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Abstract

This paper investigates the definition of belief revision
operators that correspond to the inconsistency tolerant
semantics in the Ontology Based Data Access (OBDA)
setting. By doing this, we aim at providing a more general
characterisation, as well as the construction, of the above
mentioned semantics. In fact, the main result of this paper is
the idea of using kernel consolidation in Datalog+ to achieve
a new semantic for inconsistent tolerant ontology query
answering.
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1 Introduction
We position ourselves in the Ontology Based Data Access
(OBDA) setting where a query is being asked over a set of
knowledge bases defined over a common ontology. When
the union of knowledge bases along with the ontology is in-
consistent, several semantics have been defined (Bienvenu
2012; Lembo et al. 2010) which are tolerant to inconsis-
tency. They all rely on computing repairs, i.e. maximal
(in terms of set inclusion) subsets of the knowledge bases.
Several inconsistency tolerant semantics (such as Intersec-
tion of All Repairs: IAR, All Repairs: AR, Intersection of
Closed Repairs: ICR) have been studied (Bienvenu 2012;
Lembo et al. 2010), from a productivity point of view and
a complexity point of view.

In this paper we take a new approach and aim to de-
fine new characterisations of two such semantics IAR and
ICR which are specially interesting because these give us a
unique result and because of their data complexity. We argue
that such characterisation can provide an alternative way of
comparing the semantics and can provide new insights into
their properties. Furthermore, such characterisation can be
used when proposing a generalisation of inconsistency tol-
erant semantics.

In order to provide the new characterisation we define be-
lief revision operators that correspond to IAR and ICR based
on kernel consolidation. This characterization will be more
general than the one proposed in (Croitoru and Rodriguez
2014). Please note that while a lot of work has been done in
belief revision and OBDA, none of the approaches deal with

the axiomatic characterisations of the inconsistency tolerant
semantics. The paper is structured as follows: Section 2 in-
troduces the rule based OBDA language used in the paper
and three semantics for inconsistent tolerant query answer-
ing in this setting. In Section 3 we introduce the concepts of
belief revision adapted to the OBDA context and we repro-
duce results from (Croitoru and Rodriguez 2014). In Sec-
tion 4, we take an alternative point of view and consider a
more general characterisation of inconsistency tolerant se-
mantics using kernel consolidation. In addition, we provide
a new axiomatic characterisation of the inconsistency tol-
erant semantics. Finally, Section 5 concludes the paper and
comments on future work.

2 Rule Based Knowledge Representation
There are two major approaches in the literature used to
represent an ontology for the OBDA problem: Description
Logics (such as EL (Baader, Brandt, and Lutz 2005) and
DL-Lite (Calvanese et al. 2007) families) and rule based
languages. The most notable rule based language is the
Datalog+ (Calı̀, Gottlob, and Lukasiewicz 2009) language, a
generalization of Datalog that allows for existentially quan-
tified variables in the head of the rules. Despite Datalog+ un-
decidability when answering conjunctive queries, there exist
decidable fragments of Datalog+ that are studied in the lit-
erature (Baget et al. 2011). These fragments generalize the
above mentioned Description Logics families.

In this paper we represent the ontology via rules using the
Datalog+ language. We consider a (potentially inconsistent)
knowledge base composed of a set F of facts correspond-
ing to existentially closed conjunctions of atoms1, which
can contain n-ary predicates; a set of negative constraints
N which represent the negation of a fact and an ontology
composed of a set of rules R that represent general implicit
knowledge that can introduce new variables in their head
(conclusion).

A rule is applicable to set of facts F if and only if the
set entails the hypothesis of the rule. If rule R is appli-

1For technical reasons we consider F as a set of atoms and
not as a conjunction of atoms. While the two are equivalent when
dealing with consistent knowledge bases, this is no longer the case
when dealing with inconsistent knowledge bases. This work con-
vention is very important in the remaining parts of the paper.



cable to the set F , the application of R on F produces
a new set of facts obtained from the initial set with addi-
tional information from the rule conclusion. We then say
that the new set is an immediate derivation of F by R de-
noted by R(F ). Let F be a set of facts and let R be a set
of rules. A set Fn is called an R-derivation of F if there
is a sequence of sets (derivation sequence) (F0, F1, . . . , Fn)
such that: (i) F0 ⊆ F , (ii) F0 is R-consistent, (iii) for ev-
ery i ∈ {1, . . . , n − 1}, it holds that Fi is an immediate
derivation of Fi−1. Given a set {F0, . . . , Fk} and a set of
rules R, the closure of {F0, . . . , Fk} with respect to R,
denoted ClR({F0, . . . , Fk}), is defined as the smallest set
(with respect to ⊆) which contains {F0, . . . , Fk}, and is
closed for R-derivation (that is, for every R-derivation Fn
of {F0, . . . , Fk}, we have Fn ⊆ ClR({F0, . . . , Fk})). Fi-
nally, we say that a set F and a set of rules R entail a fact
G (and we write F ,R |= G) iff the closure of the facts by
all the rules entails G (i.e. if ClR(F) |= G). Given a set
of facts {F1, . . . , Fk}, and a set of rules R, the set of facts
is called R-inconsistent if and only if there exists a con-
straint N = ¬F such that ClR({F1, . . . , Fk}) |= F . A set
of facts is said to beR-consistent iff it is notR-inconsistent.
A knowledge baseK = (F ,R,N ) is said to be consistent if
and only if F is R-consistent. A knowledge base is incon-
sistent if and only if it is not consistent.

