−>exists ( t | t . target = s ) )

If we assume the number of states of the input state machine to be very
large, the time and memory cost to evaluate such query may be high. Here are
the steps that a strict evaluation of OCL typically performs:

1. Computation of the extent of class State. In this first step, the OCL
evaluator typically traverses the whole model on which the query is evaluated
in order to compute the collection of all elements that have State as type
(directly, or indirectly via inheritance).

2. Filtering out final states. Then, the whole collection computed in previous
step is traversed in order to keep only states that are not final.

3. Finding a state with a self-transition. Finally, the list of non-final states
is traversed in order to discover if one of them satisfies the condition.

Several optimizations may be supported by an OCL evaluator. For instance, with
extent caching, the result of calling allInstances() on a model for a given
type (State in our example) may be cached. Thus, a second extent computation
will not require traversal of the whole model. In our case, this will not reduce the
cost of the first evaluation, but will reduce the cost of subsequent evaluations
(provided the source model is not modified, which may invalidate our cache, and
require a new extent computation). However, with these optimizations alone,
even if a non-final state satisfying the condition appears near the beginning of
the model, the whole model still needs to be traversed for the first computation
of the extent of State, and the whole list of states needs to be traversed for each
evaluation in order to filter out final states.

Especially when the query is performed as part of an interactive tool, there
may be a significant need to reduce the query response time. Moreover, if the
queried model is too large to fit in RAM (e.g., it may be stored in a database and
traversed lazily using frameworks such as CDO6), evaluation of the query will
simply fail. In such a case, the computation of the extent of Class will force all
elements typed by Class to be loaded into RAM (at least a proxy per element
if not the values of all their properties). However, we do not actually need all
such elements to be in memory at the same time.

2.2 Infinite Collections in Model Queries

In the queries of this section we consider also the state machine semantics and in
particular event consumption. The following OCL query computes if a final state
is reachable from the current state in a given number of steps while consuming
all the given events (in this case we say that the state is valid):

1 context State : : isValid ( events : Sequence ( Event ) , steps : I n t eg e r ) : Boolean
2 body :
3 i f ( steps<0) then false else
4 i f ( events−>isEmpty ( ) ) then self . kind = ’ final ’

6 http://www.eclipse.org/cdo/
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5 else self . outgoing−>exists ( t | events−>startsWith ( t . trigger )7

6 and t . target . isValid ( events−>difference ( t . trigger )
7 −>union ( t . effect ) ) , steps−1) ;
8 endif
9 endif ;

The following query searches for a repeating state in the state machine exe-
cution (e.g., to possibly optimize the state machine execution):

1 context State : : repeatingState ( events : Sequence ( Event ) ) : State body :
2 self . repeatingStateRec ( events , Set {}) ;
3 context State : : repeatingStateRec ( events : Sequence ( Event ) ,
4 visited : Set ( State ) ) : State body :
5 i f ( visited−>includes ( self ) ) then self
6 else self . outgoing−>select ( t | events−>startsWith ( t . trigger ) )
7 −>any ( ) . target . repeatingStateRec ( events−>difference ( t . trigger )
8 −>union ( t . effect ) , visited−>including ( self ) ) )
9 endif ;

The logic of the two recursive queries have clear similarities, being both based
on a simulation of the state-machine execution. However the simulation logic is
embedded in the query definitions, and interleaved with query-specific logic, i.e.
validity or repetition checks. Factorizing the logic for state-machine simulation
would simplify the definition of the queries, avoid code duplication, and increase
code-reusability. We may try to achieve this factorization by writing a simulate

OCL query that given a set of events returns an execution trace:

1 context State : : simulate ( events : Sequence ( Event ) ) :
2 Sequence ( Tuple ( state : State , events : Sequence ( Event ) ) ) body :
3 l e t tr : Transition = self . outgoing
4 −>select ( t | events−>startsWith ( t . trigger ) )−>any ( ) in
5 Sequence{ Tuple{ state=self , events=events }}
6 −>union ( tr . target . simulate ( events−>difference ( tr . trigger )
7 −>union ( tr . effect ) ) ;

Reusing the simulate function considerably simplifies the definition of the
previous queries, that can be re-written as:

1 context State : : isValid ( events : Sequence ( Event ) , steps : I n t eg e r ) : Boolean
2 body : self . simulate ( events )−>subSequence (1 , steps )
3 −>exists ( tu | tu . state . kind = ’ final ’ and tu . events−>isEmpty ( ) ) ;

1 context State : : repeatingState ( events : Sequence ( Event ) ) : Boolean

2 body : self . simulate ( events )−>collect ( tu | tu . state )−>firstRepeating ( ) 8 ;

However the result of simulate is in general an infinite sequence of states
and the use we describe would be possible only by providing OCL with a lazy
semantics.

3 Lazy Evaluation of OCL

3.1 Approach Overview

In general, lazy evaluation consists in delaying computations, detecting when the
result of such a delayed computation is needed, and forcing the delayed compu-

7 startsWith is a shortcut for as self.subSequence(1,argument->size())=argument
8 firstRepeating is defined as an operation on ordered collections (independent from

state machines) finding the first repeating occurrence
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tation. In functional languages, there is a single way to define computation: func-
tions. When function (application) is lazy, the language is lazy. Object-oriented
languages (with late binding) do not fit well with laziness. Indeed, evaluation
of a method call requires to evaluate its receiver in order to lookup the method
definition. Overloading also requires to evaluate arguments. Hence, method call
in object orientation is essentially strict. For this reason, in OCL we choose to
restrict laziness to collections. Our approach relies on iterators which allow us
to produce and consume incrementally (lazily) the elements of a collection.

3.2 Laziness and the OCL Specification

One of the main design goals of our approach for lazy OCL is maximizing com-
patibility with standard (strict) OCL.

We choose not to extend or change the OCL syntax. In particular we avoid in-
troducing language constructs to control if an expression (or data value, function
call...) will be eagerly/lazily computed, like strict/lazy keywords or explicit
lazy data types (e.g., LazySet). This enables programmers to directly reuse
existing programs and libraries. We also argue that this choice preserves the
advantage of declarative languages like OCL, i.e. programmers do not need to
worry about how statements are evaluated. As we will see in the next section,
keeping laziness completely implicit is indeed a challenge for the lazy evaluation
of high-level declarative languages like OCL.

We also do not change the semantics of existing terminating OCL programs:
if a query terminates in strict OCL and returns a value, it also terminates in
lazy OCL and returns the same value (although it may require less computation
to do so). The only exception to this property are queries that during their
computation produce an invalid value, as we will soon see.

We are not only backward compatible, but some non-terminating OCL queries
terminate in lazy OCL. In particular, we allow the definition of infinite collections
and the application of OCL collection operations to them, with some restrictions
that we discuss in the next section. Queries that make use of infinite collections
terminate, as long as only a finite part of the collection is required by the compu-
tation. This is a deviation (extension) of the OCL standard, which defines that
all collections are finite: potential infinite sets such as Integer.allInstances()
are invalid in the standard.

As we mentioned, the error management mechanism of OCL has a signifi-
cant impact on the backward compatibility of the lazy semantics. In OCL, errors
are represented as invalid values that propagate: for instance when invalid

is added to a collection, the resulting whole collection is invalid. In lazy OCL,
the value of an element is unknown until it is accessed. So, if an invalid ele-
ment is never accessed, it does not propagate and the prefix of the collection is
well defined. This means that strict queries that return invalid, may return a
different value in lazy semantics.

Moreover OCL provides the programmer with the oclIsInvalid function to
handle invalid values (somehow analogously to catching exceptions in Java).
The function returns true if its argument is invalid and at the same time stops
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the propagation of invalid, allowing the program to recover from the error and
possibly terminate correctly. Hence terminating queries in strict semantics that
use oclIsInvalid may produce a different valid value than the same queries in
lazy semantics.

Summarizing: 1) expressions that return a valid result in strict semantics
return the same result in lazy semantics, 2) expressions that return an invalid
result or do not terminate in strict semantics may return a valid result in lazy
semantics, 3) expressions that use the oclIsInvalid function are an exception
to (1) and (2), as they are in general not compatible with the lazy semantics.
Note that the other special OCL value, null, is a valid value that can be owned
by collections, hence it does not pose any compatibility problem to the lazy
semantics.

3.3 OCL Operations

OCL functions benefit from laziness in a different degree. In Table 1 we list all
the OCL operations on collections and Table 2 all the iterators (according to [1]).
For each operation, and each kind of collection it can be applied to, we provide
two properties that characterize its lazy behavior:

– We add a constraint to the Restrictions column to indicate that the opera-
tion/iterator may not terminate, or it is simply not well-defined, if its source
(context) or argument is an infinite collection. Examples of such cases are:
appending an element at the end of an infinite collection, reversing it, cal-
culating its maximum.

– We specify in the Strictness column if the operation/iterator always evalu-
ates the totality of the source or argument collection. Simple examples are:
sorting the collection, summing it, or generically iterating over it (iterate).

The properties in Tables 1 and 2 implicitly categorize OCL operations and
iterators w.r.t. laziness: operations that can be lazily applied without restrictions
(e.g., product), operations that can lazily navigate only some of the arguments
(e.g., src - c lazily navigates the source/context collection src but strictly
evaluates the argument c) and operations that do not support lazy evaluation
(e.g., iterate).

For brevity, in the following we illustrate in detail only a subset of the OCL
functions. The reader may extend the principles we introduce to analogous func-
tions.

AllInstances. While not being an operation in the context of a collection type,
allInstances returns a collection, made by the instances of the type in argu-
ment, and this collection can be lazily computed. OCL implementations usu-
ally perform a depth-first traversal on the model containment tree to find the
model instances and populate the result collection, but this traversal order is
not defined in the OCL specification. We propose a lazy evaluation semantics
for allInstances that supports the navigation of infinite models. However, even
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Table 1. Laziness for OCL collection operations

Context Operation Restrictions Strictness
Collection =/<> (c : Collection) src and c finite -
Collection size () src finite strict on src

Collection includes/excludes (o : OclAny) src finite -
Collection includesAll/excludesAll (c : Collection) src and c finite -
Collection isEmpty/notEmpty () - -
Collection max/min/sum () src finite strict on src

Set/Bag
including (o : OclAny)

- -
OrdSet/Sequence src finite -

Collection excluding (o : OclAny) - -
Set/Bag

union (c : Collection)
- -

OrdSet/Sequence src finite -
Collection product (c : Collection) - -
Collection selectByKind/selectByType (t: OclType) - -
Collection asSet/asOrdSet/asSequence/asBag () - -
Set/Bag

flatten (c : Collection)
- -

OrdSet/Sequence src finite -
Set/Bag intersection (c : Collection) - -

Set - (c : Set) c finite strict on c

Set symmetricDifference (c : Set) src and c finite, strict on src and c

OrdSet/Sequence append (o : OclAny) src finite -
OrdSet/Sequence prepend (o : OclAny) - -
OrdSet/Sequence insertAt (n : Integer, o : OclAny) - -
OrdSet/Sequence subOrdSet/subSeq (f : Integer, l : Integer) - -
OrdSet/Sequence at (n : Integer) - -
OrdSet/Sequence indexOf (o : OclAny) - -
OrdSet/Sequence first () - -
OrdSet/Sequence last () src finite -
OrdSet/Sequence reverse () src finite -

Table 2. Laziness for OCL collection iterators

Iterator Restrictions Strictness
iterate src finite strict on src

any - -
closure src finite strict on src

collect - -
collectNested - -

count src finite strict on src

exists src finite -
forAll src finite -

isUnique src finite -
one src finite -

reject - -
select - -

sortedBy src finite strict on src
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Fig. 3. Fair-first traversal (numbers indicate traversal order)

when models are finite but large, lazy allInstances can lead to easier program-
ming and better performance.

Applying allInstances to infinite models is not trivial. Depth-first traver-
sal of the containment tree does not work in the case of models with infinite
depth: a query like Type.allInstances()->includes(e) will not terminate
if e appears in a rightmost branch w.r.t. an infinite-depth branch. Dually a
breadth-first traversal will not work if the model contains a node with infinite
children: the traversal will never move to the next tree level. According to our
principle of implicit laziness, we avoid introducing user-defined model traversals
(e.g., State.allInstancesBreadthFirst()), that would leave to the user the
burden of selecting the correct traversal strategy for allInstances depending
on the model structure.

Instead, we propose a specific model-traversal order for lazy evaluation of
allInstances. We still traverse the containment tree with a traversal strategy
that alternates at each step a movement in depth and one in width (in an ideally
diagonal way). Listing 1.1 formalizes the semantics of the traversal in Haskell
(function fairFS) and Figure 3 graphically illustrates the traversal order.

For instance, applying the example query of Section 2.1 in strict semantics
to a state machine with infinite states, the first allInstances would never
terminate and the following select would never start computing. In our lazy
semantics instead, allInstances would traverse the infinite model by need,
and the full query would actually terminate if a non-final state containing a
self-transition was found.

Listing 1.1. Fair traversal for lazy semantics of allInstances

1 class Tree t where
2 subs :: t a -> [t a]
3

4 data RoseTree a = Node a [RoseTree a] deriving Show
5

6 label :: RoseTree a -> a
7 label (Node l _) = l
8

9 instance Tree RoseTree where
10 subs (Node _ ts) = ts
11
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12 type Visitor a = a -> [a]
13

14 type Brothers t = [t]
15

16 nextBrother :: Visitor (Brothers t)
17 nextBrother [_] = []
18 nextBrother (_:ts) = [ts]
19

20 nextSon :: Tree t => Visitor (Brothers (t a))
21 nextSon (t:_) | null (subs t) = []
22 | otherwise = [subs t]
23

24 fairFS :: Tree t => Visitor (t a)
25 fairFS t = ffsIter [[t]]
26 where ffsIter (ts:tss) = head ts:ffsIter (tss++ nextSon ts++ nextBrother ts)
27 ffsIter [] = []

Union. The union operator computes the union of two collections. In lazy OCL
each collection is represented as an iterator of elements, hence their union is also
represented as an iterator of elements.

Four versions of the union, in function of the type of their arguments, are
detailed in Listing 1.2. When the collection arguments are Sequences the union
appends (recursively) the elements of the first collection to the head of the second
one. When the arguments are Bags the union is a fair interleaving of the two
collections. When the arguments are OrderedSets the union concatenates the
first collection to the second, but elements of the first collection are deleted
from the second, to preserve the unicity property. Finally, when the arguments
are Sets, the union interleaves the two collections while deleting duplicated
elements.

The different lazy behavior of the four union semantics stands out when they
are used with infinite collections. When collections are not ordered no restriction
is required, since the interleaving allows to fairly navigate and merge both of
the infinite collections. When the collections are ordered if the first argument is
infinite the elements of the second arguments will not occur in the infinite result,
because in the declarative semantics of OCL the elements of the first collection
must occur before the elements of the second collection. In other words, if c1 is
infinite and ordered, than c1.union(c2) is equivalent to c1 for all uses in OCL.

Listing 1.2. Lazy union

1 unionSequence (x:xs) ys = x:unionSequence xs ys
2 unionSequence [] ys = ys
3

4 unionOrderedSet (x:xs) ys = x:unionOrderedSet xs (delete x ys)
5 unionOrderedSet [] ys = ys
6

7 unionBag (x:xs) ys = x:unionBag ys xs
8 unionBag [] ys = ys
9

10 unionSet (x:xs) ys = x:unionSet (delete x ys) xs
11 unionSet [] ys = ys

Intersection. The intersection operator computes the intersection of two Sets
or Bags. Such a computation requires an occurrence check (an element belongs
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to the result only if it belongs to both collections), that is in general an operation
that is not applicable to infinite sets.

In the lazy execution algorithm we propose (Listing 1.3) both collections are
inspected in parallel (note how the arguments are swapped in the recursive call)
and the check of occurrence in the other collection is performed with respect to
the already considered elements.

