
Towards Modeling Natural Language Inferences with Part-Whole Relations
using Formal Ontology and Lexical Semantics

Ayako Nakamura
Ochanomizu University

2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

Koji Mineshima
Ochanomizu University

CREST, Japan Science and Technology Agency

Daisuke Bekki
Ochanomizu University

CREST, Japan Science and Technology Agency

Abstract

In this paper, we present a framework of natural language se-
mantics combined with formal ontology to deal with lexical
and world knowledge. We build on a framework of Depen-
dent Type Semantics (DTS), a framework of natural language
semantics based on dependent type theory. We show how to
handle natural language inferences with part-whole relations,
in particular, bridging inferences and inferences with the so-
called total and partial predicates, in this framework.

Introduction
Entailment relations are of central importance in the study
of formal semantics for natural languages. Generally speak-
ing, the task of determining whether one sentence intuitively
entails another sentence requires vast amounts of lexical and
world knowledge. Over the past several decades, however,
formal semanticists have concentrated on a relatively small
set of entailment relations that arise from the compositional
structure of a sentence, and in doing so, have abstracted
away from how logical inferences interact with a rich body
of lexical and world knowledge.

Meanwhile, since the emergence of statistical parsers
based on sophisticated syntactic theories (Clark and Cur-
ran 2007), there has been developed a wide-coverage se-
mantic parser that translates sentences into logical formu-
las and recognizes entailments using theorem proving (Bos
2008). Then it has been of increasing importance to com-
bine well-developed methods of formal semantics with a
rich body of lexical and world knowledge for natural lan-
guage inferences. For that purpose, large lexical resources
such as WordNet (Fellbaum 1998) have been widely used,
and there have been attempts to improve the quality of such
resources using the concepts of formal ontology (Gangemi
et al. 2003). At present, however, there are few attempts to
combine such an ontology with the state-of-the-art formal
semantics; moreover, there is little discussion on what kind
of knowledge is needed to represent a variety of inferences
in natural languages from a linguistic point of view.

In this paper, we propose a framework of natural language
semantics combined with formal ontology to deal with lex-
ical and world knowledge. We build on a framework of De-

Copyright c⃝ 2015 for this paper by its authors. Copying permitted
for private and academic purposes.

pendent Type Semantics (DTS), a framework of natural lan-
guage semantics based on dependent type theory (Martin-
Löf 1984). A special attention will be paid to the inferences
that are sensitive to the part-whole relations among struc-
tured entities, in particular, bridging inferences and infer-
ences with total and partial predicates.

Formal semantics has been developed as sentence seman-
tics and then further extended to discourse semantics in
1980’s. However, the attempt to combine formal semantics
with lexical semantics is still underdeveloped. The present
paper also aims to contribute to filling this gap, by means of
enriching type-theoretical semantics of DTS with a mecha-
nism to handle inferences based on lexical knowledge.

Textual entailment and formal ontology
To recognize an entailment relation between sentences re-
quires one to grasp a piece of world knowledge that is not
explicitly delivered in given premises. To formally capture
the relevant knowledge, we focus on two types of semantic
links between concepts: is-a links and part-of links.

The so-called monotonicity inference (Icard and Moss
2014) is a typical instance of inferences that require knowl-
edge expressed by is-a links. For example, to derive an in-
ference A Eurostar runs ⇒ A train runs, we need to rely on
the knowledge that a Eurostar is a train.

Part-of links are used to describe parthood relations be-
tween concepts. An important class of inferences that de-
pend on part-of links is bridging inference (Clark 1975):

(1) John got on a Eurostar and wanted to eat dinner. But
the buffet car was not open.