Several semantics have been proposed to handle con-
sistency based on the concept of data repairs (Bienvenu
2012; Lembo et al. 2010; Lukasiewicz, Martinez, and
Simari 2013). Once the repairs are computed, various strate-
gies can be adapted to answer a query. We can consider
all repairs (AR-semantics), the intersection of all repairs
(IAR-semantics) or the intersection of closed repairs (ICR-
semantics).

Definition 1 (Bienvenu 2012; Lembo et al. 2010) Let K =
(F ,R,N ) be a knowledge base and let α be a query. Then
α is AR-entailed from K, written K |=AR α iff for every
repair A′ ∈ Repair(K), it holds that ClR(A′) |= α.

Definition 2 (Bienvenu 2012; Lembo et al. 2010) Let K =
(F ,R,N ) be a knowledge base and let α be a query.
Then α is IAR-entailed from K, written K |=IAR α iff
ClR(

⋂
A′∈Repair(K)) |= α.

Definition 3 (Bienvenu 2012; Lembo et al. 2010) Let K =
(F ,R,N ) be a knowledge base and let α be a query.
Then α is ICR-entailed from K, written K |=ICR α iff⋂
A′∈Repair(K) ClR(A

′) |= α.

It has been shown (Lembo et al. 2010; Lukasiewicz, Mar-
tinez, and Simari 2013) that deciding if K |=AR α is coNP-
complete in data complexity. On the contrary, the same au-
thors have shown that deciding if either K |=IAR α or
K |=ICR α is polynomially tractable. For this reason, many
authors prefer to adapt either IAR or ICR semantics for
their applications.

3 Belief Revision Operators
Definition 4 A selection function is a function γ such that
for every setF of formulae and any fact α it holds: γ(F⊥α)

is a non-empty subset of F⊥α if this set is non-empty, oth-
erwise, it is γ(F⊥α) = {F}.

Definition 5 (Updated AGM85 (Alchourrón, Gärdenfors,
and Makinson 1985)) Let F be a set of facts in a knowledge
base K. Let F⊥α and γ be the set of all maximal subsets of
F that do not imply α and a selection function, respectively.
The partial meet contraction on F that is generated by γ is
the operation ∼γ such that for all facts α:

F ∼γ α = ∩γ(F⊥α)

Two limiting cases have been thoroughly studied: when γ
gives back either only one element of F⊥α or all members
of F⊥α. In the first case, we are talking about Maxichoice
contraction and in the second it is called Full meet contrac-
tion(FMC).

There are other special and interesting cases when the se-
lection function is based on a relation (that may be consid-
ered as a preference relation).

Definition 6 A selection function γ for a belief base F in a
knowledge base K, and the contraction operator based on
it, are

1. relational if and only if there is a binary relation v such
that for every fact α, if F⊥α is non-empty, then

γ(F⊥α) = {A ∈ F⊥α|C v A for all C ∈ F⊥α}

2. transitively relational if and only if there is such a rela-
tion that is transitive.

Based on partial meet contraction, one can define a partial
meet consolidation as F ∼γ ⊥ which is the intersection
of the “most preferred” maximal consistent subsets of F ,
i.e. F ! = F ∼γ ⊥ = ∩γ(F⊥⊥) where ⊥ denotes logical
contradiction.

Partial meet consolidation has been axiomatically charac-
terized as follows:

Theorem 1 ( Adapted (Hansson 1991)) An operation is a
partial meet consolidation if and only if for all sets F of
facts the following are satisfied:

Consistency: F ! isR-consistent.
Inclusion: F ! ⊆ F .
Relevance: If α ∈ F � F !, then there is some F ′ with
F ! ⊆ F ′ ⊆ F , such that F ′ isR-consistent and F ′∪{α}
isR-inconsistent.

In addition, it is a full meet consolidation if and only if it
also satisfies:

Core identity: β ∈ F ! if and only if β ∈ F and there is
no F ′ ⊆ F such that F ′ is R-consistent but F ′ ∪ {β} is
R-inconsistent.