Listing 1.3. Lazy intersection

1 intersect xs ys = intersect ’ xs [] ys []
2 where intersect ’ (x:xs) seenInXs ys seenInYs
3 | x ‘elem ‘ seenInYs = x:intersect ’ ys (delete x seenInYs) xs

seenInXs
4 | otherwise = intersect ’ ys seenInYs xs seenInXs
5 intersect ’ [] _ _ _ = []

Table 3 shows an example of execution trace of this algorithm where two
infinite integer collections are intersected. In the columns of Table 3 we show,
for each step: the part of the collections that is still to evaluate (columns set1

and set2), the elements of the two collections that have already been considered
(columns buffer1 and buffer2), the test applied at the current step (column
test), the result being built (column set1∩set2).

Table 3. Example of lazy intersection: {powers of 2} ∩ {squares}
set1 (powers of 2) buffer1 test buffer2 set2 (squares) set1∩set2

{1,2,4,8,16,32,64,128,256...} {} {} {1,4,9,16,25,36,49,64...} {}
{2,4,8,16,32,64,128,256...} {} 1 /∈ {} {1,4,9,16,25,36,49,64...} {}
{2,4,8,16,32,64,128,256...} {1} 3 1 {} {4,9,16,25,36,49,64...} {}
{4,8,16,32,64,128,256...} {} 2 /∈ {} {4,9,16,25,36,49,64...} {1}
{4,8,16,32,64,128,256...} {2} 63 4 {} {9,16,25,36,49,64...} {1}
{8,16,32,64,128,256...} {2} 4 ∈ {4} {9,16,25,36,49,64...} {1}
{8,16,32,64,128,256...} {2} 63 9 {} {16,25,36,49,64...} {1,4}
{16,32,64,128,256...} {2} 8 /∈ {9} {16,25,36,49,64...} {1,4}
{16,32,64,128,256...} {2,8} 63 16 {9} {25,36,49,64...} {1,4}
{32,64,128,256...} {2,8} 16 ∈ {9,16} {25,36,49,64...} {1,4}
{32,64,128,256...} {2,8} 63 25 {9} {36,49,64...} {1,4,16}
{64,128,256...} {2,8} 32 /∈ {9,25} {36,49,64...} {1,4,16}
{64,128,256...} {2,8,32} 63 36 {9,25} {49,64...} {1,4,16}
{128,256...} {2,8,32} 64 /∈ {9,25,36} {49,64...} {1,4,16}
{128,256...} {2,8,32,64} 63 49 {9,25,36} {64...} {1,4,16}
{256...} {2,8,32,64} 128 /∈ {9,25,36,49} {64...} {1,4,16}
{256...} {2,8,32,64,128} 3 64 {9,25,36,49} {...} {1,4,16}
{...} {2,8,32,64,128} 256 /∈ {9,25,36,49} {...} {1,4,16,64}

4 Lazy OCL in ATL/EMFTVM

We have implemented lazy OCL evaluation upon the ATL virtual machine
EMFTVM. We compile the underlying OCL expression into imperative byte
codes, like INVOKE, ALLINST and ITERATE as explained in [5]. In order to
lazily evaluate collections, we implemented the LazyCollection type and its
subtypes, LazyList, LazySet, LazyBag, and LazyOrderedSet corresponding to
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four collection types of OCL (Sequence, Set, Bag and OrderedSet). An iterator
such as select or collect does not immediately iterate over its source collec-
tion, but rather returns a lazy collection to its parent expression that keeps a
reference to the source collection, and to the body of the iterator. This is pos-
sible because EMFTVM supports closures (also known as lambda-expressions).
Then, when a collection returned by an iterator is traversed, it only executes the
body of the iterator on the source elements as required by the parent expression.

Listing 1.4 for instance shows the relevant code excerpts for implementing
the collect operation for Bags. A LazyBag class extends LazyCollection and
defines methods for each operation on Bags, e.g. collect(). In the strict ver-
sion the collect() method would contain the code for computing the resulting
collection (i.e., applying the argument function to each element of the source col-
lection). In our lazy implementation the method just returns another LazyBag.
A LazyBag is constructed by passing an Iterable as the data source of the col-
lection. In the case of collect the Iterable is built around a CollectIterator

(from LazyCollection), and the collect logic is embedded in the two meth-
ods next() and hasNext() of the iterator. In the CollectIterator the next()

method executes a function CodeBlock, representing the lamba-expression as-
sociated with it.

Listing 1.4. LazyCollection

1 public class LazyBag <E> extends LazyCollection <E> {
2 // ...
3 /**
4 * Collects the return values of <code >function </code > for
5 * each of the elements of this collection .
6 * @param function the return value function
7 * @return a new lazy bag with the <code >function </code > return values.
8 * @param <T> the element type
9 */

10 public <T> LazyBag <T> collect(final CodeBlock function) {
11 // ...
12 return new LazyBag <T>(new Iterable <T>() {
13 public Iterator <T> iterator () {
14 return new CollectIterator <T>(inner , function , parentFrame);
15 }
16 });
17 }
18 // ...
19 }
20 public abstract class LazyCollection <E> implements Collection <E> {
21 // ...
22 public static class CollectIterator <T> extends ReadOnlyIterator <T> {
23

24 protected final Iterator <?> inner;
25 protected final CodeBlock function;
26 protected final StackFrame parentFrame;
27

28 /**
29 * Creates a {@link CollectIterator } with <code >condition </code > on <

code >inner </code >.
30 * @param inner the underlying collection
31 * @param function the value function
32 * @param parentFrame the parent stack frame context
33 */
34 public CollectIterator(final Iterable <?> inner , final CodeBlock

function , final StackFrame parentFrame) {
35 super();
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36 this.inner = inner.iterator ();
37 this.function = function;
38 this.parentFrame = parentFrame;
39 }
40

41 public boolean hasNext () {
42 return inner.hasNext ();
43 }
44

45 public T next() {
46 return (T) function.execute(parentFrame.getSubFrame(function ,

inner.next()));
47 }
48 }
49 // ...
50 }

In EMFTVM, allInstances() returns a lazy list that traverses the source
model lazily, as illustrated in Listing 1.5. The method allInstancesOf() in the
class ModelImpl is executed at each call to OCL allInstances. The method re-
turns a LazyList whose data source is a ResourceIterable. ResourceIterable
contains a DiagonalResourceIterator that implements in its next() method
the fair tree traversal strategy specified in Listing 1.19.

Listing 1.5. allInstances

1 public class ModelImpl extends EObjectImpl implements Model {
2 // ...
3 public LazyList <EObject > allInstancesOf(final EClass type) {
4 return new LazyList(new ResourceIterable(getResource ()), type));
5 }
6 // ...
7 }
8 public class ResourceIterable implements Iterable <EObject > {
9 // ...

10 public Iterator <EObject > iterator () {
11 // the DiagonalResourceIterator implements the fair tree traversal
12 return new DiagonalResourceIterator <EObject >(this , false)
13 }
14 // ...
15 }

Our implementation allows to define and use lazy queries on very large or
infinite models, including the examples of Section 2. We have not performed
a systematic performance experimentation and time execution performance of
the lazy implementation clearly depends on the ratio of the large collections
that is actually visited by the query. When performance is the main concern,
lazy semantics has to be preferred if a small part of collections is used; strict
semantics is still faster in other cases because of the lower overhead.

As an example, we perform the OCL query from Section 2.1 in a strict way
with the classic (strict) ATL virtual machine and in a lazy way with the lazy

9 Note that the current implementation of allInstances() in standard ATL returns
a Sequence of elements in depth-first order, instead of a Set. This deviation from
the OCL standard may improve the engine performance (by avoiding occurrence
checks). The drawback is that the traversal order is exposed to the user, that can
consider it in its transformation. In such cases our change in traversal order may
break backward-compatibility.
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EMFTVM on an Intel core i7, 2.70GHz x 8, x86 64 CPU with 8GiB of RAM.
We provide a large state machine made of 38414 elements, where the first state
satisfies the query condition. Then, we compare results returned from the two
OCL evaluation methods and summarize them in Table 4. The column Calls

presents the number of operation calls on elements of the underlying collection,
i.e., iterations over the ->select() and the ->exists(). As shown in Table 4,
the lazy evaluator stops the iteration on both ->select() and ->exists() as
soon as the condition is satisfied (i.e., for the first state), resulting in a much
faster execution.

5 Related Work

Lazy evaluation of functional languages is a subject with a long tradition [4],
yet it is still studied [10]. We refer the reader to [11] for an example based
on Lisp, and to [12] for its formal treatment. Lazy evaluation can be mixed
with strict one [13][14]. Hughes has argued that laziness makes programs more
reusable [15]. Our approach based on lazy iterators is a simplified version of
iteratees [16]. Indeed, iteratees are composable abstractions for incrementally
processing of sequences. However, our iterators do not isolate effects with a
monad, nor distinguish producers, consumers and transducers. Moreover, in our
iterators either there is a next value or the iteration is over, but we do not
consider raising errors.

The idea of defining and using infinite models has been already addressed
in previous work. In [17] transformation rules are lazily executed, producing a
target model that can be in principle infinite. In [18] the authors extend MOF
to support infinite multiplicity and study co-recursion over infinite model struc-
tures. Both works do not provide the query language with an explicit support
of infinity. Streaming models can be considered a special kind of infinite models,
and their transformation has been recently studied in [19] with languages like
IncQuery, but the focus is more on incrementality than laziness.

As alternatives to laziness, other improvements to OCL evaluation have been
explored in several works. In [20] the OCL execution engine has been optimized
“locally” (i.e., by changing code generated for a given construct). With lazi-
ness, we perform only the necessary iterations in many more cases. However,

Table 4. Lazy vs. Strict OCL evaluation in ATL.

Query Model Size
Lazy Eval. Strict Eval.

Calls Time Calls Time

Example 1

38414

2

0.002 s

38412

0.200 s
State.allInstances()->select(s |

not s.kind = ’final’)

1 25608

->exists(s | s.outgoing->exists(t |

t.target = s))))

1 12804
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from a performance point of view, laziness overhead should also be considered.
The paper in [21] proposes a mathematical formalism that describes how the
implementation of standard operations on collections can be made active. In
that way they could evaluate the worst case complexities of active loop rules on
collections with a case study. The work in [22] reports on the experience devel-
oping an evaluator in Java for efficient OCL evaluation. They aim to cope the
novel usages of the language and to improve the efficiency of the evaluator on
medium-large scenarios. [23] proposes to extend the OCL evaluator to support
immutable collections. Finally, an issue tightly coupled to lazy navigation, is
on-demand physical access to the source model elements, i.e. lazy loading. For
lazy loading of models for transformation we refer the reader to [24].

6 Conclusions

In this paper we argue that a lazy evaluation semantics for OCL expressions
would increase the performance of OCL evaluators in some scenarios, simplify
the definition of some queries and foster the development of more reusable OCL
libraries in a producer-consumer pattern. We illustrates by example the main
challenges of lazy OCL, we provide novel lazy algorithms for some OCL oper-
ations (i.e., allInstances and intersection) and perform an implementation
of the approach in the ATL virtual machine EMFTVM.

In future work we plan to perform an extensive performance evaluation on
a corpus of real-world OCL queries used in ATL transformation projects. From
this study we plan to derive a systematic approach for identifying queries that
benefit from lazy evaluation.
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Abstract. The use of textual domain-specific modeling languages is an
important trend in model-driven software engineering. Just like any other
primary development artifact, textual models are subject to continuous
change and evolve heavily over time. Consequently, MDE tool chain de-
velopers and integrators are faced with the task to select and provide
appropriate tools supporting the versioning of textual models. In this
paper, we present an adaptable tool environment for high-level differenc-
ing of textual models which builds on our previous work on structural
model versioning. The approach has been implemented within the SiLift
framework and is fully integrated with the Xtext language development
framework. We illustrate the adaptability and practicability of the tool
environment using a case study which is based on a textual modeling
language for simple web applications.

1 Introduction

Model-driven engineering (MDE) is a software development methodology which
has gained a lot of interest in many application domains. Besides the MDA ini-
tiative and related standards promoted by the OMG, the use of textual domain-
specific modeling languages (DMSLs) has emerged as an important trend in
modern MDE. Textual DSMLs typically have a small scope and formalize the
key concepts of a particular domain of interest. Just like any other primary de-
velopment artifact, textual models are subject to continuous change and heavily
evolve over time. Consequently, appropriate tools supporting standard version-
ing tasks are strongly required, the calculation of a difference between versions
of a model being the most fundamental service.

Selecting a proper versioning tool environment often leads to cost/benefit
considerations: On the one hand, one can use off-the-shelf line-based difference
tools. This option is attractive since these tools are generic in the sense that
they can operate with any kind of textual documents. However, differences are
reported on a low level of abstraction and often fail to report complex model
changes in a meaningful way. On the other hand, there are sophisticated ap-
proaches to structural differencing and merging whose advantages over the clas-
sical line-based proceeding are undisputed [25,12]. However, virtually all of these
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solutions come at a price: many tool components have to be re-implemented for
each modeling language anew. Considering the large number of different DSMLs
which have to be supported, this often leads to a prohibitive effort.

In this paper, we present a flexible tool environment for high-level differenc-
ing of textual models which can be adapted to a new language with moderate
effort. The approach builds on our previous work on structural model versioning
[18,17,16], which was motivated and has been developed in the context of visual
modeling languages. The typical effort to configure a differencing tool ranges
between 1 and 10 days, depending on the size of the meta-model. In this paper,
we focus on the technical extensions required to support textual models. We ar-
gue that a difference tool which is tailored to a given DSML provides significant
improvements over existing line-based difference tools. In particular, complex
restructurings on a model can be detected, and changes are therefore reported
on a higher level of abstraction.

The approach has been implemented within the SiLift framework [27]. It
uses several tool components which are based on the Eclipse Modeling Frame-
work (EMF) [8] and is fully integrated with the Xtext language development
framework [30]. We illustrate the practicability and adaptability of the tool en-
vironment using a case study which is based on a textual modeling language for
simple web applications.

2 Case Study and Motivating Example

In this section, we introduce the case study which will be used to illustrate our
approach. The textual modeling language called SWML is introduced in Sec. 2.1.
A scenario which describes typical restructurings and improvements on a sample
SWML model is described in Sec. 2.2.

2.1 SWML: Simple Web Modeling Language

The Simple Web Modeling Language (SWML) is a textual DSML which aims at
defining platform-independent models for a specific kind of web applications. The
language has been originally introduced in [7], which also describes a transforma-
tion tool chain for generating web applications using standard web development
technologies. In this paper, we use the SWML as defined in [5]. In order to keep
the paper self-contained, we give an informal description of the SWML abstract
syntax:

A WebModel consists of two parts: the DataLayer and the HypertextLayer. The
data layer models the application data following basic principles which are known
from entity-relationship modeling. An Entity (which is actually an entity type)
may have Attributes and References (reference types) to other entity types. Pre-
defined SimpleTypes can be used in attribute declarations. The hypertext layer
defines how to present the data using web pages. A Page is either a StaticPage

having a fixed content, or a DynamicPage which presents data related to a dedi-
cated entity type. There are two types of dynamic pages: an IndexPage lists the
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Fig. 1: Initial version v1 of a sample SWML model and its improved revision v2

instances of a certain entity type, while a DataPage shows concrete information
on a specific entity. The structure of the hypertext layer can be modeled by Links

connecting two pages. One of the pages can be declared to be the starting page
of the application.

2.2 Example Scenario: Improvements on a Sample SWML Model

SWML models can be conveniently defined using a textual notation. An example
model called VehicleRentalCompany taken from [5] is shown in Fig. 1. Version v1

on the left comes from an early development stage and is used in [5] to illustrate
and evaluate quality assurance techniques on textual models. Using metrics and
smells as indicators for quality issues concerning the quality aspect completeness,
model version v1 is improved to become version v2 on the right-hand side of Fig. 1
by applying the following refactorings and manual changes:

1. The smell “No Dynamic Page” for entity type Customer is eliminated by the
application of refactoring “Insert Dynamic Pages”: Two dynamic pages (an
index page and a data page) referencing entity type Customer are inserted
into the hypertext layer. Moreover, the inserted data page is linked by the
index page which is in turn linked by the starting page.