To establish an anaphoric relation between the underlined
noun phrases, one needs to use the knowledge that a buffet
car is part of a Eurostar. What plays a crucial role in de-
riving such a bridging inference is role concept (Mizoguchi
2004). In contrast to basic concepts such as train and hu-
man, concepts like buffet car, brake and passenger repre-
sent a role in the context determined by the concept train. In
general, a bridging inference is triggered by the expression
denoting a role concept in a semantic representation; then
the antecedent of the anaphora is identified with the concept
that provides a context for the role concept. We will provide
a formal representation of bridging inferences below.

To derive entailment relations and resolve anaphoric de-
pendencies, one needs to give a formal description of world
knowledge and then combine it with semantic representa-
tions (SRs) for the premises and conclusion. In this paper,
we use a framework of DTS for building semantic represen-
tations. The entire system of building semantic representa-
tions and deriving entailment relations is pictured in Fig. 1.

Syntactic tree

He runs
NP S\NP

S

CCG
parserText

Semantic
composition

underspecified SR

λc.(run(π1(@ic :

[
x:Entity
male(x)

]
)))

Anaphora
resolution

The complete SR in DTS

run(john)

Inference
Prover

Yes (valid)

No (invalid)

Axioms of DTS
Ontology

World knowledge
Lexical knowledge

conversion

Figure 1: The entire inference system based on DTS

We use Combinatory Categorial Grammar (CCG) as a
syntactic framework (Steedman 2000; Bekki 2010). Sen-
tences that serve as inputs to the system are mapped to se-
mantic representations in DTS via syntactic processing and
semantic composition in CCG. A relevant piece of world
knowledge and lexical knowledge is converted into axioms
of DTS, and together with the outputs of semantic composi-
tion, they are used to derive the inferences in question. We
will briefly introduce the framework of CCG and DTS.

Combinatory Categorial Grammar (CCG)

CCG is based on the idea of surface compositionality, i.e.,
the idea of providing a compositional derivation of semantic
representations based on surface structures of sentences.

There are two kind of syntactic categories, basic cate-
gories like S, N and NP and complex categories of the
forms X/Y and X\Y . Complex categories of the form X/Y
expect their argument Y to their right, while those of the
form X\Y expect Y to their left. Categories are combined
by an application of combinatory rules. Each rule serves as
a meaning composition rule, specifying how to combine the
meanings (semantic representations) of expressions into a
larger unit. In Fig. 2, the combinatory rule (>) on the left
means that an expression having a category X/Y and a
meaning f , combined with an expression having a category
Y and a meaning a, yields an expression having a category
X and a meaning fa. Each meaning is represented as a λ-
term. By virtue of this clear connection between syntax and
semantics, CCG is particularly suitable for implementing
compositional semantics.

X/Y : f Y : a

X : fa
>

Y : a X\Y : f

X : fa
<

Figure 2: Combinatory rules in CCG. Forward (>) and back-
ward (<) function application rules.

Dependent Type Semantics (DTS)
DTS (Bekki 2014) is a computational framework of natural
language semantics based on dependent type theory. DTS
gives a semantic representation for natural language sen-
tences using Π-types and Σ-types in dependent type the-
ory. Π-types correspond to universal quantifiers, while Σ-
types correspond to existential quantifiers. An object of type
(Πx : A)B(x) is a function f such that for any object a
of type A, fa has type B(a). Implication A → B is a de-
generate form of Π-type: when x does not occur free in B,
(Πx : A)B(x) is written as A → B.

An object of type (Σx : A)B(x) is a pair (a, b) of an
object a of type A and an object b of type B(a). Conjunction
A∧B is a degenerate form of Σ-type: when x does not occur
free in B, (Σx : A)B(x) is written as A ∧ B. Projection
function π1 and π2 are defined for objects of Σ-types, with
the computation rules: π1(a, b) = a and π2(a, b) = b. See,
e.g., Martin-Löf (1984) and Ranta (1994) for more details on
Π-types and Σ-types.

