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Abstract. We describe a parallel implementation of a difference scheme
for the advection equation with time delay on a hybrid architecture com-
putation system. The difference scheme has the second order in space and
the first order in time and is unconditionally stable. Performance of a
sequential algorithm and several parallel implementations with the MPI
technology in the C++ language has been studied.
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1 Introduction and Formal Statement

First order partial differential equations with time delay, also known as advection
equations, with distributed parameters arise in the modeling of birds migration,
expansion of influence virus and transfer of nuclear particles [1, 2]. Papers which
deal with an advection equation with time delay which is also combined with a
retardation of a state variable have numerous applications in cell dynamics [3].

The qualitative theory of partial functional differential equations (PFDE) is
developed quite well (see, for example, [4] and references therein). Questions of
existence, uniqueness, stability and asymptotic behaviour are usually considered
by authors. At the same time only a few PFDE could be solved in the the explicit
form (analytically), so the elaboration, substantiation and a program realization
of numerical methods for these equations are of hight interest.

Especially effective difference schemes for PFDE of parabolic, hyperbolic and
advection type were elaborated in [6–10]. The main idea in these works is a
separation principle the essence of which is the separation of finite and infinite
dimensional components in the structure of PFDE. To take into account the time
delay effect, interpolation and extrapolation of discrete prehistory is used. This
extrapolation is needed for the realization of implicit methods and allows the
authors to avoid the necessity of solving nonlinear systems. Our approach is close
to [6, 10] and is based on a combination of the stability verification methods for
two-layer difference schemes [11] and the separation principle mentioned above.

A dramatic improvement of supercomputers architecture and their perfor-
mance led to the increased interest in the elaboration of parallel numerical meth-
ods. Below we survey some of approaches. The first class of methods of concern
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are a domain decomposition (DD) methods which are based on a physical de-
composition of a global solution domain. The very first of them is a classical
alternating Schwarz method for the elliptic equation which is sequential in its
nature. In order to obtain parallel analogs of Schwarz alternating method many
new techniques have been introduced, such as additive Schwarz methods, par-
allel multilevel precondition algorithms, parallel weighted Schwarz algorithms,
parallel subspace correction methods and etc., see e.g. [15]. The parallel DD
methods have established themselves as very efficient PDE solution methods
[12] and were extended to the advection–diffusion type equation [16, 17].

A parallel implementation of a method of the semi-Lagrangian type for the
advection equation was considered in [18]. The difference scheme with variable
template is constructed on the base of an integral equality between the neighbor-
ing time levels.The proposed approach allows the authors to avoid the Courant-
Friedrichs-Lewy restriction on the relation between time step and mesh size.

Time domain decomposition algorithm for the parallel-in-time approximation
of solution of advection equation was developed in [19]. It could be interpreted
as a multiple shooting method for evolution problem with a particular choice of
the approximate Jacobian on a coarse grid. Because this method computes the
numerical solution for multiple time steps in parallel, it is categorized as a parallel
across the steps method [20]. This is in contrast to approaches using parallelism
across the method like parallel Runge-Kutta methods, where independent stages
can be computed in parallel or parallel across the system methods like waveform
relaxation.

In this article we present a parallel version of one algorithm which is based
on a difference scheme, first published in [13].

Let τ > 0 and consider the following advection equation with aftereffect

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= f(x, t, u(x, t), ut(x, ·)), (1)

where x ∈ [x0, X] is a state and t ∈ [t0, θ] is time; u(x, t) is an unknown func-
tion; ut(x, ·) = {u(x, t+ ξ), −τ ≤ ξ < 0} is a prehistory-function of the unknown
function to the moment t and a > 0 is a constant. Together with the advection
equation we have the following initial and the boundary conditions

u(x, t) = ϕ(x, t), x ∈ [x0, X], t ∈ [t0 − τ, t0], (2)

u(x0, t) = g(t), t ∈ [t0, θ]. (3)

We adopt the compatibility condition g(t0) = ϕ(x0, t0). Questions of the
existence and uniqueness of a solution to the stated boundary value problem
(1)–(3) were considered in [4] and we assume that the functional f and functions
ϕ and g are such that problem has a unique solution.