2. The smell “Missing Data Page” for index page agencyindex is eliminated by
the application of refactoring “Add Data Page to Index Page”: A data page
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which shows Agency entities and which is linked by the index page agencyindex

is inserted.

3. In order to eliminate the smell ”Empty Entity“, a new reference address is
inserted for entity type Agency.

4. Finally, some missing information is supplemented: A new entity type BankAc-

count which is referenced by entity type Customer is added to the data layer.
Moreover, an attribute postalcode is inserted for entity type Address, attributes
manufacturer and power are inserted for entity type Car.

The result of comparing the initial model v1 and its improved revision v2

using the Eclipse built-in textual diff utility is shown in Fig. 1. Similar results are
obtained using other graphical difference tools such as Meld [24] or KDiff3 [15].
The textual output produced by the UNIX diff utility [23] reports 8 deletions
and 23 insertions of lines of text. These examples illustrate that the line-based
approach fails to explain the improvements on our sample SWML model in an
adequate way.

3 High-level Differencing of Textual Models

In this section, we briefly review our approach to high-level model differencing.
Next, we describe how to extend the approach and tooling to textual models and
finally present our reference implementation which is based on standard Eclipse
Modeling technologies and fully integrated with Xtext.

3.1 Approach

In [18], we introduce an approach to high-level differencing which works on
a structural representation of two model versions v1 and v2 which are to be
compared. A model is conceptually regarded as typed, attributed, directed graph
which is known as the abstract syntax graph (ASG) of this model. The difference
calculation basically proceeds in three steps:

1. Initially, a matching procedure identifies corresponding nodes and edges which
are considered to be ”the same“ elements in v1 and v2.

2. Subsequently, a low-level difference is derived. Elements not involved in a
correspondence are considered to be deleted or created, each non-identical
attribute value of corresponding elements is considered to be updated.

3. Finally, an operation detection algorithm recognizes executions of edit oper-
ations in the low-level difference. The available edit operations are provided
as additional input parameter, each operation has to be formally specified as
a transformation rule in the model transformation language Henshin [4].

Similar to the UNIX diff utility, a calculated difference ∆(v1, v2) is a de-
scription of how model v1 can be edited to become revision v2 in a step-wise
manner. However, the available edit operations are defined on the ASG which
enables us to report edit steps on a much higher level of abstraction. In principle,
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any language-specific restructuring operation can be supported as long as it can
be specified in a Henshin transformation rule. In other words, we consider the
effect of an edit step as an in-place model transformation which is formally spec-
ified as a declarative transformation rule to which we refer as edit rule. Thus,
the set of available edit operations can be specifically tailored for a given mod-
eling language. An example edit rule for SWML models is briefly explained in
Appendix B.

Since the approach presented in [18] has been developed in the context of
visual modeling languages, it assumes the allowed types of nodes and edges of
an ASG to be defined by a meta-model. Nonetheless, although our approach
typically starts with a meta-model, it can be applied to textual DSMLs, too. We
only require a procedure which converts the grammar into a meta-model, e.g. as
presented in [2,28,6].

3.2 Tool Architecture

An overview of the core components of a difference tool which implements our
approach is shown in Fig. 2a. Exchangeable components which are typically
provided by an existing MDE environment are colored in light gray.

The Difference Calculator calculates a difference in a step-wise manner accord-
ing to our conceptual approach. Consequently, the sub-components Matcher, Dif-

ference Derivator and Operation Detection Engine are arranged in a pipeline. A calcu-
lated difference is presented to developers in an interactive Difference Presentation

GUI as shown in Fig. 3. A control window on the left lists the edit steps. The
effect of an edit step is explained on the basis of the concrete syntax. To that
end, the original and changed model are displayed in their standard editor on
the right. Selecting an edit step in the control window causes the context of this
edit step to be highlighted in the respective editor windows. In principle, the
GUI can be integrated with any model editor. We only require that the editor
offers an API such that external representation of a model element, i.e. certain
characters, lines of text or text blocks, can be highlighted.

3.3 Integration with the Xtext Language Development Framework

An EMF-based reference implementation of our approach is available within the
model versioning framework SiLift [27]. In this work, we extend the SiLift frame-
work by an integration with the widely used language development environment
Xtext [30]. A download option is provided at the accompanying web site of this
paper [1].

The adaptation of the algorithmic components is straightforward since an
Ecore-based meta-model can be automatically generated by Xtext. The inte-
gration of the difference presentation GUI is illustrated in Fig. 2b. The GUI
is loosely coupled with generated Xtext editors via the Eclipse Selection Service.
All SiLift sub-windows implement the ISelectionProvider interface and thus report
which conceptual model elements are currently selected. The selection service no-
tifies registered ISelectionListeners about selection changes induced by a selection
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Fig. 2: Tool architecture and integration with the Xtext framework

provider. Our selection listener implementation is based on the Eclipse marker
framework which can be used to highlight text fragments in textual Eclipse ed-
itors. In order to get the position of a conceptual model element within the
textual representation of a model, we utilize the Xtext contribution to the EMF
adapter mechanism: For each EObject which originates from an Xtext resource,
we get an adapter for this EObject providing access to the corresponding node
of the Xtext parse tree. The nodes in a parse tree provide the required position
information.

4 Adaptation and Application to SWML

In this section, we outline the adaptation of our tool environment to the SWML.
An overview of the difference calculation configuration is given in Sec. 4.1. Fi-
nally, Sec. 4.2 presents the results of applying our difference tool which uses this
configuration to the example change scenario of Sec. 2.2.

4.1 Configuration of the Difference Calculation

Two of the core differencing components of Fig. 2a have to be adapted to SWML,
the matcher and the operation detection engine.

To determine corresponding elements in SWML models, we implemented a
signature-based matching strategy [17] using the Epsilon Comparison Language
(ECL) [20]. ECL is a domain-specific language for developing highly customized
model comparison rules, our SWML matching configuration can be found in the
Appendix A. Singleton objects of types WebModel, DataLayer, HypertextLayer are
matched immediately. Names of named model elements (Entity, Attribute, etc.)
are used as unique signature values, i.e. correspondences are established between
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Fig. 3: SiLift SWML application: Difference between sample models v1 and v2

equally named elements having the same type. Finally, Link objects representing
hyperlinks between web pages are matched if they connect the same pages, i.e.
if the source and target pages of two links are matched.

The specification of edit rules is supported by one of our meta-tools known as
SiDiff Edit Rule Generator (SERGe) [26]. SERGe derives sets of basic edit rules
from a given meta-model with multiplicity constraints. These sets are complete
in the sense that all kinds of edit rules, i.e. create, delete, move and change
operations, are contained for every node type, edge type and attribute defined
by the meta-model. For SWML, 29 basic edit rules have been generated. In
addition, we manually specified 9 complex edit rules, 5 refactorings which could
be re-used from the EMF Refactor tool environment [11], and 4 evolutionary edit
operations which facilitate frequently recurring editing tasks. As an example, the
edit rule for refactoring ”Add Data Page to Index Page“, which is applied in step
2 of our motivating example of Sec. 2.2, is shown in Appendix B. The complete
set of edit rules is included in the SWML configuration, which is available from
the Eclipse update site at [1].

4.2 Application to the Example Change Scenario

Fig. 3 presents the results of applying our difference tool that uses the above
configuration to our example of Sec. 2.2. The edit step ”Add Data Page to
Index Page“ is currently selected and its effect can be inspected more closely in
the editor windows on the right. The inserted data page agencydata (s. marker
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indicated by 1 in Fig. 3) and the new link to this page from the index page
agencyindex (s. marker 2 in Fig. 3) are easy to see in the lower editor window
which shows version v2. In the upper editor window showing version v1, we can
see the context of the respective changes, e.g., data page agencydata has been
inserted in the hypertext layer. In a similar way, one can interactively inspect
the other refactoring ”Insert Dynamic Pages“ (s. change 1 in Sec. 2.2) and the
evolutionary edit steps representing changes 3 and 4 of the change scenario of
Sec. 2.2.

5 Related Work

In this section, we briefly review related work regarding the two main aspects
of model difference tools addressed in this paper, namely i) the adaptability
to a new language, and ii) the integration with an MDE environment, thereby
putting a special emphasis on EMF technologies.

Many approaches and tools to model differencing have been proposed re-
cently, surveys can be found in [13,3]. Similar to ours, virtually all of them
work on a structural representation of models. However, only a few of them
are adaptable to a new modeling language and almost all of them use primitive
graph operations such as creating/deleting single nodes/edges as edit operations
for ASGs. The recognition of complex changes such as language-specific refac-
torings seems to be supported only by few approaches, e.g. [21,22,29]. A detailed
review of how these approaches differ from ours can be found in [18,19]. To the
best of our knowledge, none of them has yet been adapted to textual DSMLs,
which is the main contribution of the tool environment presented in this paper.

A dedicated difference presentation GUI is offered by only a few EMF-based
difference tools for models. EMF Compare [9], the currently most widely used
differencing tool for EMF-based models, displays two versions of a model in
parallel in their abstract syntax tree representation. A similar approach is im-
plemented in EMF Diff/Merge [10] and the RSA tool suite [14]. The parallel
display largely fails to present complex model changes. Again, to the best of our
knowledge, none of the existing EMF tools can be used with Xtext editors in an
integrated way.

6 Conclusion and Future Work

In this paper, we presented concepts and a tool environment to flexibly specify
and recognize complex changes in textual models. The tooling, called SiLift, is
based on EMF and tightly integrated with the widely used Xtext framework. It
enables developers to understand complex structural changes in textual models
and is an attractive alternative to traditional line-based difference tools. More-
over, the obtained differences can be converted to executable edit scripts [19]
serving as a basis for model patching and structural merging [25].
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Obviously, the proposed solutions become more powerful from a practical
point of view if they are tightly integrated into an existing version control system
such as Git or Subversion. We leave such an integration for future work.
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A SWML Matching Configuration Implemented in ECL

rule WebModel2WebModel
match l e f t : Le f t ! WebModel
with r i g h t : Right ! WebModel {
compare {

return t rue ;
}

}
// Same f o r DataLayer and HypertextLayer
// . . .

rule Ent i ty2Ent i ty
match l e f t : Le f t ! Ent ity
with r i g h t : Right ! Entity {
compare {

return l e f t . name = r i g h t . name ;
}

}
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// Same f o r Attr ibute , Reference and Page
// . . .

rule Link2Link
match l e f t : Le f t ! Link
with r i g h t : Right ! Link {
compare {

return l e f t . srcMatches ( r i g h t ) and l e f t . tgtMatches ( r i g h t ) ;
}

}
operation Link srcMatches ( other : Link ) : Boolean {

return se l f . eContainer . name = other . eContainer . name ;
}
operation Link tgtMatches ( other : Link ) : Boolean {

return se l f . t a r g e t . name = other . t a r g e t . name ;
}

Listing A-1: SWML Matching Configuration Implemented in ECL

B Refactoring ”Add Data Page to Index Page“
Implemented in Henshin

Fig. 4 shows how to implement the refactoring operation ”Add Data Page to
Index Page“ in Henshin. The example illustrates that Henshin offers an intu-
itive visual syntax to specify model patterns to be found and preserved, to be
deleted and to be created. Note that selectedEObject and entityname are input
parameters, while New DataPage and New Link are output parameters of the rule.
The change actions which are to be performed by the rule are specified based
on the SWML abstract syntax. Thus, the specification uses type definitions of
the SWML meta-model which is generated by the Xtext framework. Given an
index page selectedEObject which references an entity named entityname, a new
data page New DataPage referencing this entity is created. Moreover, a new link
New Link is created such that the inserted data page is linked by the index page.

Rule addDataPageToIndexPage(selectedEObject, entityname, New_DataPage, New_Link)

«preserve»
:Entity

name=entityname

«preserve»
selectedEObject:IndexPage «preserve»

:HypertextLayer

«create»
New_DataPage:DataPage

name=entityname + "Data"

«create»
New_Link:Link

target
«create»

entity
«preserve»

entity
«create»

links

«create»

pages
«create»

entity
«preserve»

pages
«create»

entity
«create»

links

«create»

target
«create»

Fig. 4: Refactoring ”Add Data Page to Index Page“ implemented in Henshin
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Abstract. Model finders enable numerous verification approaches based
on searching the existence of models satisfying certain properties of inter-
est. One of such approaches is anATLyzer, a static analysis tool for ATL
transformations, which relies on USE Validator to provide fine grained
analysis based on finding witness models that satisfy the OCL path con-
ditions associated to particular errors. However it is limited by the fact
that USE Validator does not include built-in support for analysing re-
cursive operations and the iterate collection operator.

This paper reports our approach to allow USE Validator to analyse OCL
path conditions containing recursive operations and iterate, with the aim
of widening the amount of actual transformations that can be processed
by anATLyzer. We present our approach, based on unfolding recursion
into a finite number of steps, and we discuss how to take into account
practical aspects such as inheritance and details about the implementa-
tion.

Keywords: OCL, ATL, USE Validator, Recursion, Iteration, Model finder,
Constraint Solver

1 Introduction

Model finders are an important element of many automated verification ap-
proaches in the MDE setting, since they are able to find models satisfying certain
properties of interest. Concrete examples of such finders are USE Validator [4]
and EMFtoCSP [3], which take as input a meta-model and a set of OCL in-
variants and return a model satisfying the invariants, if any, within a certain
scope (e.g., the maximum number of instantiations of the meta-model classes
and ranges of attribute values for infinite types such as integers).

As part of our work in the static analysis of ATL transformations [2], im-
plemented in anATLyzer1, we have used the model finder implemented by USE
Validator [4] to enable the precise analysis of certain error types. This analysis
involves creating an OCL path condition which is fed into USE Validator to
obtain a model that satisfies it, in order to confirm the error if the model can

1 http://www.miso.es/tools/anATLyzer.html
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be found or to discard the error if not. However, USE Validator does not sup-
port recursive operations nor the iterate collection operation, hence limiting the
applicability of our method in some cases.

This paper reports our approach to enable the analysis of recursive opera-
tions and expressions containing the iterate collection operation in an OCL-based
model finder without support for them, focussing on USE Validator. For recur-
sive operations we unfold the recursion upto a number of levels. In the case of
iterate we similarly convert each call to a sequence of operations that imple-
ments a limited number of iteration steps. We have tested our approach with
USE Validator but it could be easily implemented for other systems.
Paper organization. Section 2 introduces the context of this work using an
example, Section 3 describes the unfolding of direct recursive operations, whereas
Section 4 explains the adaptation of the previous procedure for iterate. Finally,
Section 5 discusses some issues of our approach and concludes.

2 Context and motivation

The context of this work is our static analysis tool for ATL transformations,
called anATLyzer. It consists of a type checking phase in which confirmed fail-
ures and potential errors are identified. Then, for each potential error, we com-
pute its OCL path condition, which is an OCL constraint that must be satisfied
by any source model that would trigger the error at runtime. Afterwards, such
path condition is fed into USE Validator to search for a model, a witness model,
that satisfies the condition. If found, the error is confirmed, otherwise it is dis-
carded. Hence, a key element for this approach to be practical is to maximise the
number of path conditions that can effectively be processed by USE Validator.
More details about the approach are described in [2].

As an example let us consider a modified excerpt of the CPL2SPL transfor-
mation available in the ATL Zoo2, which establishes a translation between two
telephony DSLs. Figure 1 shows an excerpt of the CPL source meta-model, and
an examplary listing3. This piece of transformation maps every SubAction source
element to a LocalFunctionDeclaration in the target, and each Proxy which satisfies
the isSimple predicate into a ReturnStat. In ATL, the relationships between rules
are established via bindings, denoted by ←, which work as follows. The source
elements obtained by evaluating the right part of a binding are looked up in
the transformation trace, in order to obtain the corresponding target element
created by some rule. In the example, the binding in line 20 is evaluated by exe-
cuting the expression s.contents.statement which retrieves a Node source element.
If such source element has been transformed by some rule, the corresponding
target element is assigned to the statement feature.