On the other hand, an operator is a maxi-choice consoli-
dation if and only if it satisfies the postulates consistency,
inclusion, and:

Fullness: If β ∈ F and β ∈ F ! then F ! ∪ {β} is R-
inconsistent.



There are different ways to characterize belief base func-
tions. In fact, we would say that there is an axiomatic char-
acterization and an infinite number of constructions, four
of them were extensively studied in the literature: using re-
mainder sets, using kernel sets, epistemic entrenchment and
spheres system. In (Croitoru and Rodriguez 2014), it was
defined operators of consolidation that given an inconsistent
knowledge base K = (F ,R,N ), return a new consistent
knowledge base K! = (F !,R,N ). In addition, a characteri-
zation of IAR and ICR semantics was given in terms of FMC
such that:

1. If ! is a Full Meet Consolidation for F then we get the
IAR semantics.

2. If ! is a Full Meet Consolidation for ClR(F) then we get
the ICR semantics.

Furthermore, in (Croitoru and Rodriguez 2014), it was
shown the reciprocal is also true. In addition, the notion of
full meet consolidation was used to show an axiomatic char-
acterization of IAR and ICR semantics.
In the following section, we will define the operators corre-
sponding to the inconsistency tolerant semantics above us-
ing kernel sets.

4 Kernel Consolidation
In this section, we are considering an alternative point of
view which is based on the simple hypothesis that a fact α
isR-entailed from a subset A of F if and only if it contains
some minimal α-entailing subset of A. Hence, in this con-
text, in order to remove α from F , it is only necessary to
remove at least one fact of each minimal α-entailing sub-
set of F . In formal terms, this approach was formalized by
Hansson in (Hansson 1994) and we have adapted it to the
ontology based data access setting as follows:
Definition 7 Let F be a set of facts in a knowledge base K
and α a fact. Then F⊥⊥α is the set such that A ∈ F⊥⊥α if
and only if:

1. A ⊆ F .
2. α ∈ ClR(A).
3. If B ⊂ A, then α 6∈ ClR(B).
F⊥⊥ α is a kernel set, and its elements are the α-kernels of
F .

A contraction operation ∼ can be based on the simple
principle that no α-kernel should be included in F ∼ α.
This can be obtained with an incision function, a function
that selects at least one element from each α-kernel for re-
moval. It was defined by Hansson and adapted for our setting
here as follows:

Definition 8 An incision function σ for F is a function such
that for every α:
i) σ(F⊥⊥α) ⊆ ∪(F⊥⊥α).

ii) If ∅ 6= A ∈ F⊥⊥α, then A ∩ σ(F⊥⊥α) 6= ∅.
An operation that removes exactly those elements that are

selected for removal by an incision function is called an op-
eration of kernel contraction and it responds to the following
definition:

Definition 9 Let σ be an incision function for F . The kernel
contraction ≈σ for F is defined as follows:

F ≈σ α = F � σ(F⊥⊥α)
It turns out that all partial meet contractions on belief

bases are kernel contractions, but the converse relationship
does not hold, i.e. there are kernel contractions that are not
partial meet contractions. In other words, kernel contraction
is a generalization of partial meet contraction.
However, the next observation gives a direct connection be-
tween them (see (Hansson 1991)):
Observation 1

∩(F⊥α) = F � ∪(F⊥⊥α)
The above definition of kernel contraction can be

straightforwardly transferred to consolidation. Thus, Kernel
Consolidation‡ is defined in the following way:

F‡ = F ≈σ ⊥ = F � σ(F⊥⊥⊥)
Hence, if a set of factsF is inconsistent with a new fact f ,

a straight solution to gain consistency is to repair the joined
theory F ∪{f}, by removing from it the minimal number of
facts that support the contradiction. This simple idea under-
lies kernel sets plus incision function as mentioned above.
Example 1 ((Lembo et al. 2010)) We consider a simple
knowledge base K = (F ,R,N ) describing the “Formula
One Teams” domain, where:
F {Mechanic(felipe), Driver(felipe)}.
R {Mechanic(x) → TeamMember(x), Driver(y) →
TeamMember(y)}.

N {Driver(z),Mechanic(z)→}.
In words, K specifies that drivers and mechanics are team
members, but drivers are not mechanics (and viceversa,
because N states that the two concepts Driver and Me-
chanic are disjoint). The facts Mechanic(felipe) and
Driver(felipe) asserts that felipe is both a driver and
a mechanic. It is easy to see that K is unsatisfiable, since
felipe violates the disjointness between driver and me-
chanic. There is only one α-kernel in this case: F⊥⊥ ⊥ =
{Mechanic(felipe), Driver(felipe)}. Therefore, the in-
cision function σ must select a non-empty subset of F⊥⊥⊥.
There are three different possibilities, i.e. σ(F⊥⊥⊥) is any of
the following: {Mechanic(felipe)}; {Driver(felipe)};
{Mechanic(felipe), Driver(felipe)}.