We denote by Q = Q[−τ, 0) the set of functions u(ξ) that are piecewise
continuous on [−τ, 0) with a finite number of points of discontinuity of the first
kind and right continuous at the points of discontinuity. We define a norm on
Q by ‖u‖Q = supξ∈[−τ,0) |u(ξ)|. We additionally assume that the functional
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f(x, t, u, v(·)) is given on [0, X]× [t0, θ]×R×Q and is Lipschitz in the last two
arguments:

∃Lf ∈ R ∀x ∈ [x0, X], t ∈ [t0; θ], u1 ∈ R, u2 ∈ R, v1 ∈ Q, v2 ∈ Q :∣∣f(x, t, u1, v1(·))− f(x, t, u2, v2(·))
∣∣ ≤ Lf(|u1 − u2|+ ‖v1(·)− v2(·)‖Q

)
.

2 The difference scheme

We consider an equidistant partition of [x0, X] into parts with step h = (X −
x0)/N and split the segment of variation of the time variable [t0, θ] into parts with
the step ∆. The uniform grid {xi, tj}Mj=0

N
i=0 can be constructed, here xi = x0 +

ih, i = 0, . . . , N, and tj = t0 + j∆, j = 0, . . . ,M. Denote by uij approximations
of the functions u(xi, tj), i = 0, . . . , N, j = 0, . . . ,M, at the nodes. Without loss
of generality and to simplify the narration we assume that the value τ/∆ = m
is a natural number.

Since functional f(xi, tj , u(xi, tj), utj (xi, ·)) may depend on values of the
function u between grid nodes, interpolation may be needed. For every fixed
node (xi, tj) and time delay ξ ∈ [−τ, 0) there are only two possibilities: if
tj+ξ ≤ t0, interpolation is not needed, we use the initial function, u(x(i), tj+ξ) =
ϕ(x(i), tj + ξ), otherwise we use the interpolation as described below.

For every fixed time moment tj , j = 1, . . . ,M, we introduce its discrete
prehitory {

uik
}
j

=
{
uik | max{0, j −m} ≤ k ≤ j

}
.

Definition 1. A mapping I defined on the set of all admissible discrete prehis-
tories and acting by the rule I :

{
uik
}
j
→ vi,j(·) ∈ Q[−min{τ, tj}, 0] is called an

interpolation operator for the discrete history.

Let us give an example of a concrete interpolation operator, which has the
properties required for the numerical method that we are going to construct. For
the discrete prehistory

{
uik
}
j

we define

vi,j(tj + ξ) =
1

∆

(
(tl+1 − tj − ξ)uil + (tj + ξ − tl)uil+1

)
, tl ≤ tj + ξ ≤ tl+1. (4)

We say an interpolation operator has order of error p on the exact solution, if
there exist constants C1 and C2 such that, for all i = 1, . . . , N, j = 1, . . . ,M,
and t ∈ [max{0, tj − τ}, tj ] the following inequality holds:

∃C1 ∈ R,C2 ∈ R ∀ i = 1, . . . , N, j = 1, . . . ,M, t ∈ [max{0, tj − τ}, tj ] :∣∣vi,j(t)− u(xi, t)
∣∣ ≤ C1 max

max{0,j−m}≤l≤j

∣∣uil − u(xi, tl)
∣∣+ C2∆

p.

For example, the operator of interpolation (4) is of the second order.
We consider the following family of difference schemes (parametrized by 0 ≤

s ≤ 1), with j = 0, . . . ,M − 1:
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u1j+1 − u1j
∆

+ a

(
s
−4u0j+1 − 2h/a(f0j+1 − ġj+1) + 4u1j+1

2h
+

+ (1− s)
−4u0j − 2h/a(f0j − ġj) + 4u1j

2h

)
= f1j ,

uij+1 − uij
∆

+ a

(
s
ui−2j+1 − 4ui−1j+1 + 3uij+1

2h
+

+ (1− s)
ui−2j − 4ui−1j + 3uij

2h

)
= f ij , i = 2, . . . , N,

(5)

with the initial and boundary conditions

ui0 = ϕ(xi, t0), i = 0, . . . , N ; vi,0(t) = ϕ(xi, t), t < t0, i = 0, . . . , N,
(6)

u0j = g0(tj), j = 0, . . . ,M. (7)

Here f ij = f
(
xi, tj , u

i
j , v

i,j(·)
)

is the value of the functional f , calculated on an

approximate solution, vi,j(·) is the result of an interpolation, ġj = g′(t0 + j∆).
For constructing a numerical method, we additionally assume that g(t) is a
differentiable function.