A smell that the transformation behaviour is not as expected is that a source
element appearing in the right part of a binding has not been transformed by

2 http://www.eclipse.org/atl/atlTransformations/#CPL2SPL
3 We added a filter to the SubAction2Function rule and removed a related rule to make

the example more illustrative.
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any rule. In this setting, anATLyzer features a rule analysis component which
is able to analyse rule–binding relationships to determine if a binding is fully
covered by all the resolving rules. To analyse the binding in line 20 anATLyzer

builds the OCL path condition shown at the bottom of Figure 1, which states
the properties that a model for which the binding would be unresolved must
satisfy. This OCL invariant is fed into USE Validator to search for a witness
model that confirms the existence of the problem.

However, in practice anATLyzer could not perform this particular analysis
due to USE Validator not supporting recursive operations, as is the case of
Location.statement. Next section describes how anATLyzer unfolds recursion to
enable this analysis, while Section 4 explains how we deal with iterate.

3 Direct recursion

This is the basic recursive schema, in which an operation calls itself in one
or more call sites within the operation body. Any OCL specification with an
operation featuring even this simple form of recursion is rejected by USE Val-
idator. For the example path condition USE does not try to evaluate the call to
Location.statement because it cannot be determined if the operation terminates.
Hence, the analysis cannot be carried out.

Our approach to deal with this issue is based on unfolding the recursive
operation upto a finite number of steps. We perform the unfolding by copying
the original operation n times, so that there are n+ 1 versions of the operation.
Then, each version of the operation is rewritten so that the recursive call sites
do not invoke the original operation, but the next copy of the operation. The
last operation in the sequence just returns OclUndefined.

Listing 1 shows a sketch of this procedure. It takes the desired number of
unfoldings (N) and the piece of abstract syntax corresponding to the recursive
operation (OP). There are two helper functions, callSites which returns the set
of recursive call sites (i.e., a set of OperationCall abstract syntax elements that
invoke Op) and copy which returns a deep copy of the given abstract syntax
element.

1 N = Number of unfoldings
2 OP = Original operation
3

4 OP0 = OP
5 for i = 1 to N
6 CSi−1 = callSites(OPi−1)
7 foreach cs in CSi−1

8 cs.operationName = OP.operationName + ” ” + i
9 end

10

11 OPi = copy(OP)
12 OPi.operationName = OP.operationName + ” ” + i
13 end
14

15 OPN .body = OclUndefined

Listing 1: Sketch of the unfolding algorithm.
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Busy Redirection

SubAction

Node
Container

Proxy Location

Node

redirection
0..1

busy
0..1

contents
1

1 −− We consider nodes are statements, by default.
2 helper context CPL!Node def: statement : CPL!Node =
3 self;
4

5 −− The ”location” node is not a statement.
6 helper context CPL!Location def: statement : CPL!Node =
7 self.contents.statement;
8

9 helper context CPL!Proxy def: isSimple : Boolean =
10 self.busy.oclIsUndefined() and
11 self.redirection.oclIsUndefined();
12

13 rule SubAction2Function {
14 from s : CPL!SubAction (
15 s.contents.oclIsKindOf(CPL!Location) )
16 to t : SPL!LocalFunctionDeclaration (
17 name <− s.id,
18 returnType <− rt,
19 −− Is this binding fully covered by resolving rules?
20 statements <− s.contents.statement
21 )
22 }
23

24 rule Proxy2Return {
25 from s : CPL!Proxy ( s.isSimple )
26 to t : SPL!ReturnStat (
27 ...
28 )
29 }

SubAction.allInstances()−>
select(s | s.contents.oclIsKindOf(Location))−>
exists(s |
let problem = s.contents.statement in

not problem .isUndefined() and
not (if problem .oclIsKindOf(Proxy) then

let s2 = problem .oclAsType(Proxy)
in s2.isSimple()

else
false

endif))

Fig. 1: Excerpt of the CPL meta-model (left), two simplified rules of the
CPL2SPL transformation (right), and excerpt of the path condition for the prob-
lem in line 20 (bottom)

In practice, this procedure needs to be extended to deal with inheritance.
This means that it is not enough to duplicate the recursive operation, but every
operation that could polymorphically be invoked needs to be duplicated as well.

Listing 2 shows the final result as it is generated to be processed by USE, and
complements the OCL path condition presented in Figure 1. Hence, using this
method anATLyzer is able to obtain the witness model shown in Figure 2 that
confirms the existence of the problem. As can be seen the model contains the
elements required to trigger the problem: SubAction and Location objects to trigger
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the SubAction2Function, and a Proxy element which does not satisfy the isSimple

predicate, and it is thus not handled by any rule. Since the Proxy element is linked
to SubAction via the contents reference, the binding in line 20 will be unresolved.
This model has succesfully been obtained because just two unfolding steps are
enough in this case. We heuristically set the maximum number of unfoldings to
five, but we still do not have any automated mechanism to set parameter to a
safe value for those specific cases in which such reasoning could be possible. For
instance, the upper bound of a recursive operation (possibly polymorphic) with
no parameters would be the maximum number of instances of the class, and the
involved subclasses, set as the the model finder scope.

abstract class Node
operations

statement() : Node = self
statement 1() : Node = self
statement 2() : Node = self
statement 3() : Node = self

end

class Location < Node, NodeContainer
attributes

url : String
clear : String

operations
statement() : Node = self.contents.statement 1()
statement 1() : Node = self.contents.statement 2()
statement 2() : Node = self.contents.statement 3()
statement 3() : Node = OclUndefined

end

Listing 2: Unfolded code as generated for USE Validator

: Location

: Redirection : Proxy

: SubAction

contents

redirection

contents

Fig. 2: Witness model obtained for the path condition.

An alternative to this approach is to inline the operation body n times, using
let expressions to bind parameters. However, we prefer the one presented here
because it is easier to handle polymorphic calls as explained.

4 Iterate

The OCL iterate collection operation is a general iteration operation with the
form col→iterate(it; acc = <init> | <body>). Operationally, it iterates over the
elements of the collection assigning them to the it variable in each iteration step.
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Each time, the given body is evaluated and the acc variable is updated with the
result of the evaluation, so that it has a new value in the following iteration or it
is the final result of the operation. As an example, the following code implements
the select collection operation in terms of iterate.

−− Given: col−>select(it | <body>) where col is a Set

col−>iterate(it; acc = Set { } |
if <body> then

acc−>including(it)
else

acc
endif)

In practice, USE Validator is able to evaluate most OCL iteration constructs,
such as select, any, etc. However, it cannot evaluate iterate which poses a limita-
tion for anATLyzer since path conditions containing iterate cannot be processed.

Our approach to deal with this issue is based on unfolding the iteration steps.
Until now we support iteration over sets, applying the following strategy. For
each call to iterate we generate n operations, being n the number of unfoldings,
and each of these operations follows the schema shown in Listing 3. First, we
check if the collection is empty (line 10) in case the iteration must terminate
returning the currently computed value (acc). If the set is not empty, one element
is picked using any (line 13), and then a new set is obtained filtering out the
picked element from the original set (line 14). To the best of our knowledge
this is the only strategy to implement iteration over sets in OCL. Aftewards,
the body of the original iterate is evaluated, and the next iteration operation is
invoked. Finally, the recursion is ended at depth n by just returning OclUndefined

(line 20).

−− Given an expression: col−>iterate(it : Tit; acc : Tacc = <init> | <body)
−− where:
−− Tcol: the type of the elements of the collection
−− Tit: the type of the iteration variable, which must be compatible with Tcol

−− Tacc: the type of the accumulator variable

class ThisModule
operations
def iterate auxi(col : Set(Tcol), acc : Tacc) : Tacc =
if col−>isEmpty() then

acc
else
let it : Tit = col−>any( | true) in
let rest : Set(Tcol) = col−>select(v | v <> it) in
let value : Tcol = <body>
in iterate auxi+1(rest, value)

endif
...

def iterate auxn(col : Set(Tcol), acc : Tacc) : Tacc = OclUndefined

end

Listing 3: Schema for unfolding iterate, using USE syntax

We make use of a special class named ThisModule to allow global operations
to be defined. Notably, the iteration operations are defined within this class. In
this way, every call to iterate is rewritten to an expression similar to thisMod-
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ule.iterate aux0(col, <init>), where the thisModule variable is an instance of This-

Module that must be introduced in the scope of the rewritten expression. We also
generate unique identifiers for the iteration operations, to avoid name clashes if
there are several calls iterate in the same path condition. Finally, we also keep
track of the variables in the scope of the original iterate, and if needed, we extend
the signature of the iteration operation to pass such variables as parameters.

5 Conclusions and discussion

In this paper we have presented our approach to enable USE Validator analyse
recursive operations and the iterate collection operation in the context of anAT-

Lyzer. In both cases we perform an unfolding of the body of the operations
upto a finite number of steps. We have run a small number of tests in which
these approaches have shown to be useful, since most of the times a small scope
is enough to find the required witness model [1]. Nevertheless, it is part of our
future work to carry out more experiments to determine the precision of our
approach. In addition, there are some practical considerations to be taken into
account, which are discussed in the following.

Given that there is a limit in the number of unfoldings, the last step of the
unfolding needs to return some value. Ideally, a bottom value should be used to
indicate a kind of “stack overflow”, in the sense that the recursion has ended
prematurely before finishing the computation. In OCL the closest relative to a
bottom value is invalid which conforms to OclInvalid, which in turn conforms
to any other type, but any call applied to its unique instance results in invalid
itself. However, this is not supported by USE, and thus another value must be
used. Selecting such value is difficult in the general case, since it could interact
with other expressions processing the return value. We use OclUndefined both for
recursion and iterate but we are aware that it may affect the accuracy of the
solving process.

In this line, an important consequence of unfolding a limited number of times
is that the analysis of anATLyzer may not be accurate. A potential error can
be wrongly marked as “discarded” only because more unfoldings steps would be
needed to provide an accurate answer.

Another issue that affects the accuracy of the approach is that USE only
supports sets. Therefore, operations such as at, for sequences, cannot be pro-
cessed. Devising mechanisms to deal with sequences is part of our future work.
Hence we aim at studying and adapting other works dealing with these issues,
notably the approach proposed in [5] which relies on SMT solving and a more
sophisticated unfolding algorithm.

Finally, we have not addressed yet how to unfold mutual recursion, although
we believe that a similar strategy is possible, but taking into account the com-
plete call graph of the transformation. This is also part of our future work.
Acknowledgements. This work has been supported by the Spanish MINECO
(TIN2011-24139 and TIN2014-52129-R), the R&D programme of the Madrid Re-
gion (S2013/ICE-3006), and the EU commission (FP7-ICT-2013-10, #611125).
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Safe Navigation in OCL
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Abstract. The null object has been useful and troublesome ever since
it was introduced. The problems have been mitigated by references in
C++, annotations in Java or safe navigation in Groovy, Python and
Xbase. Introduction of a safe navigation operator to OCL has some rather
unpleasant consequences. We examine these consequences and identify
further OCL refinements that are needed to make safe navigation useable.

Keywords: OCL, safe navigation, multiplicity, non-null, null-free

1 Introduction

Tony Hoare apologized in 2009 [3] for inventing the null reference in 1965. This
‘billion dollar mistake’ has been causing difficulties ever since. However NIL had
an earlier existence in LISP and I’m sure many of us would have made the same
mistake.

The problem arises because the null object has many, but not all, of the
behaviors of an object and any attempt to use one of the missing behaviors
leads to a program failure. Perhaps the most obvious missing behavior is used
by the navigation expression anObject.name which accesses the name property
of anObject. Whenever anObject can be null, accessing its name property can
cause the program to fail.

A reliable program must avoid all navigation failures and so must prove that
the source object of every navigation expression is never null. This is often too
formidable an undertaking. We are therefore blessed with many programs that
fail due to NullPointerException when an unanticipated control path is followed.

Language enhancements such as references [2] in C++ allow the non-nullness
of objects to be declared as part of the source code. Once these are exploited by
good programmers, compile-time analysis can identify a tractably small number
of residual navigation hazards that need to be addressed.

A similar capability is available using @NonNull [5] annotations in Java,
however problems of legacy compatibility for Java’s large unannotated libraries
makes it very hard to achieve comprehensive detection of null navigation hazards.

An alternative approach is pursued by languages such as Groovy [4], Python [8]
and Xbase [10]. A safe navigation operator makes the nulls less dangerous so that
anObject?.name avoids the failure if anObject is null. The failure is replaced by a
null result which may solve the problem, or may just move the problem sideways
since the program must now be able to handle a null name.
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In this paper we consider how OCL can combine the static rigor of C++-like
references with the dynamic convenience of a safe navigation operator. In Sec-
tion 2 we introduce the safe navigation operators to OCL and identify that their
impact may actually be detrimental. We progressively remedy this in Section 3 by
introducing non-null object declarations, null-free collection declarations, null-
safe libraries, null-safe models and consider the need for a deep non-null analysis.
Finally we briefly consider related work in Section 4 and conclude in Section 5.

2 Safe Navigation Operators

OCL 2.4 [7] has no protection against the navigation of null objects; any such
navigation yields an invalid value. This is OCL’s way of accommodating a pro-
gram failure that other languages handle as an exception. OCL provides powerful
navigation and collection operators enabling compact expressions such as

aPerson.father.name.toUpper()

This obviously fails if aPerson is null. It also fails whenever father is null
as may be inevitable in a finite model. A further failure is possible if name is null
as may happen for an incomplete model.

2.1 Safe Object Navigation Operator

We can easily introduce the safe object navigation operator ?. to OCL by defin-
ing x?.y as a short-form for

if x <> null then x.y else null endif

We can rewrite aPerson.father.name.toUpper() for safety as

aPerson?.father?.name?.toUpper()

This ensures that the result is the expected value or null; no invalid failure.

2.2 Safe Collection Navigation Operator

Collection operations are a very important part of OCL and any collection nav-
igation such as

aPerson.children->collect(name)

will fail if any element of the children collection is null.
We can easily introduce the safe collection navigation operator ?-> to OCL

by defining x?->y as a short-form for

x->excluding(null)->y

We can rewrite the problematic collection navigations for safety as:

aPerson?.children?->collect(name)

This ensures that any null children are ignored and so do not cause an
invalid failure.
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2.3 Safe Implicit-Collect Navigation Operator

The previous example is the long form of explicit collect and so could be written
more compactly as:

aPerson.children.name

The long form of the ?. operator in x?.y is therefore

x->excluding(null)->collect(y)

We can rewrite for safety as

aPerson?.children?.name

This again ensures that null children are ignored.

2.4 Assessment

OCL 2.4 already has distinct object and collection navigation operators, with
implicit-collect and implicit-as-set short-forms. These are sufficient to confuse
new or less astute OCL programmers, who may just make a random choice and
hope for a tool to correct the choice. Adding a further two operators can only
add to the confusion. We must therefore look closely at how tooling can exploit
the rigor of OCL to ensure that safe navigation usefully eliminates the null value
fragility.

2.5 Safe Navigation Validation

The safe navigation operators should assist in eliminating errors and the follow-
ing tentative Well Formedness Rules can identify an appropriate choice.

Error: Safe Navigation Required. If the navigation source could be null, a
safe navigation operator should be used to avoid a run-time hazard.

Warning: Safe Navigation not Required. If the navigation source cannot be
null, a safe navigation operator is unnecessary and may incur run-time overheads.

The critical test is could-be-null / cannot-be-null. How do we determine this
for OCL?

Some expressions such as constants 42 or Set{true} are inherently not null.
These can contribute to a program analysis so that a compound expression such
as if ... then Set{42} else Set{} endif is also non-null even though we
may not know anything about the if-condition. Unfortunately, OCL permits any
object to be null and so all accesses to objects can be null. In practice this means
that most OCL expressions cannot be usefully analyzed and the validation WFRs
will just force users to write ?. everywhere just to silence the irritating errors.
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3 Non-null declarations

We have seen how the safe navigation operator is unuseably pessimistic when
non-null objects cannot be usefully identified. We will therefore examine how to
identify such objects.

3.1 Non-null Object declarations

We could consider introducing non-null declarations analogous to C++ reference
declarations. We could even re-use the & character. But we don’t need to, since
UML [9] already provides a solution and a syntax. When declaring a TypedEle-
ment, a multiplicity may qualify the type:

mandatoryName : String[1]

optionalName : String[?]