In DTS, Π-types and Σ-types are written as follows:
Π-type Σ-type

Standard notation (Πx : A)B(x) (Σx : A)B(x)

DTS notation (x : A) → B(x)

[
x:A
B(x)

]
if x ̸∈ fv(B) A → B

[
A
B

]
Here fv(B) means the set of free variables occurring in B.
DTS uses the following abbreviation for Σ-types.[

x : A
B
C

]
≡def

 x:A[
B
C

]
Fig.3 shows introduction and elimination rules for Π-types
and Σ-types.

Dependent type theory has been used as an alternative to
dynamic semantics (Ranta 1994). To handle anaphoric rela-
tions in a proper way, we need a system that can formally
represent a dynamic binding relation as exemplified in (2a).
It is known that the standard first-order logic (FOL) is not
suitable for this purpose (Groenendijk and Stokhof 1991).
That is, if we analyze a pronoun as a variable and conjoin
the two sentences by means of conjunction, then the second
variable x remains unbound as indicated in (2b).

(2) a. Someone entered. He smiled.
b. (∃xEntered (x)) ∧ Smiled (x)

c. (Σu : (Σx : Entity)Entered (x))Smiled (π1u)

By contrast, using Σ-types we can provide a semantic rep-
resentation as shown in (2c). Here, the first sentence cor-
responds to the expression (Σx : Entity)Entered(x); by

(x : A) → B : type

x : A....
M : B

λx.M : (x : A) → B
(ΠI)

M : (x : A) → B N : A

MN : B[N/x]
(ΠE)

M :

[
x : A
B

]
π1(M) : A

(ΣE)

M :

[
x : A
B

]
π2(M) : B[π1(M)/x]

(ΣE)

Figure 3: Introduction (I) and Elimination (E) rule of Π-type and Σ-type in DTS

picking up a proof term of this type (= proposition) in
terms of π1u we can properly capture the anaphoric rela-
tion between the antecedent quantifier and the pronoun. We
can also capture the accessibility constraints on anaphora
(Karttunen 1969) in terms of inference rules for Σ-types
and Π-types without any further stipulation. For details, see
Bekki (2014).

A characteristic of DTS is that it is enriched with under-
specified terms to give a fully compositional analysis of in-
ferences involving anaphora. In the next section, we will ap-
ply this framework to the analysis of bridging inferences.

Converting world knowledge into DTS formula
We will explain by examples how to convert world knowl-
edge into DTS formulas. Concepts such as train and wheel in
ontology correspond to 1-place predicates. The part-whole
relation, “x is part of y”, corresponds to the 2-place predi-
cate x ≼ y, where ≼ is a partial order. Is-a links and part-of
links are converted into DTS axioms in the following way.
Here Entity represents the type of entities, and → is right-
associative. We use the graphical notations for the semantic
links (Mizoguchi and Kozaki 2009).
1. is-a link

A Eurostar is a train. Eurostar train
is-a

DTS axiom (x : Entity) → Eurostar(x) → Train(x)

2. part-of link

A wheel is part of a train. train 　　
wheelp/o

DTS axiom (x : Entity) →Train(x) →

[
y:Entity
Wheel(y)
y ≼ x

]
A part-of link has an axiom that derives the existence of the
parts from the whole. It is known that FOL can be embed-
ded into dependent type theory (Martin-Löf 1984), hence an
entire family of description logic axioms (Baader 2003) that
can be translated into FOL can also be converted to axioms
in dependent type theory.

Bridging inferences
Bridging inferences are special in that the antecedent is in-
ferred given the information explicitly provided in a previ-
ous discourse and some relevant world knowledge (Krah-
mer and Piwek 1999). Due to this inferential character, it is
not straightforward to handle bridging inferences in standard
dynamic theories of anaphora such as Discourse Represen-
tation Theory (van der Sandt 1992; Kamp and Reyle 1993;
Geurts 1999).

In DTS, the process of searching the antecedent of an
anaphoric pronoun, including the case of bridging infer-
ences, is formulated as a process of proof search, so that
it can treat anaphora resolution and inferences with world
knowledge in a unified way. DTS is augmented with an op-
erator @ to represent anaphoric elements.