Let us explain the way in which we have obtained the scheme. The derivative
∂u/∂t in (1) is approximated by a finite difference over two nodes. For nodes
(i, j), i = 2, . . . , N, j = 0, . . . ,M − 1, the derivative ∂u/∂t is approximated by a
finite difference over three nodes on the right edge. For i = 1 such an approx-
imation requires to calculate u−1j . For i = 1 we apply the approximation over
three nodes with the double node (0, j):

∂u1j
∂x
≈ 1

2h

(
−4u0j − 2h

∂u0j
∂x

+ 4u1j

)
.

Because of (1) we have
∂u0j
∂x

=
1

a

(
f0j −

∂u0j
∂t

)
, and due to (3) we obtain

1

a

(
f0j − ġj

)
.

Theorem 1. Let the exact solution u(x, t) of problem (1) be thrice continuously
differentiable with respect to state variable x, twice continuously differentiable
with respect to time t and the first derivative of the solution with respect to x is
continuously differentiable in t. Then if 2s > 1 method (5) converges with order
h2 + ∆, i. e. there exists a constant C such that ‖u(xi, tj) − uij‖ ≤ C(h2 + ∆)
for all i = 0, . . . , N and j = 0, . . . ,M.
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3 Formulation of parallel algorithm

The method (5) allows one to find the items uij recurrently and could be pro-
grammed in the form of two nested loops with informational dependance on each
other. To find uj+1

i , i ≥ 2, three values from the previous time layer uji−2, u
j
i−1, u

j
i

and two from the current layer uj+1
i−2 , u

j+1
i−1 are required.

For efficient parallel implementation it is necessary to organize the calculation
so that the influence of the informational dependencies were eliminated. We will
use the approach described in [21]. The essence of proposed method is to find a
separable line, that passes through the grid nodes so, that the nodes on a given
line are informationally dependent on the nodes that lie on one side of the line
and only on them. At each step, one calculates in parallel the values at the nodes
which are lying on the separable line.

We share the task of finding the approximate solution in the grid nodes
between processes. Namely, we cut the grid into the K spatial layers. We call
the k-th, k = 1, ..,K, spatial layer the set of nodes of the grid as follow

{(i, j)k |i = (k − 1)N/K + 1, .., kN/K, j = 1, ..,M}.

Let the k-th process calculates a solution in the k-th spatial layer.
The first process has no informational dependencies on other processes. To

find the solution on the (j+1)-th time layer the k-th process should receive form
the (k − 1)-th process two values: uj+1

(k−1)N/K−1 and uj+1
(k−1)N/K ; this constitutes

the informational dependencies. Notice, that values uj(k−1)N/K−1 and uj(k−1)N/K
have already been transferred to k-th process and the value uj(k−1)N/K+1 have

been found.
We call the block Bk,j , k ≥ 2, the set of grid nodes

{(i, j) |i = (k − 1)N/K + 1, .., kN/K, j = k}.

To find the solution in the block Bk,j , k ≥ 2, it is necessary to complete the
calculation in the block Bk−1,j . The blocks, where we search the solution in
parallel, are on the same separable line. In other words we can iterate through
the grid nodes in a direction perpendicular to this line and perform all the
operations on the line at each iteration in parallel. Since the task of finding
the solution in a single block is complex and data transfer between adjacent
processes requires few time, the efficiency of parallelization is high.

Let the K is the number of processes in the pool. In cases of practical
importance K � m, therefore the situation when the first process has finished
its work and the last process has not started yet is excluded. Let us describe
the implementation. In the line 4 the blocking function “receive” is used and
non-blocking function “send” in the line 9.

for (j from 1 to M){
for (k from 1 to min(j,K)){//To perform in the k-th process

if(k>1)

Receive last two dots of Block [k-1,j-k+1];
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else

Use boundary function;

Perform the calculations in the Block [k,j-k+1];

if (k<K)

Send last two dotes of the Block [k,j-k+1]

to (k+1)-th process;

}
}

The idea of the algorithm is depicted in Fig. 1. Here arrows symbolise the
direction in which the approximate solution is sought; little empty rounds repre-
sent data, i.e. approximate solution in two nodes, which (k− 1)-th process send
to k-th one.