[?] indicates that a String value is optional; a null value is permitted.
[1] indicates that a String value is required; a null value is prohibited.
(Other multiplicities such as [*] are not appropriate for a single object.).
OCL can exploit this information coming from UML models and may extend

the syntax of iterators, let-variables and tuple parts to support similar declara-
tions in OCL expressions. However, since OCL has always permitted nulls, we
must treat [?] as the default for the extended OCL declarations even though
[1] is the default for UML declarations.

3.2 Null-free Collection declarations

The ability to declare non-null variables and properties provides some utility
for safe navigation validation, but we soon hit another problem. Collection op-
erations are perhaps the most important part of OCL, and any collection may
contain none, some or many null elements. Consequently whenever we operate
on collection elements we hit the pessimistic could-be-null hazard.

Null objects can often be useful. However collections containing null are rarely
useful. The pessimistic could-be-null hazards are therefore doubly annoying for
collection elements:

– a large proportion of collection operations are diagnosed as hazardous
– the hazard only exists because the tooling fails to understand typical usage.

In order to eliminate the hazard diagnosis, we must be able to declare that a
collection is null-free; i.e. that it contains no null elements. This could be treated
as a third boolean qualifier extending the existing ordered and unique qualifiers.
We could therefore introduce the new names, NullFreeBag, NullFreeCollection,
NullFreeOrderedSet, NullFreeSequence and NullFreeSet but this is beginning to
incur combinatorial costs.

A different aspect of UML provides an opportunity for extension. UML sup-
ports bounded collections, but OCL does not, even though OCL aspires to UML
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alignment. The alignment deficiency can be remedied by following a collection
declaration by an optional UML multiplicity bound. Thus Set(String) is a
short-form for Set(String)[0..*] allowing UML bounded collections and OCL
nested collections to support e.g. Sequence(Sequence(Integer)[3])[3] as the
declaration of a 3*3 Integer matrix.

However, this UML collection multiplicity tells us nothing about whether
elements cannot-be-null. We require an extension of the UML collection multi-
plicity to also declare an element multiplicity. Syntactically we can re-use the
vertical bar symbol to allow [x|y] to be read as ‘a collection of multiplicity x
where each element has multiplicity y’. We can now prohibit null elements and
null rows by specifying Sequence(Sequence(Integer)[3|1])[3|1].

Finally, we are getting somewhere. A collection operation on a null-free col-
lection obviously has a non-null iterator and so the known non-null elements
can propagate throughout complex OCL expressions. Provided we use accurate
non-null and null-free declarations in our models, well-written OCL that already
avoids null hazards does not need any change. Less well written OCL has its null
hazards diagnosed.

3.3 Null-safe libraries

The OCL standard library provides a variety of useful operations and iterations.
Their return values may or may not be non-null. The library currently has only
semi-formal declarations. These lack the precision we need for null-safe analy-
sis. We will therefore consider how more formal declarations can capture the
behaviors that we need to specify.

Simple Declaration Consider the declaration

String::toBoolean() : Boolean

Using the default legacy interpretation that anything can be null, this should be
elaborated as

String::toBoolean() : Boolean[?]

But we have an additional postcondition:

post: result = (self = ’true’)

Intuitively this assures a true/false result. But we must always consider null
and invalid carefully. If self is null, the comparison using OclAny::= returns
false, and if self is invalid the result is invalid. We are therefore able to provide
a stronger backward compatible library declaration that guarantees a non-null
result.

String::toBoolean() : Boolean[1]

We can pursue similar reasoning to provide [?] and [1] throughout the
standard library.

85



Complex Declaration We hit problems where the non-null-ness/null-free-ness
of a result is dependent on the non-null-ness/null-free-ness of one or more inputs.

Consider a declaration for Set::including in which we use parameters such
as T1, c1, e1 to represent flexibilities that we may need to constrain.

Set(T1)[c1|e1]::including(T2)(x2 : T2[e2]) : Set(T3)[c3|e3]

The relationship between T1, T2 and T3 is not clear in the current OCL
specification. Some implementations emulate Java-style collection declarations
where the result is the modified input; T3 is therefore the same as T1, and T2

must be assignable to T1. This implementation-driven restriction is not necessary
for a declarative specification language such as OCL where we just require that
each of T1 and T2 are assignable to T3. The declarative flexibility can be captured
by a single type parameter and a direction that the most derived solution be
selected from the many possible solutions.

Set(T)[c1|e1]::including(x2 : T[e2]) : Set(T)[c3|e3]

The result is only null-free if the input collection is null-free and the additional
value is non-null. Therefore if e1 and e2 are Boolean-valued with true for [1]

(is not null) and false for [?] (may be null), e3 may be computed as:

e3 = e1 and e2

This computation can be included in a library model to avoid the need for
an implementation to transliterate specification words into code.

We can also compute c3 pessimistically as

c3.lower = c1.lower

c3.upper = if c1.upper = * then * else c1.upper+1 endif

Preliminary discussions at Aachen [1] indicated limited enthusiasm for accu-
rate modeling of collection bounds in OCL, so we could just take the view that
OCL does not support bounded collections enthusiastically; The definition of c3
is then much simpler:

c3.lower = 0

c3.upper = *

However if we need accurate equations to avoid loss of non-null-ness precision
for library operations, the simplification of not providing similar equations for
collection bounds may prove to be a false saving.

3.4 Null-safe models

Once the standard library has accurate null-safe modeling we are just left with
the problem of user models.
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For object declarations, there seems little choice but to make this part of
the user’s modeling discipline; object declarations must accurately permit or
prohibit the use of null.

For collection declarations the default may-be-null legacy behavior is mostly
wrong and for some users it may be universally wrong. We would like to pro-
vide a universal change to the default so that all collections are null-free unless
explicitly declared to be null-full. In UML, we can achieve this by defining an
OCL::Collections::nullFree stereotype property for a Package or Class. The
nullFree Boolean property provides a setting that is ‘inherited’ by all collection-
valued properties within the Package or Class.

UML has no support for declaring collection elements to be non-null, so
we need a further OCL::Collection::nullFree stereotype property to define
whether an individual TypedElement has a null-free collection or not.

For disciplined modelers, the sole cost of migrating to null-safe OCL will be
to apply an OCL::Collections stereotype to each of their Packages.

Feedback from workshop UML is moving, and perhaps has already moved, to
prohibit nulls in multi-valued properties. UML-derived collections are therefore
inherently null-free and no stereotype is required. Rather the converse of a null-
full declaration is needed to declare that nulls are really required and that some
workaround for the UML prohibition is to be used.

3.5 Deep non-null analysis

Accurate non-null declarations enable WFRs to diagnose null navigation hazards
ensuring that safe navigation is used when necessary. However simple WFRs
provide pessimistic analysis.

For instance, the anObject.name navigation in the following example is safe
since it is guarded by anObject <> null

let anObject : NamedElement[?] = ....

in anObject <> null implies anObject.name <> null

However a simple WFR using just anObject : NamedElement[?] diagnoses
a lack of safety because the anObject let-variable may be null. A potentially
exponential program flow analysis is needed to eliminate all possible false un-
safe diagnostics. A simpler pragmatic program flow analysis can eliminate the
common cases of an if/implies/and non-null guard.

4 Related Work

The origin and long history of null problems has been alluded to in the intro-
duction as has the mitigation for C++ and Java.

The safe navigation operator is not new since at least Groovy, Python and
Xbase provide it.
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The database usage of NULL as an absence of value is in principle similar to
OCL’s use of null, however whereas use of null in OCL leads to failures, SQL is
more forgiving. This can be helpful, but also hazardous.

The possibility of safe navigation in OCL is new, or rather the pair of ?. and
?-> operators were new when we suggested them at the Aachen workshop [1].
The utility of the [?] and [1] non-null multiplicities was also mentioned at the
Aachen workshop. The null-free declarations, stereotypes and the interaction be-
tween safe navigation and non-null multiplicities have not been presented before,
although they are available in the Mars release of Eclipse OCL [6].

5 Conclusions

We find that naive introduction of safe navigation to OCL risks just doubling
the number of arbitrary navigation operator choices for an unskilled OCL user.
These problems are soluble with tool support provided we can also solve the
problem of declaring non-null objects and null-free collections.

We take inspiration from UML multiplicity declarations to provide the nec-
essary declarations. We use stereotypes for declarations that are not inherently
supported by UML.

The cost for well-designed models may be as little as

– one stereotype per Package to specify that all of its collections are null-free
– an accurate [?] or [1] multiplicity to encode the design intent of each non-

collection Property

The benefit is that OCL navigation can be fully checked for null safety.

Acknowledgments Many thanks to Adolfo Sánchez-Barbudo Herrera for his de-
tailed review and constructive comments.
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Abstract. Domain Specific Modeling Languages (dsmls) plays a key
role in the development of Safety Critical Systems to model system re-
quirements and implementation. They often need to integrate property
and query sub-languages. As a standardized modeling language, ocl can
play a key role in their definition as they can rely both on its concepts
and textual syntax which are well known in the Model Driven Engi-
neering community. For example, most dsmls are defined using mof for
their abstract syntax and ocl for their static semantics as a metamod-
eling dsml. OCLinEcore in the Eclipse platform is an example of such a
metamodeling dsml integrating ocl as a language component in order to
benefit from its property and query facilities. dsmls for Safety Critical
Systems usually provide formal model verification activities for check-
ing models completeness or consistency, and implementation correctness
with respect to requirements. This contribution describes a framework to
ease the definition of such formal verification tools by relying on a com-
mon translation from a subset of ocl to the Why3 verification toolset.
This subset was selected to ease efficient automated verification. This
framework is illustrated using a block specification language for data
flow languages where a subset of ocl is used as a component language.

1 Introduction

Domain Specific Modeling Languages (dsmls) are used in many domains where
their capabilities were shown to be very useful for assistance in system and soft-
ware engineering activities like requirements analysis, design, automated gen-
eration, validation or verification. The critical system and software industry is
one of the domains where they have been used for many years. This has al-
lowed to achieve better quality and safety of the products without having their
development cost following exponentially the curve of the systems complexity.

Beside the obvious advantages of relying on dsml’s for the formalization
of requirements and design elements, and the automation or simplification of
these activities, it remains difficult to convince at the certification level on their
correctness. Formal methods have been used in this purpose and as such have
been proven as being formidable allies, especially for the verification and vali-
dation tasks. In the recent upgrade to level C of aeronautics standards DO-178,
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both technologies were introduced as DO-331 for Model Driven Engineering and
DO-333 for Formal Methods. Both documents advocate dsmls use but their
combined use given in DO-333 looks more promising that the lone use of dsmls
in DO-331. Both documents advocate a precise, complete and non-ambiguous
specification of dsmls.

Their specification usually relies first on the model based definition of their
concepts using a dsml such as the omg Meta Object Facility (mof). These
metamodels are usually completed with static semantics expressed with con-
straint languages such as the omg Object Constraint Language (ocl) that pro-
vides first order logic and model navigation construct. It allows specifying the
static properties of the dsml itself and its concepts. Many formal specifications
of both mof and ocl have been conducted to assess their properties, validate
the standards and participate in the verification of their implementation. These
specifications may also provide formal verification tools for models expressed
with these languages. However, this was usually not their main purpose and
thus these tools do not usually behave well on the scalability side. This contri-
bution targets a more scalable verification dedicated encoding of a subset of ocl
in the Why3 verification toolset that can be reused in different dsmls. These
dsmls rely on this subset of ocl as a component language. One key change is
that the data part of ocl must be adapted to fit the host language.

The Why and WhyML languages are two complementary languages used
for formal software verification. The first one is a high level specification language
and the second one a powerful programming language (WhyML). In this setting,
programs written using the latter are relying on the formal definitions for types,
theories and functions prototypes defined with the former. The Why3 toolset
provides a harness for the manipulation of both specifications and programs
and also for their translation in order to be verified either automatically using
smt solvers or manually using proof assistants like Coq, PVS or Isabelle.
The Why3 toolset is very powerful in the sense that it allows to benefit from
the combined strengths of each managed smt solver and if necessary to rely on
manual verification for proofs that may be too difficult to achieve automatically.

By providing a formalisation of a subset of the ocl in the Why3 toolset, we
target to build a framework allowing to ease the formal verification of dsmls
implementations and instances. In order to do so, we propose a formal specifi-
cation and implementation of a lightweight version of the ocl language. dsmls
specification, expressed using for example mof compliant metamodels and ocl
constraints, or their instances can then be translated to the Why language and
be automatically and formally verified. Such verification can ensure the correct-
ness of the dsml specification, assess the conformance of its instances, or verify
complex properties on the instances. We have applied this approach for the ver-
ification of correctness properties over the instances of a data flow languages
specification dsml [10].

This contribution first pictures our use case and its verification in Section 2.
We then provide in Section 3 our lightweight formal encoding of the selected sub-
set of ocl using the Why and WhyML languages. We refer to it as lightweight
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as it does not covers the whole ocl in order to have a better verification au-
tomation and scalability. We will additionally discuss the coverage of the ocl
specification. We compare our approach to already existing ones in Section 4.
We finally conclude and detail some of our perspectives in Section 5.

2 OCL as a DSML Component

As an Object Constraint Language, ocl has been mainly used to define proper-
ties to be verified on class instances in uml. It thus includes first order logic and
query facilities over class instances and its data part is strongly related to the
uml one. In the omg mda proposal, dsmls were first defined as simplified class
diagrams in the mof subset of uml. ocl has then been used to model the static
semantics of the dsml elements. Nowadays, most omg standards rely both on
mof and ocl as specification languages.

These ones are thus now widely known in the software engineering domain.
They can then be used as a language component to be included directly in the
dsml [11] to allow the dsml user to model constraints and queries with a well
known and standard notation. omg already enforces the reuse of its languages
like ocl in the qvt standard. Other dsmls have integrated ocl as a language
component like the use of tocl for the specification of common behavioral re-
quirements for emf dsml models in[21] or for execution trace matching in the
feverel dsml [20], the Event Constraint Language (ecl) which allows to de-
rive ccsl constraints from emf dsml models [8], the Behavioral Coordination
Operator Language which allows to specify executable model coordination op-
erators[14]. These dsmls metamodels combine several metamodel components
including the ocl one that relies on identifier to connect to the elements in the
other metamodel components. In the usual integration of ocl in uml or mof,
the ocl expressions are written in contexts that provides the identifiers from the
uml/mof part of the dsml and the data part of ocl is mapped to their data
parts. The identifiers can then be used in the ocl expressions like the names
of classes, attributes, methods and parameters. ocl itself can define identifiers
that bind stronger than the ones from the context. A similar approach is used
to connect ocl with other parts in the dsml metamodel. One key point is to
connect also the ocl data part with the dsml one.

2.1 General approach for the verification of DSMLs

Formalisation of a dsml in order to conduct formal verification activities starts
with the formalisation of the dsml structural elements and their properties. It is
usually achieved by expressing the dsml structure, and its static semantics (the
metamodel and its ocl constraints) with the formalism targeted for the verifi-
cation. Two approaches are commonly used in that purpose: on the one hand,
modeling the dsml in the formal verification platform including the model cre-
ation facilities and then building and verifying models directly in such a platform
(a kind of denotational semantics); and on the other hand, providing a trans-
formation from the dsml to the verification platform that is applied on each
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model for verification (a kind of translational semantics). The first one builds
the formal model at the language level, whereas the second one works at the
instance level. In both cases, the writing (either being manual or automated) of
the formal representation is parametrized by the dsml data specification (i.e.
the data that are expressed in the models and verified by the constraints).

If the dsml relies on an additional language such as ocl as a component to
express properties, it is then also required to translate those properties into the
verification formalism. This work can be leveraged by first providing a formal-
isation for the ocl component language and then relying on this formalisation
for the automatic translation of the other parts of the dsml.

