
Highly Literate Ontologies
Phillip Lord∗ and Jennifer D. Warrender

School of Computing Science, Newcastle University, Newcastle-upon-Tyne, UK

ABSTRACT
There is still a lot of discussion about exactly what ontologies

should represent, but what is generally agreed is that they formalise
and relate to some relatively complex areas of knowledge. While
ontology environments allow rich descriptions of the relationship
between the entities inside the ontology (because this is what an
ontology is), they often do not provide the same rich environment
to describe the knowledge that they represent.

OWL does, for instance, supports annotations which allows an
ontology developer to add comments to many parts of the ontology.
But these comments, do not contain markup, sectioning or any of the
standard facilities authors use when writing documents.

Our solution to this builds on Tawny-OWL, our highly-programmatic
environment for ontology development. This provides a rich
environment, which allows abstraction, automation and extension,
while still being entirely textual. As a result, it is possible to
integrate this form of ontology with similar textual environments for
documentation such as LATEX, or AsciiDoc. We call the result a literate
ontology, in reference to literate programming. The result can be
”tangled” to produce either a document or ontology.

However, manipulating mixed syntax formats is difficult. Generally,
the text editor either supports the literate form or programmatic
(ontology) form best. To address this, we have developed what we
call ”lenticular views” – essentially, the source code can be presented
either in an ontology-centric or a document-centric view. Either form
can be changed, giving the author a powerful and unique environment
for creating literate ontologies. Or alternatively, semantic documents
where the ontology formalises the document. We demonstrate this
with our literate amino-acid ontology which is also a part of the
developing manual for Tawny-OWL.

1 INTRODUCTION
Ontologies have been used extensively to describe many parts of
biology. Ontologies have two key features which make their usage
attractive. First, they provide a mechanism for standardising and
sharing the terms used in descriptions, making comparison easier
and, secondly, they provide a computationally amenable semantics
to these descriptions, making it possible to draw conclusions about
the relationships between descriptions even when they share no
terms in common.

Despite these advantages, the oldest and most common form
of description in biology is free text, or a semi-structured
representation through the use of a standardised fill-in form. Free
text has numerous advantages compared to ontologies: it is richly
expressive, is widely supported by tooling, and while the form of
language used in science (“Bad English” (Wood et al., 2001)) may
not be easy to use, understand or learn, it is widely taught and most
scientists are familiar with it.

∗To whom correspondence should be addressed:
phillip.lord@newcastle.ac.uk

The two forms of description have largely been used
independently. Ontology terms are sometimes used in semi-
structured formats such as a UniProt record, or minimum
information documents. While these use ontologies in some parts
of the document, in general, ontology terms and the free text are
in different parts of the record. In this paper, we show how can we
integrate ontological and textual knowledge in a single authoring
environment and describe how we are applying this to describing
amino acids.

2 DEVELOPING KNOWLEDGE
First, we ask the question, why is it difficult to relate ontological
and textual descriptions. One possible explanation is that the two
forms have very different “development environments”. The main
documentation environment used within science is Word, followed
by LATEX, common in more mathematical environments. More
recently, there has also been interest in various light-weight markup
languages, such as markdown, and their associated tool-chains.

Ontology development environments also come in many different
forms. Early versions of the Gene Ontology, for instance, used
a bespoke text file format and a text editor – an approach rather
similar to the light-weight markup languages of today. This had the
significant advantage of a low-technological barrier to entry. More
modern environments provide a much more graphical interface.
These generally provide a much richer way of interacting with an
ontology.

While these environments add a lot of value, they do not
necessarily integrate well with text. Both Protégé and OBO-Edit
have a class-centric view and are biased toward showing the various
logical entities in the ontology, as opposed to the textual aspects.
Indeed, this bias is shown even at the level of OWL. For example,
annotations on an entity (or rather an axiom) are a set rather than a
list, while ordering is generally considered to be essential for most
documents.

With this divergence of development environments, it seems hard
to understand how we could square the circle of combining text and
ontology development. Next, we describe the amino-acid ontology
and how the novel development methodology we used for this
ontology allows us to achieve this.

3 TAWNY-OWL
Tawny-OWL (Lord, 2013) provides a fully programmatic environment
for development. Simple ontological statements can be written with
a syntax inspired by Manchester OWL notation (Horridge and Patel-
Schneider, 2012); repetitive statements can be built automatically by
writing functions which encapsulate and abstract over the simpler
statements, a process we call “patternisation” (Warrender and Lord,
2013).