Fig. 1. Decomposition of the domain into the blocks

4 Numerical experiments: results and analysis

To verify the parallel implementation of the algorithm in question we used the
test equation

∂u(x, t)

∂t
+
∂u(x, t)

∂x
= cosx cos t− u(x, t− π/2) + ψ(x, t),

with the following initial and the boundary conditions

u(x, t) = sinx cos t, 0 ≤ x ≤ π, π/2 ≤ t ≤ 0,
u(0, t) = 0, 0 ≤ t ≤ 10π.
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Here the function ψ is defined as follow

ψ(x, t) = 10−10 ln

(
sin2

(
arctan

√
x2 + t2

t2 + 10

)
+ cos2

(
arctan

√
x2 + t2

t2 + 10

))

and is identically equal to zero; it was added in the right-hand side of the equation
to increase the computational complexity in each iteration.

This initial-boundary problem has the exact solution u(x, t) = sinx cos t.

The calculations were performed on a cluster of Ural Branch of RAS “Uran”.
The following hardware and software configuration were used: CPU INTEL
XEON E5450, 2×4 cores, 3GHz; Cache memory 2×6 MB Level 2 cache (5400
Sequence); RAM 16 Gb DDR2; OS Linux 2.6.32; language: C++ with Intel
C++ compiler (ICC) v14.0.0; MPI library MVAPICH2 Intel 13.0. We call our
computation system architecture as hybrid, since it has distributed memory with
shared memory on each computing node.

In the previous paragraph we used the term “process” to refer an abstract
unit that performs a calculation; now let us concretize this notion. According to
the principles of the number of processes is equal to the number of computational
nodes.

Let us present the results of computational experiments for the test equation
(see Tab. 1). Recall, that we consider an equidistant partition of [x0, X] and
[t0, θ], the grid consists of N and M dotes with respect to space and time. The
parameter M was constant through the experiments, M = 4000, parameter N
ranges from 500 to 50000 dotes. The number of processes is reported in the
first line and ranges from 1 to 64. Time in seconds is reported in the table
cells. Speedup is calculated for multi processes variants (compared to the single
process variant).

Table 1. Numerical results: time and speedup

Num. of processes 1 2 4 8 16 32 64

N=500 0.16 0.09 0.07 0.03 0.03 0.02 0.05
N=5000 1.68 1.29 0.74 0.47 0.31 0.21 0.21
N=50000 19.79 12.92 7.25 4.22 2.29 1.40 1.38

Speedup 1.5 2.7 4.7 6.8 14.1 14.3

To characterize the quality of the parallel algorithm the two types of scalabil-
ity were estimated. Weak scaling is defined as how the solving time varies with
the number of processors for a fixed problem size per processor. Weak scaling
could be numerically characterized by the function effweak(N) = T (N)/T (N0),
where N0 is a fixed initial number of processors, in our case N0 = 2, and N is a
current number of processors, T (N) is a time of the solution of the task using N
processors. An ideal effweak(N) is identically equal to one and is unreachable
according to Amdahl’s Law.
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Fig. 2. Weak scaling

Fig. 3. Strong scaling
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Strong scaling is defined as how the solving time varies with the number of
processors for a fixed total problem size. Strong scaling could be numerically
characterized by the function effstrong(N) = T (N)/(N0 T (N0)). In the case of
perfect scalability the computation time is inversely proportional to the number
of computing nodes. To estimate the strong scalability the grid of size 50000 ×
5000 was used.

Experimental assessment of function effstrong is shown in Fig. 3 (solid line);
it is extremely close to perfect scaling (dashed line), which is shown for compar-
ison.

5 Conclusion

For the advection equation with time delay the difference scheme originally pro-
posed in [13] was parallelized. The proposed method of parallelization is based
on the geometric partitioning of the computational grid into blocks that have
weak informational dependencies.

The parallel version was implemented for the “Uran” supercomputer and
could be executed on any number of processors; MPI technology was used.
Performed tests proved showed high scaling of the method. We observed the
fourteen-fold decrease in time compared with the sequential version. Numerical
results are consistent with the theory.
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