Many dsml also include a definition for their execution semantics. This defi-
nition can be directly embedded in the dsml definition[5]; it can also be defined
externally or can be provided using third party component action languages such
as alf1. The execution semantics should also be expressed using the verification
formalism and the associated formal verification platform. This provides an exe-
cution semantics formal specification. This one can be manually or automatically
translated into the formal verification platform.

Finally, the verification of a dsml is based on the expression of properties
to be verified. These properties are either written directly using the verification
formalism or automatically generated from the dsml instances. The second ap-
proach is preferred as it increase the efficiency of the verification and also eases
the verification for the dsml user.

In the following, we illustrate the verification of a dsml through the example
of the verification of the BlockLibrary dsml. This dsml allows using a lim-
ited subset of ocl as a component language. BlockLibrary dsml instances
are translated as Why3 theories. ocl expressions are translated to Why3 ex-
pressions relying on the pre-existing formalisation of the restricted version of
the language. Finally, high level properties are automatically generated from the
dsml instances as Why3 goals to be discharged through the Why toolset.

2.2 The BlockLibrary DSML structural specification

The BlockLibrary dsml [9, 10] aims at the specification of the structure and
semantics of data flow atomic blocks such as the ones at the core of the Simulink
or Scade languages. This dsml allows to specify the inherent variability of these
blocks structure and semantics. The structural specification part of the dsml is
inspired from the concepts of software product lines combined with the object
oriented concept of inheritance in order to handle the highly variable nature
of the blocks specification. Data types can be attached to blocks specification
components (inputs, outputs, parameters and memories). The components are
specified with constraints describing their allowed values (specified using a subset
of ocl). The semantics of the blocks is expressed with a simple action language
that relies on the same subset of ocl to express pre/post-conditions, variants
and invariants.

1 http://www.omg.org/spec/ALF/Current
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The two main concerns in the dsml are the use of ocl as a language com-
ponent for the specification of the dsml data and action constraints and the
variability management that allows combining parts of the blocks specification
into multiple block configurations.

2.3 Verification of BlockLibrary instances with Why3

A significant part of the effort in this case study has been focused on the for-
malisation of the dsml constructs as Why theories to conduct formal proofs of
the model completeness, consistency and correctness using the Why3 platform.

A block specification using the BlockLibrary dsml We provide in Figure
1 a simplified specification for the Delay block written using the BlockLibrary
dsml. The Delay block outputs the value provided as its first input and delays
its value by a certain number of clock ticks. The number of clock ticks is either
provided as a parameter of the block or as an additional input. The values of
the output of the block for the first clock ticks cannot be computed from the
inputs of the block and should thus be provided as either a parameter or as an
additional input of the block. The block allows for scalar, vectors and matrix
values. The specification provided here is limited to the handling of scalar values
and the initial condition can only be provided as a parameter of the block.

A block specification is contained in a blocktype element bundled in a
Library construct. The data types used in the specification are declared in the
Library. The variant constructs contains the specification for a block struc-
tural elements: input (in) and output (out) ports, parameters and memories.
For each declaration of a structural element, it is possible to specify its default
value and some additional constraints using our subset of the ocl language. We
provide such a constraint in line 20, where we specify that the Delay parameter

can only have a positive value.
Each variant can extend, in an object oriented way, other variant con-

structs by relying on the extends construct. This composition is done through
two n-ary operators that can be applied on variant constructs: allof and
oneof. The former specifies mandatory compositions whereas the former specify
alternative compositions. These operators are inspired from the software product
line approach for the specification of features hierarchies.

The mode constructs allows for the specification of the blocks semantics vari-
ation points. They thus provide an implementation for one or more variant

constructs. The previously presented composition language can be used in this
purpose. Each mode construct must provide a definition for the compute seman-
tics of the block variation point (lines 57 to 61). It may also provide the optional
semantics for the init and update computation phases for the specified block.
The blocks semantics are provided using a custom simple action language: the
BlockLibrary action language (bal). A mode and its implemented variant

make a set of block configurations. This set is extracted from the composition
of variant elements through the allof and oneof constructs.
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library Lib {

type signed realInt TInt32 of 32 bits
type realDouble TDouble

5 type array TArrayDouble of TDouble

blocktype DelayBlock {
variant InputScalar {

in data Input : TDouble
10 out data Output : TDouble

}
variant ICScalar {

parameter IC : TDouble default 0.0
}

15 variant ICVector {
parameter IC : TArrayDouble

}
variant InternalDelay {

parameter Delay : TInt32 {
20 invariant ocl { Delay.value > 0 }

}
}
variant ExternalDelay {

in data Delay : TInt32 {
25 invariant ocl { Delay.value > 0 }

}
}
variant ListDelay_Scalar extends allof (

oneof (InternalDelay , ExternalDelay),
30 InputScalar , ICVector

) {
invariant ocl { Delay.value > 1 }
invariant ocl {

IC.value.size() = Delay.value
35 }

memory Mem {
datatype auto ocl {Input.value}
length auto ocl {DelayUpperBound.value}

}
40 }

variant Delay_Scalar extends allof (
oneof (InternalDelay , ExternalDelay),
InputScalar , ICScalar

) {
45 invariant ocl { Delay.value = 1 }

memory Mem {
datatype auto ocl {Input.value}
length auto ocl {1}

}
50 }

mode DelayMode_Simple implements Delay_Scalar
{

init init_Delay_Simple bal {
postcondition ocl {

Mem.value = IC.value }
55 Mem.value = IC.value;

}
compute compute_Delay_Simple bal {

postcondition ocl {
Output.value = Mem.value }

60 Output.value = Mem.value;
}
update update_Delay_Simple bal {

postcondition ocl {
Mem.value = Input.value }

65 Mem.value = Input.value;
}

}
mode DelayMode_List implements

ListDelay_Scalar{
init init_Delay_List bal {

70 postcondition ocl {
Mem.value = IC.value }

Mem.value = IC.value;
}
compute compute_Delay_List bal {

75 postcondition ocl {
Output.value = Mem.value ->first() }

Output.value = Mem.value [0];
}
update update_Delay_List bal {

80 postcondition ocl { Mem.value =
Mem.value
->excluding(Mem.value ->first())
->append(Input.value)

}
85 for (var i=0; i < Mem.value ->size() -1;

i = i+1){
Mem.value[i] = Mem.value[i+1];

}
Mem.value[Delay.value -1] = Input.value;

90 }
}

}}

Fig. 1. Delay block specification using the BlockLibrary dsml

The lack of space prevents us to detail further this dsml and we refer the
reader to our papers[9, 10], the related thesis work 2, and the website3 for addi-
tional informations.

BlockLibrary specification verification A transformation translates Block-
Library instances to Why theories; ocl-like constraints to predicates relying

2 http://www.dieumegard.net/thesis/Thesis-Arnaud Dieumegard.pdf
3 http://block-library.enseeiht.fr
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on a lightweight formalisation of the subset of ocl detailed in Section 3; and
semantics specification (specified using the action language) to WhyML func-
tions.

In addition to this translation of the BlockLibrary specification, proper-
ties are generated to assess: the completeness (are all possible configurations of
a block given in the specification ?) and the disjointness (are all possible config-
urations of a block expressed only once in the specification ?) of all the Block-
Library dsml block specifications. The verification of these two properties is
done automatically by smt solvers in a few tenth of a second for rather simple
blocks specification to up to a few seconds for mode complex ones containing up
to a thousand different configurations for a block.

The most important lesson learned from this experiment was that as soon
as the dsml constructs, their attached constraints, and the ocl component
expressions are translated to Why, it is straightforward to write or generate
high level properties to be verified using the Why and WhyML languages.

The following section summarizes the Why model of the specific subset of
the ocl that was necessary for our dsml use case where a subset of the ocl is
used as a dsml component.

3 OCL Formalisation Using the Why Toolset

ocl is a formal language for querying model elements and expressing model
properties. It relies on first order logic and model traversal operators. It is guar-
anteed to be side-effect free and as such cannot modify the model it is applied
to. The Why language is more expressive than ocl and can thus be used to
encode any ocl construct.

We provide here some details on our formal specification of our specific sub-
set of ocl in Why. It is important to keep in mind that the main objective
of the BlockLibrary dsml is to allow for the formal specification of blocks.
As such, we enforce the block specifier to provide strictly typed elements. The
consequences of this limitation is impacting the subset of the ocl to be han-
dled. It is indeed not required to handle type manipulation operations such as
oclIsKindOf or oclAsType among others.

We will go through the support for some of the ocl constructs; the limitations
we selected; and the translation strategies in order to go from ocl constructs to
Why constructs. As we will not provide the complete details about our trans-
lation, we invite the interested reader to refer to our website4 for additional
informations.

3.1 OCL standard data types and collections

ocl is built on a simple set of types called primitive data types. The Why3
standard library provides a formalisation for primitive data types that largely
covers the needs for the mapping of the ocl ones.

4 http://block-library.enseeiht.fr/html
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ocl primitive values can be gathered in collections that differs regarding
their ability to handle multiple occurrences of the same value (Bag, Sequence)
or not (Set, OrderedSet) and if these values are ordered (Sequence, OrderedSet)
or not (Bag, Set).

In the Why standard library, collections can be modeled as lists allowing
multiple occurrences of the same unordered value. This makes them a direct
translation for Bag collections. The standard library also provides the support
for Arrays that would directly map to the Sequence collection and Sets for Set
collection in ocl.

In our implementation of ocl, we do not take into account the type of the
collections and only provide support for Bag collections as lists. This allows to
simplify their management in our implementation as it removes the side effects
on the collection management operations such as that elements are not auto-
matically removed from the collections as multiple occurrences are allowed. We
defined a Why theory called OCLCollectionOperation containing the definition
for some basic list accessors and operations. The other three kinds of ocl col-
lections will be implemented in a similar way in a near future with no specific
issues expected.

We decided not to support messaging related constructs and tuples con-
structs. Messaging is related to uml sequence and state machine diagrams which
was out of the scope of our case study. Tuples are also missing in our implemen-
tation and could be implemented on a first approximation by relying on record
types in Why.

3.2 OCL operations translation strategy

ocl defines multiple operations that are to be applied either on primitive values –
referred to as standard language operations – or on collection values – referred to
as collection and iteration operations. Some of these operations are not supposed
to be used on Bag collections and explicit conversions between collections types
must be done. We do not enforce this currently in our implementation of ocl
as we provide only one type of collection.

The translation of ocl expressions to the Why language can be done us-
ing two strategies. First, operations can be translated to basic first order logic
expressions and thus can directly be used in Why. Second, the definition for
the operations can be axiomatized using Why function declarations and ocl
constraints are translated as expressions using these functions. In our work, we
rely on a combination of the two. The list getter is used for simple collection ac-
cesses, standard type operations have been defined as functions in Why, simple
collections operations are directly mapped to their logical expression equivalent.

This approach has the advantages of easing the translation work as the se-
mantics of ocl standard types operations is already defined and thus avoid to
generate too complex expressions. This has the pleasant side effect of easing the
transformation verification activities as the translation itself is simpler.

In the following, we provide the mapping between the source ocl constructs
and operations and the target Why predicates, functions and expressions.
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3.3 OCL standard library operations

In ocl expressions, operations can be applied on primitive ocl types. These
operations are classical handling of primitive data types and are gathered in the
ocl standard library. They have already been formalized in the Why library.
We thus rely on their formalisation for our translation.

We did not currently implement the transformation for the div and mod
operations on ocl Double elements. The div operation is of particular interest
as its behavior in ocl and in Why are not the same. Indeed where the ocl
implementation of div applied to any number and 0 (division by zero) returns
the null value, the Why version is simply not defined and rejected by the formal
verification toolset. The management of specific values like null and invalid is
not done and is a chosen limitation of our work to simplify the formal models
and reduce the verification costs by avoiding three value logics (True, False and
invalid). We give later more details regarding the related restrictions.

Boolean ocl expressions are implemented using boolean expressions in Why.
xor operator has been implemented with and, or and not operators. Numeric
operations have been implemented using the standard Why arithmetic theories
and their operators. Finally relational operators are also based on standard Why
constructs.

3.4 Collection operations

As previously mentioned, there are four types of ocl collections. We only con-
sidered the use of the bag collections in our case study. In our handling of ocl
collection operations, we do not handle ocl generic nature nor subtyping of el-
ements. If the same operation is to be expressed on different types, it is then
developed separately for each different type. Whereas this may seem to be a
limited way of handling this problem, in practice, our supported restriction of
ocl makes this easier as only a few operations needs to be encoded several
times. Both kind of polymorphism could be handled by synthesizing sum types
representing the allowed set of types for an operation and appropriate pattern
matching that mimics late binding at a higher verification cost.

Our partial handling of ocl collections has an impact on the translation
provided for some collection operations. The append and including operations
have the same implementations and so are subOrderedSet and subSequence. Ac-
cording to the ocl specification, some collections operations are not allowed on
bag collections: append, at, first, indexOf, indexAt, last, prepend, subOrderedSet,
subSequence. We decided to allow their use in our implementation of ocl. This
is a significant drift from the ocl standard but it has the advantage of greatly
simplifying the translation mechanism without restraining the expressiveness of
the language. This restriction could be enforced easily at the static semantics
level. The formalisation of the usual ocl collections is of additional complexity
as studied by Mentré et Al [16] but was not of primary interest for our current
work so we decided not to address the related issues.
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Each of these functions are defined through a set of axioms specifying their
context of use: on which element type they are defined; what restrictions are
required for their definitions; and the result of their computation according to
the provided input values. The restrictions on their parameters are used to avoid
the invalid value. The effort needed in order to achieve the complete verification
remains important but is highly lightened by the use of smt solvers to automate
the verification.

3.5 Logical property assessment iteration operations

Iteration operations are the main operations used on ocl collections. They allow
to assess a logical property verification on: every element of a list (forAll), at
least one element of a list (exists), exactly one element of a list (one). They can
also express the uniqueness of the result of the application of a function on every
element of a list (isUnique). All these operations returns a boolean value.

In Table 1, we provide the translation for the forAll, exists, one and isUnique
ocl operations on collections. Unlike the previous translations, we do not rely
on predefined functions but we rather map these operations to simple first order
logic expressions. Regarding the translation of the condition expression: exp, the
defined ocl iterators: it, it1 and it2 are mapped to a call to the position of the
element in the collection via the list getter operator. In practice, references to it
or it1 are replaced by a[i] and references to it2 are replaced by a[j] in exp. This
is expressed using the function application: [a/b]c that substitute a to b in c.

ocl expression Target Why code

a→forAll(it: DT | exp) ∀ i: int. 0 ≤ i < length a → [a[i]/it]exp

a→forAll(it1, it2: DT | exp) ∀ i j: int. 0 ≤ i < length a ∧ 0 ≤ j < length a → [a[i]/it1,a[j]/it2]exp

a→exists(it: DT | exp) ∃ i: int. 0 ≤ i < length a ∧ [a[i]/it]exp

a→exists(it1, it2: DT | exp) ∃ i j: int. 0 ≤ i < length a ∧ 0 ≤ j < length a ∧ [a[i]/it1,a[j]/it2]exp

a→one(it: DT | exp)
∃ i: int. 0 ≤ i < length a ∧ [a[i]/it]exp ∧

(∀ j: int. 0 ≤ j < length a ∧ j <> i → [a[i]/it]exp <> [a[j]/it]exp)

a→isUnique(it: DT | exp)
∀ i,j : int. 0 ≤ i < length a ∧ 0 ≤ j < length a ∧ i <> j →

[a[i]/it]exp <> [a[j]/it]exp

Table 1. ocl logical property verification operations mapping to Why expressions

3.6 Value extraction iteration operations

Iteration operations also allow extracting values from a collection: according to
the satisfaction (select) or not (reject) of a property; or by applying a treatment
on every element of a list (collect). Value extraction operations are more complex
to model as they do not only provide a single boolean value as output, they
actually compute a list of elements.

Iteration operations semantics Iteration operations apply on collections and
compute filtering of the collection values and/or mapping of functions on the
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collection values. We decide thus to represent a collection as the 〈c, p, f〉 tuple.
Its semantics is provided in (1).