As an illustration, consider the discourse in (1) simplified
as follows:

(3) a. John got on a Eurostar.
b. But the buffet car was not open.

(3a) and (3b) are translated as shown in Fig. 4. Lexical
entries and CCG-derivations for these sentences are pro-
vided in Appendix. In Fig. 4, the two semantic representa-
tions (SRs) are conjoined using dynamic conjunction M ;N ,
which is defined as follows:

M ;N ≡def λc.

[
u:Mc
N(c, u)

]
Here c is a proof term that encodes the information provided
by the previous discourse; then, the pair (c, u), where u is the
proof term for the SR of the first sentence, is passed to the
SR of the second sentence. This context-passing mechanism
allows us to handle dynamic binding. The bridging inference
is triggered by the expression standing for the role concept
buffet car, which is represented in terms of an @-operator. In
the conjoined SR in Fig. 4, we have the following formula:

(4) ¬Open(π1(@1(c, v) :

[
y:Entity
BuffetCar(y)
y ≼ @2(c, v) : Entity

]
))

A term of the form @ic : Λ is called type annotation, where
Λ specifies the type of the term @ic. The underspecified term
@i is a function that takes a local context c as argument.
In the case of (4), the term @2(c, v) is annotated with the
type Entity and the term @1(c, v) with the type correspond-
ing to the proposition “there is a buffet car which is part of
@2(c, v)” represented as a Σ-type.

To begin with, we resolve the embedded @-term, that is,
@2. The underspecified term @2 takes a local context (c, v)
as argument and returns an entity. The type of the @-operator
can be specified in terms of type inferences; for instance, the
type of @2 can be specified in the following way:

(5) @2 :

γ u:

[
x:Entity
Eurostar(x)

]
GetOn(j, π1u)

 → Entity

Here γ is the type of the previous context c. The process
of resolving anaphora is a process to construct a proof term

λc.

 u:

[
x:Entity
Eurostar(x)

]
GetOn(j, π1u)

︸ ︷︷ ︸
The SR of the sentence (3a)

; λc.¬Open(π1(@1c :

[
y:Entity
BuffetCar(y)
y ≼ @2c : Entity

]
))︸ ︷︷ ︸

The SR of the sentence (3b)

= λc.

v:

 u:

[
x:Entity
Eurostar(x)

]
GetOn(j, π1u)

¬Open(π1(@1(c, v) :

[
y:Entity
BuffetCar(y)
y ≼ @2(c, v) : Entity

]
))

Figure 4: The semantic representations of (3) in DTS

having this type and then replace the @-term by it. In this
case, λc′.π1(π1(π2c

′)) gives a suitable term having the type
in (5).

The @1 is a term which requires, given the context (c, v),
an object x of type Entity and a proof that x is a buffet car
that is part of the entity given by the @2(c, v). The intended
anaphoric relation can be obtained by picking out the first
element by means of the projection π1. The type of the @1

can be specified in a similar way to (5).
The knowledge required for the present example is given

by the part-of relation “Eurostar has a buffet car”, which is
translated into the DTS formula (with a proof term w):

w : (x : Entity) → Eurostar(x) →

 y:Entity
BuffetCar(y)
y ≼ x

Using this knowledge, we can construct a proof term in
question and substitute it for the @1-term. Then we can ob-
tain the following semantic representation for the whole dis-
course in (3).

(6) λc.

 v:

 u:

[
x:Entity
Eurostar(x)

]
GetOn(j, π1u)

¬Open(π1(w(π1(π1v))(π2(π1v))))

Inferences with total and partial predicates

In this section, we focus on adjectival predicates as an in-
stance of predicate that requires the interaction between lex-
ical knowledge and world knowledge. A pair of antonyms
like dirty and clean is known to enable inferences depend-
ing on part-whole relations (Yoon 1996).