In this way, we have managed to combine the advantages of text-
based environments for editing ontologies i.e. the use of a standard

1Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes

P. Lord and J.D. Warrender

First, to explain the domain. Proteins are polymers
made up from amino-acid monomers. They consist of a
central carbon atom, attached to a carboxyl group (the
‘‘acid’’ amino) and amine group (the ‘‘amino’’ group)
a hydrogen and an R group. The R group defines the
different amino acids. The different R groups have
different phyiscal or chemical properties, such as
their degree of hydrophobicity. We call these different
characteristics |RefiningFeatures|.

\begin{tawny}
(defclass AminoAcid)

(defclass RefiningFeature)
(defclass PhysicoChemicalProperty :super RefiningFeature)
\end{tawny}

Fig. 1. The document-centric view

editing environment and integration with version control, while
maintaining (and in some ways surpassing) the power of tools like
Protégé.

Tawny-OWL can be used to generate any ontology, but we
demonstrate it here with the amino-acid ontology: a highly
patternised ontology with over 430 classes generated from one
pattern. We consider next the implications that this has for the ability
to integrate ontological and textual descriptions.

4 LITERATE ONTOLOGY
As Tawny-OWL is based on a full programming language, it
supports a feature which at first seems quite inconsequential:
comments. As with almost every programming language, it is
possible to add free, unstructured text to the same source code that
defines the ontology. While opinions vary on the role of comments
in programmatic code, perhaps the most extreme is that of literate
programming (Knuth, 1984) which suggests that code should be
usable both as a program capable of execution and as a document
capable of reading and that neither view should have primacy.

Literate programming can be difficult, however, partly because
the editing environment offers few facilities for it: fundamentally,
supporting mixed-syntax text in a tool is a difficult task. Our solution
uses a multi-view approach to editing, which allows the author to
see her source code in either a document-centric or an ontology-
centric view. We call this approach lenticular text, named after
lenticular printing which produces images which change depending
on your angle of viewing. This is an entirely novel solution to literate
programming as it effectively performs the tangling operation for
the author as they type. A representation of the two views are shown
in Figures 2 and 4. The two views, it should be noted, contain the
same text but are syntactically different, such that the document-
centric view is entirely valid LATEX code, while the ontology-centric
view is valid Tawny-OWL code.

We have now implemented lenticular text for the editor, Emacs1,
in a package called “lentic”2. A key feature of this implementation
is that both views exist simultaneously in Emacs, and provide
all the features of the appropriate development environment; for

1 https://www.gnu.org/software/emacs/
2 https://github.com/phillord/lentic

;; First, to explain the domain. Proteins are polymers
;; made up from amino-acid monomers. They consist of a
;; central carbon atom, attached to a carboxyl group (the
;; ‘‘acid’’ amino) and amine group (the ‘‘amino’’ group)
;; a hydrogen and an R group. The R group defines the
;; different amino acids. The different R groups have
;; different phyiscal or chemical properties, such as
;; their degree of hydrophobicity. We call these different
;; characteristics |RefiningFeatures|.

;; \begin{tawny}
(defclass AminoAcid)

(defclass RefiningFeature)
(defclass PhysicoChemicalProperty :super RefiningFeature)
;; \end{tawny}

Fig. 2. The ontology-centric view

example, “tab-completion” works in both the document-centric
view (completing LATEX macros) and in the ontology-centric view
(completing ontology identifiers). We can launch a compilation
of the document-centric view (producing a PDF), or evaluate our
ontology, perhaps reasoning over it, in the code-centric view.
Therefore, we have achieved a key aim of literate programming:
neither view holds primacy and the author can edit either.

5 DISCUSSION
In this paper, we have described our methodology for integration of
text and ontological statements at authoring time, using lenticular
text to enable literate ontology development. Indeed, we have fully
documented the whole of the amino-acid ontology into literate
form3.

The combination of Tawny-OWL and lenticular text is an
extremely rich environment. We are aware, however, that it is a
specialist environment. To make full use of Tawny-OWL, the author
needs to use a Clojure based-development environment, document
authoring in LATEX, and the lentic package which is Emacs-based.
In reality, though, the tools are not tightly coupled: we have
alternatives beyond LATEX, Emacs, or even Tawny-OWL. At the
same time, one output form of a literate ontology is a readable PDF
document, something far more familiar to biologists or medics than
Protégé or any ontology development environment.

ACKNOWLEDGEMENTS
This work was supported by Newcastle University.

REFERENCES
Horridge, M. and Patel-Schneider, P. F. (2012). Owl 2 web ontology language

manchester syntax (second edition). Technical report.
Knuth, D. E. (1984). Literate programming. The Computer Journal, 27, 97–111.
Lord, P. (2013). The Semantic Web takes Wing: Programming Ontologies with Tawny-

OWL. OWLED 2013.
Warrender, J. D. and Lord, P. (2013). A pattern-driven approach to biomedical ontology

engineering. SWAT4LS 2013.
Wood, A., Flowerdew, J., and Peacock, M. (2001). International scientific english: The

language of research scientists around the world. Research Perspectives on English
for Academic Purposes, pages 71–83.

3 https://github.com/phillord/tawny-tutorial

2 Copyright c© 2015 for this paper by its authors. Copying permitted for private and academic purposes