J〈c, p, f〉K = {f(v)|v ∈ c, p(v)} (1)

According to the previous notation, we define the initial value of a collection
as in (2) where > is the predicate returning true and id the identity relation.

c = {v1, ..., vn} = 〈c,>, id〉 (2)

The definition of iteration operations is hence specified as in (3). From these
definitions, we extract the implementations for iteration operations using the
Why language. We provide in the following two possible implementations.

〈c, p, f〉 → select(e|ϕ) = 〈c, p ∧ [f/e]ϕ, f〉
〈c, p, f〉 → reject(e|ϕ) = 〈c, p ∧ ¬[f/e]ϕ, f〉
〈c, p, f〉 → any(e|ϕ) = 〈c, p, f〉 → select(e|ϕ)→ first()

〈c, p, f〉 → collect(g) = 〈c, p, f ◦ g〉

(3)

Iteration operations as first order logic constructs Providing an imple-
mentation for iteration operations can be done using first order logic constructs.
It is then required to generate a different function for each iteration operation
call and then to write a call to the generated function in the translated ocl
operation code.

Using first order logic to provide an implementation for iteration operations
is quite straightforward. Nevertheless, the implementation and verification of
the generation process might be quite complex. Indeed the generated code com-
plexity might increase when complex expressions are used in the body of the
iteration operation.

Iteration operations as higher order logic construct An alternative ap-
proach for the implementation of iteration operations is to rely on higher order
logic to represent the operations in Why. An example of such formalisation is
provided in Listing 1.1 for the select iteration operation. The select function in
Why takes two arguments, the first one is the collection on which the operation
is applied and the second one is the predicate that must be used in order to select
the elements of the collection. In addition to the function definition, we provide a
set of lemmas verified with the Why3 platform generating proof obligations dis-
charged using smt solvers and proof assistants. In the case of the select function,
part of the lemmas are verified using smt solvers and others have been verified
using the Coq proof assistant. We provide in Figure 2 a report generated with
the Why3 toolset for these verifications. The verification effort required for the
verification of the iteration operations (writing of the specification and achieving
the proof) is rather similar to the one needed for the verification of collection
operations. Details regarding the formalisation and the proofs for the other ocl
collection operations is provided in the first author PhD thesis work 5, and our
website6.
5 http://www.dieumegard.net/thesis/Thesis-Arnaud Dieumegard.pdf
6 http://block-library.enseeiht.fr
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In order to use the iteration expressions, one must provide a body containing
the condition or the operation to apply on each element of the collection. The
condition body of the reject, select and anyAs operations is translated as an
inlined predicate whereas the function body of the collect operation is translated
as an in-lined function. In-lined predicates and functions are provided as the
second argument of their respective WhyML function call. Contrary to the first
order operations, there is no need here to keep track of the variables used in
the iteration operation as the in-lined nature of the function call makes their
definition directly available.

function select (l: list oclType) (p: HO.pred oclType) : list oclType =
match l with
| Nil -> Nil
| Cons hd tl -> if p hd then Cons hd (select tl p)

else select tl p
end

lemma select_nil: forall p: HO.pred oclType.
select Nil p = Nil

lemma select_cons_nil_verified: forall e: oclType , p: HO.pred oclType.
p e -> select (Cons e Nil) p = Cons e Nil

lemma select_cons_nil_not_verified: forall e: oclType , p: HO.pred oclType.
not (p e) -> select (Cons e Nil) p = Nil

lemma select_cons_verified: forall e: oclType , l: list oclType ,
p: HO.pred oclType.

p e -> select (Cons e l) p = Cons e (select l p)
lemma select_cons_not_verified: forall e: oclType , l: list oclType ,

p: HO.pred oclType.
not (p e) -> select (Cons e l) p = select l p

lemma select_mem_reduc: forall l: list oclType , b: oclType ,
p: HO.pred oclType.

mem b (select l p) -> mem b l
lemma select_mem: forall l: list oclType , b: oclType ,

p: HO.pred oclType.
(mem b l /\ p b) -> mem b (select l p)

lemma select_not_mem: forall l: list oclType , b: oclType ,
p: HO.pred oclType.

(mem b l /\ not (p b)) -> not (mem b (select l p))

Listing 1.1. Select iteration operation formalisation in Why using higher order logic

Proof obligations Alt-Ergo-Pro (1.0.0) Coq (8.4pl3)

lemma select nil 0.03

lemma select cons nil verified 0.04

lemma select cons nil not verified 0.05

lemma select cons verified 0.03

lemma select cons not verified 0.04

lemma select mem reduc 2.40

lemma select mem 2.31

lemma select not mem 2.01

Fig. 2. Select verification through smt solvers and proof assistants (time in seconds)
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3.7 Additional restrictions on the support of the OCL language

In the previous sections, we gave the translation rules for a subset of the ocl
language. ocl provides a well known syntax for software engineers. In addition,
this subset of the language eases and secures the constraints writing process
relying on first order logic by including only well known and standard functions
and operations on classical data types.

A major restriction in our implementation of the ocl language is the absence
of the specific invalid and null values. This is related to the binding to the data
part of the dsml and to the formal verification introduced by the Why3 toolset.
The invalid value is used for the modeling the failure of an operation, we advocate
that if such an operation is equipped with pre-conditions then the invalid value
can never be an output of the operation and is thus not necessary. This value
is also used when ocl is bound to uml or mof to model optional attributes
or references that are not defined in the model instances. We advocate that an
empty collection is also a good model for this case. Regarding the null value, it
is used in order to model an object that does not exists. Once again this should
not happen in a formalisation of the language but it could be handled by relying
on an option type. Adding the support for these specific values will have a strong
impact on the Why implementation of the ocl constructs. Indeed, these specific
values will need to be taken into account in the implementation of all functions
and on the related proofs. There are technical difficulties in implementing these
values as shown by [2] but it is possible to overcome most of them.

The limitations we applied on the formalisation of ocl have the advantage
of providing a simpler, well defined subset of the language enforcing the dsml
developer to rely mostly on common knowledge ocl constructs and thus avoid
the problems related to the use of more complex constructs such as the clo-
sure operator. These operators may cause some misunderstandings; make the
specification more obscure; and make its verification more complex.

The subset of ocl we currently handle could be extended if required by the
integration to other dsmls as shown by [2]. We will try to keep it as limited as
possible.

4 Related Works

Many works in the literature target the formal verification of dsmls. We will
only focus on those where the ocl language is used either in the dsml speci-
fication and/or as a language component part of the dsml; and is included in
the verification process. Most of the formal dsml verification processes including
ocl are related to its use in the context of uml specifications.

Our approach is close to the one proposed in the hol/ocl project[3, 2].
Its authors target the formal verification of uml specifications including ocl
constraints and contracts by providing a bridge to the hol/ocl whose formal
foundations relies on the Isabelle proof environment. This work is specifically
remarkable by its coverage of ocl and has highly contributed to the ocl com-
munity by providing formal specifications for the language that raised numerous
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legitimate questions regarding the semantics of ocl operations and constructs
leading to the clarification of the standard. Our work takes a different angle and
aims at the verification of dsmls in general whereas the hol/ocl one is focused
on uml. We also differ by our use of the Why3 toolset instead of Isabelle.
Both toolsets allows for the use of smt solvers for the automatic verification of
properties but Why3 can be used as a bridge to many more different solvers
and proof assistants including Isabelle. Why3 also benefits from its simpler
high level syntax. It is our belief that by relying on the Why3 toolset, a wider
range of users will be able to actually perform formal verifications of properties
as the Why and WhyML languages are simpler to apprehend than Isabelle.
Our work targets a significantly smaller coverage of the ocl standard that allows
avoiding key semantics issues like the invalid and null values. This has not been
a limiting issue for our use up to now. However, we are far from the completeness
of the hol/ocl project and we do not plan to reach it.

Clavel et al [4, 7] provides a translation from ocl to first order logic (fol).
Automated theorem provers and smt solvers are then used to check the un-
satisfiability of the generated fol constructs. This work supports the null and
invalid values. It focuses on the verification of ocl constraints expressed on data
models. Our work is more focused on the verification of ocl as a language com-
ponent for dsmls. The same difference can be found in the work by Lano et al
[15] where uml class diagrams and a subset notational variant of ocl (LOCA)
are handled and verified through a transformation to the B language.

uml/ocl specifications are translated to sat solving format by Soeken et
al [18, 19] or integrated in the USE toolset by Kuhlmann et al [12]. Another
formalism for the automated verification of specifications is the PVS theorem
prover. Kyas et al in [13] provides a lightweight translation of ocl and uml state
machines and class diagrams. Each of these approaches uses different formalism
for the formal verification with efficient verification results but are tied up to
the use of this specific formal verification technique. Our work benefits from
the wider range of formal verification toolsets that the Why3 platform provides
including most of the ones used in these works.

Some other approaches have been used in order to formally model uml/ocl
specifications as in the works from Kyriakos et al [1] and Cunha et Al[6] on the
UML2Alloy tool. These provide means for the verification of uml/ocl specifi-
cations and put a specific emphasis on the feedback of the verification result to
the dsml user. We did not focus on the feedback from solvers in our work but
it would be possible as the Why3 toolset provides access to smt solvers with
counter-example generation capabilities.

5 Conclusion and Future Works

We have described a lightweight formalisation of the ocl language in Why3
where the limitations have been identified and discussed. We have briefly detailed
an example of dsml where ocl is used as a component language. We rely on
our formalisation of ocl to conduct the automated verification of high level
properties on the dsml instances.
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It is our belief that the dsml community would benefit from such a formal-
isation as it allows to improve the quality of model verifications by relying on
formal verification techniques; it is based on the use of the Why3 toolset that
eases the writing of properties and is more accessible for industrial practitioners
than other formal verification platforms (like proof assistants for example) yet
still supporting their use. This accessibility is very likely to help on the adoption
of formal methods as a natural and standard verification technique.

The work conducted here was mostly driven by the verification of a specific
dsml: the BlockLibrary specification language. The next step is to ease the
integration of ocl as a component language for other dsmls. Specifically, we will
focus on the adaptation of the translation of the dsml structure to Why3 which
is currently done manually. We plan on providing a translation from meta-models
instances of mof or Ecore to generically transform any dsml specification into
a set of Why theories. The translated theories will then be used in conjunction
with our formalisation of ocl to conduct verification activities on the dsml
instances.

We are investigating a larger subset of ocl that still allows for an efficient
automatic verification of dsml properties. We will specifically focus on the han-
dling of any type of collections; the constructs that still need handling (tuples);
and collection operations we did not implement yet. Handling the special in-
valid and null values could be done by relying on an approach close to the one
provided by Dania et al in [7].

In our BlockLibrary dsml the blocks semantics is specified using an action
language. Such a semantics is then translated as a WhyML function. We could
have used an already existing action language like fUML/alf [17] for example.
By relying on a custom language, we simplified the translation work by limiting
it only to the constructs that were needed. We plan, as proposed for a subset
of ocl, on providing a formalisation for a subset of such an action language
component. This will then be used for the verification of the semantics definition
for dsmls and will thus complete the dsml verification approach.
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Abstract. The Unified Modeling Language has been used largely in the soft-
ware community to draw pictures for designing and documenting software writ-
ten in other languages. The real executable semantics of a program are deter-
mined by the programming language, while the UML models themselves do not 
have a precise enough meaning to fully specify the executable functionality of 
the system being developed. Recently, however, there has been a great deal of 
work toward the standardization of precise, executable semantics for UML 
models – the “meaning” behind the pictures: Foundational UML (fUML) 
adopted by the Object Management Group in 2008, the Action Language for 
fUML (Alf) adopted in 2010, the recently completed Precise Semantics for 
UML Composite Structures (PSCS) and the Precise Semantics for UML State 
Machines (PSSM), now in progress. Together, these standards effectively pro-
vide a new combined graphical and textual language for precise, executable 
modeling. In particular, the Alf language goes beyond simply providing a textu-
al “action language” for detailed behavioral code within graphical models, by 
including textual notation for fUML structural object-oriented modeling con-
structs (e.g., packages, classes, associations, etc.). This opens up the possibility 
of tooling allowing various parts of a UML model to be represented both graph-
ically and textually (while preserving the same semantic level), with bidirec-
tional synchronization between the two representations. This paper presents the 
achievement of an initial integration of UML and Alf in the context of the Pa-
pyrus tool for the specification of executable models.  

Keywords. Graphical modeling. Textual modeling. UML. Alf. Action lan-
guage. Modeling tools. Graphical/textual model synchronization. 
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1 Introduction 

To most in the software community, “modeling” is something much different than 
“coding”. On the other hand, there has also been a long standing minority in the soft-
ware development community that has created models precise enough that they can 
be executed in their own right. Indeed, commercial executable modeling tools based 
on the Shlaer-Mellor method [5,6], Real-Time Object-Oriented Modeling (ROOM) 
[4] and Harel statecharts [2] all predated UML. However, such approaches converted 
over to UML notations,1 and executable UML has been used for significant and criti-
cal applications, including fighter aircraft flight software, launch vehicle flight soft-
ware and telecommunication switches [1,7]. 

Nevertheless, executable modeling has remained a niche approach dependent on 
divergent, proprietary tooling. One crucial issue with creating precise, standard UML 
models has been the imprecision of semantics specification in the UML standard. This 
issue was finally addressed with the adoption by OMG of the Foundational UML 
(fUML) specification2. This specification provides the first precise operational and 
axiomatic semantics for a Turing complete, executable subset of UML. The subset 
encompasses most of the object-oriented and activity/action modeling constructs of 
UML, which cover not only features commonly found in an object-oriented pro-
gramming language, but also more advanced modeling features found in UML such 
as first-class associations and asynchronous signals.  

But there has been a second crucial issue with executable UML modeling: the lack 
of a good surface notation for specifying detailed behavior and computation. UML is 
a largely graphical modeling language whose legacy is the unification of earlier 
graphical modeling languages. This is a great strength of UML for traditional, largely 
informal “big picture” analysis and design modeling, but it does not work well for 
representing detailed computations. 

The fUML specification does not provide any new concrete surface syntax, tying 
the precise semantics solely to the existing abstract syntax model of UML. UML does 
provide a concrete notation for activities and actions that can be used to model, say, 
the method for an operation, but this requires one to draw a very detailed, graphical 
activity diagram. 

This issue was addressed with the adoption by OMG of the Action Language for 
fUML (Alf)3. Alf is basically a textual notation for UML behaviors that can be at-
tached to a UML model anyplace that a UML behavior can be. Together, these stand-
ards effectively provide a new combined graphical and textual language for precise, 
executable modeling.  

Such a combination of graphical and textual notation is being implemented in prac-
tice in the Eclipse-based open-source UML/SysML modeling tool Papyrus4. In addi-
tion to the usual diagrams, the tool now provides the user with a textual editor sup-

                                                             
1  See, for example, http://www.kc.com/XUML/ and http://www.xtuml.org/.  
2  http://www.omg.org/spec/FUML/  
3  http://www.omg.org/spec/ALF 
4  https://eclipse.org/papyrus/  
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porting Alf. When developing an executable model, one can easily switch between 
the different editing views. The cohesion between the different views is ensured in a 
transparent way for the user. 

This paper has two objectives. The first one is to introduce the reader to Alf both 
from syntactic and semantic standpoints. The second objective is to demonstrate the 
coupling between Alf and UML through an example built using the tooling integrated 
into Papyrus.   

The remainder of this paper is organized as follows. Section 2 provides some addi-
tional background on Alf as a textual modeling language. Section 3 then introduces a 
simple example UML model, and Section 4 shows how this model can be updated 
with executable Alf code using Papyrus. Section 5 then makes some additional points 
about the synchronization of model changes occurring in different views. Section 6 
identifies the limitations of the current Alf tooling and Section 7 concludes the paper.  

2 Background 

Semantically, Alf maps to the fUML subset. In this regard, one can think of fUML as 
effectively providing the “virtual machine” for the execution of the Alf language. 
However, this grounding in fUML also provides for seamless semantic integration 
with larger graphical UML models in which Alf text may be embedded. This avoids 
the semantic dissonance and non-standard conventions required if one where to in-
stead, say, use a programming language like Java or C++ as a detailed action lan-
guage within the context of an overall UML model. 