(7) a. Are the toys dirty?
b. Are the toys clean?

If some of the toys are dirty, the answer to the question in
(7a) should be “yes”. In the case of (7b), by contrast, un-
less all of the toys are clean, the answer should be “no”. We
call predicates like dirty “partial predicates”, and predicates
like clean “total predicate”. Fig. 5 shows typical examples
of total predicates and the corresponding partial predicates.
For example, as for the pair of open and closed, we can judge
that a door is open when it is slightly open, while we usually
judge that a door is closed only when it is completely closed.

There is a test which can be applied to distinguish be-
tween total and partial predicates (Rotstein and Winter 2004;
Kennedy and McNally 2005). In normal contexts, it is odd to
combine a partial predicate with a modifier such as almost,
while it is perfectly fine with a total predicate.

partial predicate total predicate
dangerous safe
dirty clean
open closed
wet dry
sick healthy
incomplete complete
fail pass

Figure 5: Examples of total and partial predicates

(8) a. It is almost clean/safe. total predicate
b. ?It is almost dirty/dangerous. partial predicate

By contrast, a modifier like slightly can naturally co-occur
with partial predicates, while it requires a special context to
co-occur with total predicates.

(9) a. ?It is slightly clean/safe. total predicate
b. It is slightly dirty/dangerous. partial predicate

Another characteristic properly of total and partial pred-
icates is concerned with entailment patterns: for a pair of
antonyms of total and partial predicates, not only the asser-
tion (P) of one form entails the negation (¬N) of the other,
but also the negation (¬N) of one form entails the assertion
(P) of the other (Kennedy and McNally 2005).

(10) a. clean ⇒ not dirty P ⇒ ¬N
b. dirty ⇒ not clean P ⇒ ¬N

(11) a. not clean ⇒ dirty ¬P ⇒ N

b. not dirty ⇒ clean ¬P ⇒ N

In the case of standard degree adjectives such as small, the
assertion (P) of one form entails the negation (¬N) of the
other, but the converse does not hold; thus, not small does
not entail large and not large does not entail small. For the
proper treatment of inferences with lexical knowledge, it is
important to specify such differences in entailment patterns
for antonyms.

The lexical knowledge concerning partial and total predi-
cates is conversed into DTS axioms as follows. Here E is an
abbreviation for Entity.

total predicate
(x : E) → (y : E) → clean(x) → y ≼ x → clean(y)

partial predicate
(x : E) → (y : E) → dirty(x) → x ≼ y → dirty(y)

A total predicate holds of a part if it holds of its whole; by
contrast, a partial predicate holds of the whole if it holds

q :

[
window(x)
x ≼ a

] (1)

π2q : x ≼ a
(ΣE)

Premise

p :

[
train(a)
clean(a)

]
π2p : clean(a)

(ΣE)
x : E

(2)
a : E

Axiom for the total predicate “clean”
f : (x : E) → (y : E) → clean(a) → x ≼ a → clean(x)

fa : (y : E) → clean(a) → y ≼ a → clean(y)
(ΠE)

fax : clean(a) → x ≼ a → clean(x)
(ΠE)

fax(π2p) : x ≼ a → clean(x)
(ΠE)

fax(π2p)(π2q) : clean(x)
(ΠE)

λx.fax(π2p)(π2q) :

[
window(x)
x ≼ a

]
→ clean(x)

(ΠI), (1)

λqλx.fax(π2p)(π2q) : (x : E) →
[
window(x)
x ≼ a

]
→ clean(x)

(ΠI), (2)

Figure 6: A derivation of the inference in (12). We omit derivation of type condition with Π type.

of its part. The entailment patterns of antonym pairs can be
converted in a similar way; we omit the details here.

As an illustration of how an inference is derived using lex-
ical and world knowledge, consider the following example:

(12) Premise : The train is clean.
Conclusion : The windows are clean.