According to Observation 1 and the results given
in (Croitoru and Rodriguez 2014), IAR and ICR se-
mantics correspond to an incision function that chooses
{Mechanic(felipe), Driver(felipe)}. But overall, we are
able to obtain more interesting results. For instance, if
we consider that felipe is more important in the team
as Driver than as Mechanic, then we should only remove
Mechanic(felipe) in order to recover consistency. Intu-
itively, this kind of incision function can be thought of as se-
lecting for deletion the least valuable or important elements
of each kernel. It is therefore reasonable to let σ be based in a
binary relation that represents comparative epistemic value.
The study of this kind of relational kernel consolidation will
be left for future research.



Axiom Compliance
In this section we go one step further in the definition of
kernel consolidation operators through a set of postulates. In
order to give logical properties of that kind of consolidation
operators, we first rephrase Hansson’s postulates within our
framework. Let K = (F ,R,N ) be a knowledge base, the
original postulates can be rewritten in the following way:

Consistency: K‡ = (F‡,R,N ) is consistent.
Inclusion: K‡ = (F‡,R,N ) v K = (F ,R,N ).
Core-retainment: If f ∈ F � F‡, then there is F ′ ⊆ F

such that F ′ isR-consistent and F ′ ∪ {f} does not.

The first postulate says that the result of every consolidation
is always consistent. Inclusion says that the new knowledge
base should not contain anything that was not already in the
original set. The postulate of core-retainment tries to capture
the intuition that if a fact has to be removed, then this fact is
relevant to imply⊥. The representation theorem for this kind
of consolidation operators can be formulated as follows:

Theorem 2 An operator ‡ is an operation of kernel consol-
idation if and only if it satisfies Consistency, Inclusion and
Core-retainment.

Proof Checking that operations of kernel consolidation
satisfy postulates: Consistency and Inclusion follow directly
from definition. To see that kernel consolidation satisfies
Core-retainment, let f ∈ F � F‡. Then f ∈ σ(K⊥⊥ ⊥).
Since σ(F⊥⊥⊥) ⊆ ∪(F⊥⊥⊥), there should be some set D
such that f ∈ D ∈ F⊥⊥⊥. Let F ′ = D � {f}. Thus F ′ 6` ⊥
and F ′ ∪ {f} ` ⊥. Hence, ‡ satisfies Core-retainment.

On the contrary direction, let ‡ be an operator that satis-
fies the three postulates mentioned in the theorem. We need
to show there exists a incision function σ such that F‡ =
F � σ(F⊥⊥ ⊥). For that, we define σ(F⊥⊥ ⊥) = F � F‡.
Clearly, it follows from inclusion that F‡ = F � σ(F⊥⊥⊥).
Therefore, it only remains to verify that σ is an incision func-
tion. Of course, σ is a function. Then, we need to show that
it satisfies the two conditions of Definition 8.
For the first condition, we are going to show that σ(F⊥
⊥ ⊥) ⊆ ∪(F⊥⊥ ⊥). We take f ∈ σ(F⊥⊥ ⊥). From that
and Core-retainment, we conclude there exists F ′ ⊆ F
such that F ′ isR-consistent and F ′ ∪ {f} does not. Hence,
f ∈ ∪(F⊥⊥⊥).
For the second condition, we need to show for any D ∈ F⊥⊥
⊥ thatD∩σ(F⊥⊥⊥) 6= ∅. By consistency, F‡ 6` ⊥.Then, we
conclude that D * F‡, and thus, there is some f ′ ∈ D such
that f ′ 6∈ F‡. Since D ⊂ F it follows that f ′ ∈ F � F‡,
i.e. f ′inσ(F⊥⊥⊥). Therefore, f ′ ∈ D ∩ σ(F⊥⊥⊥), which is
enough to show that ii) in Definition 8 is satisfied.
This concludes the proof.

5 Conclusion and future work
In this paper we have shown how to get a more general char-
acterisation of the tolerance inconsistence semantics in the
OBDA setting. We did this by covering the semantics us-
ing known kernel consolidation operators from belief revi-
sion. Note that by using the equivalence showed in (Croitoru

and Vesic 2013) we also obtained here an axiomatic char-
acterisation of some argumentation semantics in a particu-
lar logic instantiated case. Such result can serve as basis for
an axiomatic characterisation of argumentation semantics in
general. It is worth mentioning that our approach does not
depend on the existence of negation as usual in Belief Re-
vision. That is important because many description logics
do not admit negation of all kinds of axioms. We are cur-
rently investigating the link between preference based incon-
sistency tolerant reasoning in the OBDA setting and kernel
consolidation.
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