However, the Alf language actually also includes a notation that goes beyond just 
behavioral modeling constructs. This additional textual notation includes all the struc-
tural modeling constructs included in the fUML subset. For example, suppose we 
have a UML class model that has an association between a Customer class and an 
Account class. This simple model can be represented textually in Alf: 

package CustomerAccounts { 
 public class Customer { 
  public name : String; 
 } 
 
 public class Account { 
  public balance : Integer; 
 } 
 
 public assoc CustomerAccount { 
  public customer : Customer; 
  public accounts : Account[*]; 
 } 
} 
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Now, given a certain customer, we want to navigate across the association to the 
sum up the balances of all the customer’s accounts. We can use Alf to define a UML 
activity to do this: 

private import CustomerAccounts; 
activity SumBalances(in customer : Customer) : Integer { 
totalBalance = 0; 
for (balance in customer.accounts.balance) { 
    totalBalance += balance; 
} 
return totalBalance; 

} 

Syntactically, Alf looks at first much like a typical C/C++/Java legacy language. 
This is the result of a conscious compromise on the part of the submission team. 
Since, despite the issues involved, it is currently not uncommon practice to use Java 
or C++ as a UML action language, there was a strong desire to have a subset of Alf 
that would be familiar to such practitioners, to ease their transition to the new action 
language. 

But the notational similarity can also be a bit deceptive. For example, association 
ends in UML are not semantically collection objects, but, rather, multi-valued proper-
ties with specified multiplicities (such as [*] used above, meaning “0 to many”). So, 
while customer.accounts.balance may look like a regular Java field access 
expression, what it really does is navigate from cutomer, across the association to 
the opposite accounts end, return all the Account objects at that end, and get the 
balance of each one. Alf adopts the notational convenience introduced in the al-
ready standard Object Constraint Language (OCL)5 that navigation across an associa-
tion to a multi-valued end automatically collects all the values at that end, so it is not 
necessary to have an explicit for loop to do this. 

Note also that it is not necessary to explicitly declare the type of totalBalance 
or balance. The types of these local names are inferred from the result types of the 
expressions assigned to them – a convenience familiar to users of any modern script-
ing language. 

Further, beyond simple syntactic conveniences, Alf also includes constructs that 
leverage the inherently concurrent, flow-oriented nature of the underlying fUML ac-
tivity semantics. These include very powerful capabilities like filtering and mapping 
similar to those seen in many of the recently popular functional languages. So, for 
example, the body of SumBalances above can be more compactly written as: 

return customer.accounts.balance->reduce ’+’; 

Here, the functionality of an entire loop has been collapsed into a single expression, 
which maps directly to a UML reduce action. On an appropriate platform, this could 
be implemented as a highly concurrent operation, rather than as a sequential loop.  

                                                             
5  http://www.omg.org/spec/OCL/  
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Further, suppose that the customer was to be selected based on email address from 
the extent of existing customers. This can be simply written: 

myCustomer =  
 Customer->select c (c.email == myCustomerEmail); 
total = SumBalances(myCustomer); 

The select notation here maps to a fUML parallel expansion region that, again, 
could be implemented as a highly concurrent search – or even translated into a data-
base query. And, while the = looks like a traditional variable assignment, what it real-
ly maps to is a data flow in the underlying fUML activity – so local assignments do 
not actually introduce mutable state, which again allows much greater flexibility in 
the translation to implementation.  

The point is that Alf provides an essentially complete notation for writing pro-
grams at the level of UML modeling semantics. Indeed, the open-source Alf Refer-
ence Implementation6 is distributed un-integrated with any graphical tool, allowing 
executable models to be written completely textually in Alf in exactly this way. Nev-
ertheless, a particular benefit of Alf is its close relationship to standard UML, which 
allows it to be integrated readily as a textual notation into existing graphical UML 
tools. But the availability of the extended Alf notation for structural modeling opens 
up the possibility of integration beyond just including Alf snippets for behavioral 
functionality within a graphical UML model. We turn next to consideration of tooling 
that realizes this possibility. 

3 Papyrus support for Alf 

Implementation of Alf in the context of Papyrus is the result of a collaboration be-
tween Model Driven Solutions (language implementation) and CEA LIST (integration 
in Papyrus). As shown in Fig. 1, this implementation is structured as a number of 
Eclipse plugins, which can be grouped into two parts, a “back end” and a “front end”. 

                                                             

6   http://alf.modeldriven.org 
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Fig. 1. Alf support architecture in Papyrus 

The “back end” provides a complete implementation of the Alf language. The syn-
tax of the language is defined as an Xtext7 grammar. This grammar is used to parse 
Alf text into an Ecore metamodel based on the normative Alf abstract syntax. Seman-
tic validation rules are given as OCL constraints that annotate this metamodel, which 
are executed during automatic validation as part of the Xtext framework.  In addition, 
the “back end” also implements the mapping of the Alf abstract syntax to the UML 
abstract syntax using QVTo8 transformations. Finally, a reverse QVTo transformation 
is also provided for mapping UML to the Alf abstract syntax, which may be then 
serialized to Alf text, in order to allow bidirectional synchronization between Alf and 
UML representations. 

The “front end” enables the end user to use the Alf language implementation in the 
context of a UML model designed in Papyrus. It contributes to the property view and 
proposes an additional tab “ALF” (see, for example, Fig. 3) containing the required 
elements to specify and propagate Alf specifications entered by user in an existing 
UML model. The “front-end” handles all the interactions with the edited model 
through a set of commands and jobs. Additionally it provides experimental develop-
ments to maintain a synchronization between graphical and textual views of a single 
model.       

The next section illustrates the use of Alf tooling integrated into Papyrus through 
an example. 

4 A Simple (but Representative) Example 

To show how graphical/textual model integration can work in UML tooling, it is easi-
est to use an example. We will use an example from the domain of e-commerce, a 
simple model of an order. The first thing to understand is what information needs to 
be kept on an order and how this is related to information on the customer placing the 

                                                             
7  https://eclipse.org/Xtext/documentation/ 
8  https://projects.eclipse.org/projects/modeling.mmt.qvt-oml 
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order. This can be well represented using a UML class diagram, such as the one 
shown in Fig. 2. 

 
Fig. 2. Order example class diagram 

This diagram was entered graphically using Papyrus. It models an order as record-
ing the date it was placed and having a set of line items, each of which specifies the 
quantity of a certain product included in the order. It also shows that an order is 
placed by a single customer, who may have many orders. 

Models such as this are particularly useful in discussions with problem domain 
stakeholders. They are straightforward to understand and a lot of detail can be pre-
sented in a well-laid-out, compact diagram. For most people, this is far easier to un-
derstand than large blocks of text or written descriptions such as the previous para-
graph. 

Of course, there is also behavior associated with the classes shown in the diagram. 
Suppose, for instance, that you would like to add a totalAmount attribute to the 
Order class, along with an addProduct operation that adds a new line item for a 
given product and updates the totalAmount appropriately. To do this, the 
addProduct will use a new getAmount operation on OrderLineItem. 

Rather than doing this by adding elements in multiple steps on the diagram, one 
can often specify them more efficiently by just typing text. We will show next how 
this can be done in Papyrus. 

5 Adding Alf Text 

In the context of Papyrus, the Alf editor is only available when you select a model 
element that is in the scope of fUML (i.e., a Class, a Package, a Signal, an, Enumera-
tion, a Datatype, an Association or an Activity). As an example, if you click on the 
OrderLineItem class either on the diagram (cf. Fig. 2) or in the model explorer, 
the textual specification corresponding to this element is rendered in the editor, as 
illustrated in Fig. 3. 
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Fig. 3. Alf specification of OrderLineItem  

Now you can simply type the new getAmount operation directly into this textual 
representation, as shown in Fig. 4. 

 
Fig. 4. A new operation with its implementation 

As soon as something new is added to the Alf specification, you can compile9 it, in 
order to propagate the changes to the UML model. The compilation feature is only 
available if the model is correct both syntactically and semantically. The validation 
process is triggered each time a modification is made in the specification.  

                                                             
9  The compilation is a user-triggered operation that starts when the user clicks on the “com-

pile” button available below the Alf editor. The compilation consists in taking an Alf speci-
fication and building the corresponding fUML model. 

112



In the current example, the result of the compilation is that a new operation is add-
ed to the class OrderLineItem. After compilation, the textual specification is 
updated, as shown in Fig. 5. 

 
Fig. 5. Class OrderLineItem after compilation 

Notice that the body of the operation getAmount no longer appears in the class 
definition. However, it has not really disappeared. As part of the compilation process, 
a UML activity was added to the model to hold the implementation of the operation. 
In UML terminology, this is known as the method of the operation. Clicking on this 
element in the model shows the textual representation in Fig. 6, which does, indeed, 
have the body of the operation, as originally entered. 

 
Fig. 6. Implementation of the getAmount operation 
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Note also that the compiler has automatically added default constructor and de-
structor operations to the OrderLineItem class, annotated with Create and 
Destroy stereotypes. In particular, you will need to use the OrderLineItem 
constructor to create a new OrderLineItem in the addProduct operation. And 
it would be more useful if the constructor was first updated to take line item prod-
uct and quantity arguments, shown in Fig. 7. 

 
Fig. 7. OrderLineItem constructor implementation 

Now you are ready to add the new attribute and operation to Order. So, click on 
the Order class on the diagram, getting the textual representation shown in Fig. 8. 

 
Fig. 8. The textual specification corresponding to the Order class 

Then add the totalAmount attribute of type Money and the operation 
addProduct, with its implementation, as shown in Fig. 9. Finally, compile the 
result, in order to propagate your changes within the model. 
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Fig. 9. Order class updated with a new attribute and a new operation 

We can now end this example by creating a little test program for our simple mod-
el, entering it as the UML activity shown in Fig. 10. 

 

 
Fig. 10. A test of the example model 

115



Since Alf compiles to fUML, the compiled activity can be executed using Moka, 
the Papyrus model execution framework.10  When interpreted, the model provides the 
expected result: 

total amount = 400 

This section presented a simple executable model combining UML notation and 
Alf. What we have seen is that textual representation introduces an additional view of 
the underlying model, by which the user can actually modify the model. Maintaining 
cohesion between multiple views (such as graphical and textual) and a model is a 
challenging task. The next section briefly discusses the existing support for multiple 
synchronized views, and their usefulness. 

6 Keeping text and model synchronized 

In the context of Papyrus two behaviors are supported in order to synchronize what is 
in the model with what appears in the graphical representation (i.e. the diagrams). 

1. A model element can be partially synchronized with its graphical representation. 
For example if a class “A” containing two properties has a representation in a dia-
gram, perhaps only one of these properties may be shown. If something changes 
about this property, its representation is of course updated. However if something 
else is added to the class, its representation remains the same. 

2. Full synchronization can be maintained between the model and the graphical repre-
sentation. This means that for a model element that appears on a diagram, any in-
formation about its owned elements is shown. Fig. 11 illustrates the full synchroni-
zation between the Order11 class and its view in the diagram. Properties opera-
tions, methods and other elements all appear in the graphical representation.     

                                                             
10  https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution  
11  Note the naming convention used for methods of operations. These are introduced by the 

compilation process. 
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Fig. 11. Full Order class graphical synchronization 

The integration of the Alf tooling allows a user to edit the same model through two 
different views in Papyrus. The main problem here is to ensure that when a modifica-
tion of the model is performed through a specific view, then other views are synchro-
nized according to these changes.  

In the context of the Alf tooling, we take advantage of EMF notifications to deter-
mine which textual representation have to be re-computed when the model changes. 
Say we have a class “B” that inherits from the class “A” and both are located in Pack-
age “SimplePackage”.  If class “A” is renamed to “C”, then this implies the textual 
representation of B has to be computed as well has the one of “SimplePackage” that 
contains both classes. 

There are, of course, cases in which the synchronization cannot be maintained be-
tween the views, and this is mainly related to the feature proposed by the tooling. In 
the context of Alf tooling, the user is allowed to modify the textual specification of a 
model element but is not forced to compile (i.e. to propagate the change to the model) 
right away. Indeed, the user has the ability to keep an incomplete or invalid Alf speci-
fication, which can be completed later on. However, this also introduce the possibility 
that the user may try to change the model from a different view, while ongoing 
changes remain pending for the textual view. This possibility is prevented by the tool-
ing, which asks the user what to do. Typically, the user has the choice to keep or over-
ride his ongoing changes. Tooling relying on the Eclipse compare framework to ena-
ble the user to resolve manually a conflict, as it is proposed for example in Git, is 
expected in future developments.  

The next section identifies current limitations of the Alf tooling.  

7 Tooling limitations 

The current version of the Alf tooling supports the basic features required to specify 
and modify an existing model using Alf. However, there is still a long way to go to 
bring this tooling to a level comparable to other existing professional programming 

117



environments. This section identifies three limitations that need to be addressed in 
future development to increase the level of maturity of our current tooling.    

 
7.1 Auto-completion, cross liking and refactoring 

The Alf editor needs to provide content completion, cross-linking and refactoring 
capabilities, just as expected in other Eclipse-based language editors. This will con-
siderably accelerate the time required to obtain a valid specification. 

7.2 Debugging 

Papyrus provides the ability to execute fUML models, thanks to its model execution 
platform Moka. This also benefits from an integration with the Eclipse debugger, 
which makes it possible to interact with an execution and analyze manipulated values. 
The integration with the debugger does not yet allow the placement of breakpoints 
into Alf specifications and the propagation of debug information to the level of Alf 
source. Alf source-level debugging would make it a lot easier to debug complex be-
havior, which, when mapped to UML activity models, really look like compiled code. 

7.3 Alf specification persistence 

Although Alf specifications can be compiled into equivalent UML, it is usually desir-
able to persist the original Alf text for later retrieval. Indeed, it might not be possible 
to exactly reproduce the original text from the compiled models (e.g. user text format-
ting). Consequently, the text is for the moment stored in the model. The technical and 
standardized solution is to use a comment, stereotyped “TextualRepresentation” (with 
a tagged value “language = ‘Alf’”), attached to the element mapped from Alf. The 
body of the comment contains the Alf code entered by the user. 

The problem with this approach is that the model itself is modified to hold the per-
sisted Alf text. A consequence of this is that, if the user tries to compare (for example 
with EMF Compare) the model with another version of the same model, there will be 
some differences (i.e., the comments containing the Alf text), which are not signifi-
cant. Preliminary user feedback seems to indicate that it might be valuable in future 
versions of the Alf tooling to decouple the persistence of the UML model and the 
persistence of Alf textual specifications.  

8 Conclusion 

The Alf standard is new, and it will take some time for a new generation of tooling 
to be completed for it. But development of this tooling is progressing, with the vision 
of providing all the benefits of familiar IDEs for textual programming languages, 
along with the benefits of synchronized graphical views provided by a UML tool.  

Unlike mainstream programming languages (e.g. Java, C++), Alf has been de-
signed to smoothly integrate with UML, both syntactically and semantically. In this 
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way, both the graphical and textual representations have the same precise, UML, 
model-level semantics.  

In this paper we wanted to demonstrate that UML and Alf could in practice be used 
jointly to specify correct-by-construction and easily refinable system models.  To do 
so, we presented in Section 3 a simple UML model built in Papyrus, which was then 
completed in Section 4 using Alf tooling we developed. The result was a model of an 
order system ready to be tested (i.e. executable). Beside the purely functional aspect 
of the tooling, note the flexibility brought by Alf in the specification of a model. 
Modeling choices can be updated smoothly in the model by a single click.  

Although significant production applications have yet to be developed using the 
latest graphical and textual standards for executable UML modeling, it has already be 
used in significant research activities. Indeed an early prototype version of the Alf 
integration into Papyrus was used to specify the normative test suite for PSCS. And 
there is research [8, 9] into using fUML and Alf as the basis for specifying the seman-
tics of domain-specific modeling languages. 

We have also identified some limitations of the current Alf tooling compared to 
professional programming language environments, or based on user feedback. Re-
moving these limitations will be an important focus in the future development of the 
technology.  
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