Fig.6 shows a derivation of this inference. Here, the sub-
ject train in the premise is represented by the constant a of
type E, thus we assume a : E in the derivation. The subject
the windows in the conclusion has to be interpreted as the
train’s windows via a bridging inference. For simplicity, we
assume a semantic representation after resolving the bridg-
ing for the conclusion in (12). The axiom for total predicates
is available for the predicate clean: we use the term f for the
proof term of this axiom.

Predicates functioning and broken are antonyms that can
be taken as total and partial predicates, respectively; given
that a brake is part of a train, the following inferences are
naturally taken to be valid, while the opposite directions are
not.

The train is functioning ⇒ The brake is functioning
The brake is broken ⇒ The train is broken

However, the same inference does not hold for the following
pair of examples, even if a window is part of a train.

The train is functioning ̸⇒ The window is functioning
The window is broken ̸⇒ The train is broken

This suggests that the proper treatment of inferences with
predicates functioning and broken will involve some addi-
tional complexity. A detailed investigation of this issue is
left for another occasion.

Conclusion
In this paper, we have presented a framework combining
DTS with formal ontology to handle inferences involving
knowledge of part-whole relations. We have showed how
to formalize bridging inferences and inferences with partial
and total predicates, both being sensitive to part-whole rela-
tions among structured objects.

The inference component in our framework can be imple-
mented using a modern proof assistant based on dependent

Expression Syntactic category : Semantic representation
John NP : j
got on V P\NP : (λyxc)GetOn(x, y)

a V P\(V P/NP)/N : (λnpxc)

 u :

[
y : Entity
nyc

]
p(π1u)xc

Eurostar N : (λxc)Eurostar(x)

the (S/V P)/N : (λnpc)(pπ1(@ic) :

[
x : Entity
nxc

]
)

buffet car N : (λxc)
[
BuffetCar(x)
x ≼ @ic : Entity

]
was V P/V P : (λpxc)(pxc)
not V P/V P : (λpxc)(¬pxc)
open V P : (λxc)Open(x)

Figure 7: Lexical entries for the example (3) in DTS

type theory such as Coq, which has been applied to the for-
malization of natural language inferences (Chatzikyriakidis
and Luo 2014). All the forms of proofs discussed in this pa-
per can be verified and automated using a relatively sim-
ple combination of tactics in Coq. Further research on proof
automation as well as exploring other forms of lexical and
world knowledge such as described by attribute-of relations
is left for future work.

Acknowledgements
We thank the three anonymous reviewers for helpful com-
ments and suggestions. We also thank Riichiro Mizoguchi
and Masaharu Yoshioka for useful discussions. This work
was supported by MEXT/JSPS KAKENHI Grant Number
#15K00301 and #26770009.

Appendix
Fig. 7 provides lexical entires for the example in (3). Here
V P is an abbreviation of the syntactic category S\NP in
CCG. Compositional derivations of (3a) and (3b) are given
in Fig. 8 and Fig. 9, respectively.

References
Baader, F. 2003. The Description Logic Handbook: The-
ory, Implementation, and Applications. Cambridge univer-
sity press.

John
NP : j

got on

(S\NP)/NP : (λyxc)GetOn(x, y)

a

(S\NP)\((S\NP)/NP)/N : (λnpxc)

 u :

[
y : Entity

nyc

]
p(π1u)xc

 Eurostar
N : (λxc)Eurostar(x)

(S\NP)\((S\NP)/NP) : (λpxc)

 u :

[
y : Entity

Eurostar(y)

]
p(π1u)xc

>

S\NP : (λxc)

 u :

[
y : Entity

Eurostar(y)

]
GetOn(x, π1u)

<

S : λc.

 u :

[
y : Entity

Eurostar(y)

]
GetOn(j, π1u)

<

Figure 8: A compositional derivation of the SR of (3a)
The

(S/(S\NP))/N

: (λnpc)(pπ1(@1c)c :

[
x : Entity

nxc

]
)

buffet car

N : (λxc)

[
BuffetCar(x)

x ≼ @2c : Entity

]

S/(S\NP)

: (λpc)(pπ1(@1c)c :

 x : Entity

BuffetCar(x)

x ≼ @2c : Entity

)

>

was

(S\NP)/(S\NP)

: (λpxc)(pxc)

not

(S\NP)/(S\NP)

: (λpxc)¬pxc

open

S\NP

: (λxc)Open(x)

S\NP

: (λxc)¬Open(x)

>

S\NP : (λxc)¬Open(x)
>

S : λc.¬Open(π1(@1c) :

 x : Entity

BuffetCar(x)

x ≼ @2c : Entity

)

>

Figure 9: A compositional derivation of the SR of (3b)

Bekki, D. 2010. A Formal Theory of Japanese Grammar:
The Conjugation System, Syntactic Structures, and Semantic
Composition. Kuroshio.
Bekki, D. 2014. Representing anaphora with dependent
types. In LACL 2014, volume 8535 of Lecture Notes in Com-
puter Science. Springer. 14–29.
Bos, J. 2008. Wide-coverage semantic analysis with Boxer.
In Proceedings of the 2008 Conference on Semantics in Text
Processing, 277–286.
Chatzikyriakidis, S., and Luo, Z. 2014. Natural language in-
ference in Coq. Journal of Logic, Language and Information
23(4):441–480.
Clark, S., and Curran, J. R. 2007. Wide-coverage efficient
statistical parsing with CCG and log-linear models. Compu-
tational Linguistics 33(4):493–552.
Clark, H. H. 1975. Bridging. In Theoretical issues in natural
language processing, 169–174.
Fellbaum, C. 1998. WordNet: An Electronic Lexical
Database. MIT Press.
Gangemi, A.; Guarino, N.; Masolo, C.; and Oltramari, A.
2003. Sweetening WordNet with DOLCE. AI magazine
24(3):13.
Geurts, B. 1999. Presuppositions and Pronouns. Elsevier.
Groenendijk, J., and Stokhof, M. 1991. Dynamic predicate
logic. Linguistics and Philosophy 14(1):39–100.
Icard, T., and Moss, L. 2014. Recent progress in monotonic-
ity. Linguistic Issues in Language Technology 9.

Kamp, H., and Reyle, U. 1993. From Discourse to Logic.
Reidel.
Karttunen, L. 1969. Discourse referents. In Proceedings of
the 1969 conference on Computational linguistics, 1–38.
Kennedy, C., and McNally, L. 2005. Scale structure, de-
gree modification, and the semantics of gradable predicates.
Language 81(2):345–381.
Krahmer, E., and Piwek, P. 1999. Presupposition projection
as proof construction. In Bunt, H., and Muskens, R., eds.,
Computing Meaning, volume 1. Kluwer. 281–300.
Martin-Löf, P. 1984. Intuitionistic Type Theory. Bibliopolis.
Mizoguchi, R., and Kozaki, K. 2009. Ontology engineering
environments. In Staab, S., and Studer, R., eds., Handbook
on Ontologies. Springer Berlin Heidelberg. 315–336.
Mizoguchi, R. 2004. Part 3: Advanced course of ontological
engineering. New Generation Computing 22(2):193–220.
Ranta, A. 1994. Type-Theoretical Grammar. Oxford Uni-
versity Press.
Rotstein, C., and Winter, Y. 2004. Total adjectives vs. partial
adjectives: Scale structure and higher-order modifiers. Nat-
ural Language Semantics 12(3):259–288.
Steedman, M. 2000. The Syntactic Process. MIT Press.
van der Sandt, R. A. 1992. Presupposition projection as
anaphora resolution. Journal of Semantics 9:333–377.
Yoon, Y. 1996. Total and partial predicates and the weak
and strong interpretations. Natural Language Semantics
4(3):217–236.

